
JWST Pipeline Documentation
Release 0.1.dev50+g911b5c6.d20240306

jwst

Mar 06, 2024

GETTING STARTED

1 Installation 3

2 Contributing and Reporting Issues 5

3 Introduction to the JWST Pipeline 7

4 Reference Files, Parameter Files and CRDS 11

5 Parameters 15

6 Running the JWST pipeline: Python Interface 19

7 Running the JWST pipeline: Command Line Interface (strun) 27

8 Available Pipelines 33

9 Input and Output File Conventions 35

10 Logging Configuration 37

11 JWST Datamodels 39

12 CRDS PUB Server Freeze and Deprecation 41

13 Data Products Information 43

14 Error Propagation 73

15 Package Documentation 77

Python Module Index 721

Index 723

i

ii

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

genindex | modindex

Welcome to the documentation for jwst. This package contains the Python software suite for the James Webb Space
Telescope (JWST) calibration pipeline, which processes data from all JWST instruments by applying various correc-
tions to produce science-ready, calibrated output products including fully calibrated individual exposures as well as
high-level data products (mosaics, extracted spectra, etc.). The tools in this package allow users to run and config-
ure the pipeline to custom process their JWST data. Additionally, the jwst package contains the interface to JWST
datamodels, the recommended method of reading and writing JWST data files in Python.

If you have questions or concerns regarding the software, please contact the JWST Help desk at JWST Help Desk
(https://jwsthelp.stsci.edu).

The following is a quickstart guide to installing and running and the latest version of jwst.

In short, the only setup required to run the JWST pipeline is to pip install the jwst package into a conda environment,
and then to set correct environment variables for accessing reference files through CRDS. From there, the JWST pipeline
can be run in a Python session or with the command line interface, and JWST datamodels and other pipeline utilities
can be imported and used in a Python session.

1. Create a conda environment.
Python environments allow you to install different versions of packages and their dependencies and keep
them isolated from one another. While there are several possible ways to achieve this (e.g venv
(https://docs.python.org/3/library/venv.html#module-venv)), we will use conda in this example.

If you don’t already have conda, please follow the install instructions (https://docs.conda.io/en/latest/miniconda.html).

To create a conda environment specifically for the latest stable release of jwst (in this example, called jwst_latest):

conda create --name jwst_latest python=3.11

This will create a new, (nearly) empty Python 3.11 environment in which you can install the jwst package.

2. Install jwst from PyPi
Once you have created your conda environment, make sure it is active by doing:

conda activate jwst_latest

To install the last stable release of jwst, and all its basic dependencies (e.g numpy, stcal):

pip install jwst

GETTING STARTED 1

https://jwsthelp.stsci.edu
https://docs.python.org/3/library/venv.html#module-venv
https://docs.conda.io/en/latest/miniconda.html

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

For detailed installation instructions, including how to install the development version of jwst from Github or how to
install a previous released version, see the Installation page.

3. Set environment variables for Calibration References Data System (CRDS)
CRDS is the system that manages the reference files needed to run the pipeline. Inside the STScI network, the pipeline
works with default CRDS setup with no modifications. To run the pipeline outside the STScI network, CRDS must be
configured by setting two environment variables:

export CRDS_PATH=$HOME/crds_cache
export CRDS_SERVER_URL=https://jwst-crds.stsci.edu

The CRDS_PATH is the directory on your filesystem that contains your local CRDS cache, where reference files are
accessed by the pipeline. The CRDS_SERVER_URL variable specifies from which CRDS server reference files should
be obtained. For more information, see Reference Files, Parameter Files and CRDS.

4. Running the Pipeline
With jwst installed and CRDS configured for JWST, you can now run the pipeline and use JWST datamodels.

For information on how to run the pipeline using the Python interface, see Running the JWST pipeline: Python Interface.

For information on how to run the pipeline using the command line interface, see Running the JWST pipeline: Command
Line Interface.

For information on how to read and write data files with JWST datamodels, see JWST datamodels.

2 GETTING STARTED

CHAPTER

ONE

INSTALLATION

Stable releases of the jwst package are registered at PyPI (https://pypi.org/project/jwst/). The development version of
jwst is installable from the Github repository (https://github.com/spacetelescope/jwst).

jwst is also available as part of stenv (https://stenv.readthedocs.io/en/latest/) (Space Telescope Environment).

1.1 Detailed Installation Instructions

The jwst package can be installed into a virtualenv or conda environment via pip. We recommend that for each
installation you start by creating a fresh environment that only has Python installed and then install the jwst package and
its dependencies into that bare environment. If using conda environments, first make sure you have a recent version of
Anaconda or Miniconda installed (https://docs.conda.io/en/latest/miniconda.html). If desired, you can create multiple
environments to allow for switching between different versions of the jwst package (e.g. a released version versus the
current development version).

In all cases, the installation is generally a 3-step process

1. Create a conda environment

2. Activate that environment

3. Install the desired version of the jwst package into that environment

Details are given below on how to do this for different types of installations, including tagged releases, DMS builds used
in operations, and development versions. Remember that all conda operations must be done from within a bash/zsh
shell.

Warning: The jwst package requires a C compiler for dependencies and is currently limited to Python 3.9, 3.10, or
3.11. Until Python 3.12 is supported, fresh conda environments will require setting the Python version to <=3.11.

Warning: Users on MacOS Mojave (10.14) should limit their environment to python 3.9 - there is a package
dependency that currently fails to build on Mojave with python>=3.10.

3

https://pypi.org/project/jwst/
https://github.com/spacetelescope/jwst
https://stenv.readthedocs.io/en/latest/
https://docs.conda.io/en/latest/miniconda.html

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

1.1.1 Installing Latest Release

You can install the latest released version via pip. From a bash/zsh shell:

>> conda create -n <env_name> python=3.11
>> conda activate <env_name>
>> pip install jwst

1.1.2 Installing Previous Releases

You can also install a specific version (from jwst 0.17.0 onward):

>> conda create -n <env_name> python=3.11
>> conda activate <env_name>
>> pip install jwst==1.12.5

1.1.3 Installing the Development Version from Github

You can install the latest development version (not as well tested) from the Github master branch:

>> conda create -n <env_name> python=3.11
>> conda activate <env_name>
>> pip install git+https://github.com/spacetelescope/jwst

1.1.4 Upgrading Installed Version

Important: Do NOT use pip install jwst --upgrade to upgrade your installation. This does not check if
dependencies are upgraded and will cause issues. Instead, use the method detailed below.

If you have previously installed jwst and you would like to upgrade to keep your install up-to-date, we recommend
that you first uninstall the package in your environment of choice and then reinstall:

>> pip uninstall jwst
>> pip install jwst

This will ensure that all dependency packages are also upgraded. This also applies when using the development version
of jwst - to upgrade and grab recent changes, uninstall and re-install the master branch from Github:

>> pip uninstall jwst
>> pip install git+https://github.com/spacetelescope/jwst

1.1.5 Installing with stenv

jwst is available as part of stenv, a set of installable Conda environments that bundle software for astronomical data
analysis with JWST, HST, and other observatories. See the stenv documentation (https://stenv.readthedocs.io/en/latest/)
for more information.

For more install instructions, including how to install jwst for development or how to install a DMS operational
build, see the Github README (https://github.com/spacetelescope/jwst).

4 Chapter 1. Installation

https://stenv.readthedocs.io/en/latest/
https://github.com/spacetelescope/jwst

CHAPTER

TWO

CONTRIBUTING AND REPORTING ISSUES

jwst is open source - if you would like to contribute code or file an issue, please see the the Github Contribution Guide
(https://github.com/spacetelescope/jwst/blob/master/CONTRIBUTING.md).

5

https://github.com/spacetelescope/jwst/blob/master/CONTRIBUTING.md

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

6 Chapter 2. Contributing and Reporting Issues

CHAPTER

THREE

INTRODUCTION TO THE JWST PIPELINE

3.1 Introduction

The JWST Science Calibration Pipeline processes data from all JWST instruments and observing modes by applying
various science corrections sequentially, producing both fully-calibrated individual exposures and high-level data prod-
ucts (mosaics, extracted spectra, etc.). The pipeline is written in Python, hosted open-source on Github, and can be run
either via command line interface (strun) or via the Python interface.

The full end-to-end ‘pipeline’ (from raw data to high-level data products) is comprised of three seperate pipeline stages
that are run individually to produce output products at different calibration levels:

Stage 1
Detector-level corrections and ramp fitting for individual exposures.

Stage 2
Instrument-mode calibrations for individual exposures.

Stage 3
Combining data from multiple exposures within an observation

As such, the term ‘pipeline’ may refer to a single pipeline stage or to the full three-stage series.

Because JWST has many different instruments and observing modes, there are several different pipeline modules avail-
able for each stage. There is one single pipeline for Stage 1 - corrections are applied nearly universally for all instruments
and modes. There are two pipeline modules for Stage 2: one for imaging and one for spectroscopic modes. Stage 3 is di-
vided into five separate modules for imaging, spectroscopic, coronagraphic, Aperture Masking Interferometry (AMI),
and Time Series Observation (TSO) modes. Details of all the available pipeline modules can be found at Pipeline
Modules.

Each pipeline stage consists of a series of sequential steps (e.g, saturation correction, ramp fitting). Each full pipeline
stage and every individual step has a unique module name (i.e Detector1Pipeline, or DarkCurrentCorrection). Steps
can also be run individually on data to apply a single correction. The output of each pipeline stage is the input to the
next, and within a pipeline stage the output of each step is the input to the next.

The pipeline relies on three components to direct processing: input data, step parameters, and reference files. The inputs
to the pipeline modules are individual exposures (fits files) or associations of multiple exposures (asn.json files).
The parameters for each pipeline step are determined hierarchically from the parameter defaults, parameter reference
files, and any specified overrides at run time. Finally, reference files provide data for each calibration step that is specific
to the dataset being processed. These files may depend on things like instrument, observing mode, and date. In both
the command line and Python interface, a pipeline or step module may be configured before running. Reference files
can be overridden from those chosen by CRDS, steps in a pipeline can be skipped, step parameters can be changed,
and the output and intermediate output products can be controlled.

A pipeline (or individual step) outputs corrected data either by writing an output file on disk or returning an in-memory
datamodel object. The output file suffix (i.e cal.fits, rate.fits) depends on level of calibration - each full pipeline

7

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

stage as well as each individual step have a unique file suffix so that outputs may be obtained at any level of calibration.
Other pipeline outputs include photometry catalogs and alignment catalogs (at stage 3).

3.2 Overview of Pipeline Code

The following is a brief overview of how the pipeline code in jwst is organized.

Pipeline and Step Classes
The JWST pipeline is organized into two main classes - pipeline classes and step classes. Pipelines are made up of
sequential step classes chained together, the output of one step being piped to the next, but both pipelines and steps
are represented as objects that can be configured and run on input data.

Detector1Pipeline # an example of a pipeline class
DarkCurrentStep # an example of a step class

Each pipeline or step has a unique module name, which is the identifier used to invoke the correct pipeline/step when
using either the Python or the Command Line Interface.

Package Structure
Within the jwst repository, there are separate modules for each pipeline step. There is also a pipelinemodule, where
the pipeline classes, consisting of step classes called in sequence, are defined.

jwst/
assign_wcs/

assign_wcs_step.py # contains AssignWcsStep
...

dark_current/
dark_current_step.py # contains DarkCurrent Step
...

pipeline/
calwebb_detector1.py # contains Detector1Pipeline
calwebb_image2.py # contains Image2Pipeline

...

Dependencies
The jwst package has several dependencies (see the pyproject.toml file in the top-level directory of jwst for a full
list). Some notable dependencies include:

asdf
ASDF (https://asdf.readthedocs.io/en/latest/), the Advanced Scientific Data Format is the file format the JWST uses to
encode world coordinate system (WCS) information.

gwcs
GWCS (https://gwcs.readthedocs.io/en/latest/), Generalized World Coordinate System - is an generalized alternative
to FITS WCS which makes use of astropy models to describle the translation between detector and sky coordinates.
In JWST data, WCS information is encoded in an ASDF extension in the FITS file that contains GWCS object. In
contrast, FITS WCS is limited because it stores the WCS transformation as header keywords, which is not sufficient to
describe many of the transformations JWST uses.

stpipe

8 Chapter 3. Introduction to the JWST Pipeline

https://asdf.readthedocs.io/en/latest/
https://gwcs.readthedocs.io/en/latest/

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

STPIPE (https://github.com/spacetelescope/stpipe) contains base classes for pipeline and step, and com-
mand line tools that are shared between the JWST and Nancy Grace Roman Telescope (https://roman-
pipeline.readthedocs.io/en/latest/) (Roman) pipelines.

stcal
The stcal (https://stcal.readthedocs.io/en/latest/api.html#module-stcal) package contains step code that is com-
mon to both JWST and the Roman telescope, to avoid redundancy. All step classes for the JWST
pipeline are still defined in jwst, but some of the underlying code for these steps lives in stcal
(https://stcal.readthedocs.io/en/latest/api.html#module-stcal) if the algorithm is shared by Roman (for example, ramp
fitting, saturation).

3.2. Overview of Pipeline Code 9

https://github.com/spacetelescope/stpipe
https://roman-pipeline.readthedocs.io/en/latest/
https://stcal.readthedocs.io/en/latest/api.html#module-stcal
https://stcal.readthedocs.io/en/latest/api.html#module-stcal

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

10 Chapter 3. Introduction to the JWST Pipeline

CHAPTER

FOUR

REFERENCE FILES, PARAMETER FILES AND CRDS

The JWST pipeline uses version-controlled reference files and parameter files to supply pipeline steps with necessary
data and set pipeline/step parameters, respectivley. These files both use the ASDF format, and are managed by the
Calibration References Data System (CRDS) system.

4.1 Reference Files

Most pipeline steps rely on the use of reference files that contain different types of calibration data or information
necessary for processing the data. The reference files are instrument-specific and are periodically updated as the data
processing evolves and the understanding of the instruments improves. They are created, tested, and validated by the
JWST Instrument Teams. The teams ensure all the files are in the correct format and have all required header keywords.
The files are then delivered to the Reference Data for Calibration and Tools (ReDCaT) Management Team. The result
of this process is the files being ingested into the JWST Calibration Reference Data System (CRDS), and made available
to users, the pipeline team and any other ground subsystem that needs access to them.

Information about all the reference files used by the Calibration Pipeline can be found at Reference File Information,
as well as in the documentation for each Calibration Step that uses a reference file. Information on reference file types
and their correspondence to calibration steps is described within the table at Reference File Types.

4.2 Parameter Files

Parameter files, which like reference files are encoded in ASDF and version-controlled by CRDS, define the ‘best’ set
of parameters for pipeline steps as determined by the JWST instrument teams, based on insturment, observing model,
filter, etc. They also may evolve over time as understanding of caibration improves.

By default, when running the pipeline via strun or using the pipeline/step.call()method when using the Python
interface, the appropriate parameter file will be determined and retrieved by CRDS to set step parameters.

4.3 CRDS

Calibration References Data System (CRDS) is the system that manages the reference files that the pipeline uses. For
the JWST pipeline, CRDS manages both data reference files as well as parameter reference files which contain step
parameters.

CRDS consists of external servers that hold all available reference files, and the machinery to map the correct reference
files to datasets and download them to a local cache directory.

11

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

When the Pipeline is run, CRDS uses the metadata in the input file to determine the correct reference files to use for that
dataset, and downloads them to a local cache directory if they haven’t already been downloaded so they’re available on
your filesystem for the pipeline to use.

The environment variables `crds_context` and `crds_server` must be set before running the pipeline

4.3.1 Reference Files Mappings (CRDS Context)

One of the main functions of CRDS is to associate a dataset with its best reference files - this mapping is referred to as
the ‘CRDS context’ and is defined in a pmap file, which itself is version-controlled to allow access to the reference file
mapping at any point in time, and revert to any previous set of reference files if desired.

The CRDS context is usually set by default to always give access to the most recent reference file deliveries and selection
rules - i.e the ‘best’, most up-to-date set of reference files. On occasion it might be necessary or desirable to use one of
the non-default mappings in order to, for example, run different versions of the pipeline software or use older versions
of the reference files. This can be accomplished by setting the environment variable CRDS_CONTEXT to the desired
project mapping version, e.g.

$ export CRDS_CONTEXT='jwst_0421.pmap'

For all information about CRDS, including context lists, see the JWST CRDS website:

https://jwst-crds.stsci.edu/

4.3.2 CRDS Servers

The CRDS server can be found at

https://jwst-crds.stsci.edu

Inside the STScI network, the pipeline defaults are sufficient and no further action is necessary.

To run the pipeline outside the STScI network, CRDS must be configured by setting two environment variables:

• CRDS_PATH: Local folder where CRDS content will be cached.

• CRDS_SERVER_URL: The server from which to pull reference information

To setup to use the server, use the following settings:

export CRDS_PATH=$HOME/crds_cache/
export CRDS_SERVER_URL=https://jwst-crds.stsci.edu

4.3.3 Setting CRDS Environment Variables in Python

The CRDS environment variables need to be defined before importing anything from jwst or crds. The examples
above show how to set an environment variable in the shell, but this can also be done within a Python session by
using os.environ (https://docs.python.org/3/library/os.html#os.environ). In general, any scripts should assume the
environment variables have been set before the scripts have run. If one needs to define the CRDS environment variables
within a script, the following code snippet is the suggested method. These lines should be the first executable lines:

import os
os.environ['CRDS_PATH'] = 'path_to_local_cache'
os.environ['CRDS_SERVER_URL'] = 'url-of-server-to-use'

(continues on next page)

12 Chapter 4. Reference Files, Parameter Files and CRDS

https://jwst-crds.stsci.edu/
https://docs.python.org/3/library/os.html#os.environ

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

Now import anything else needed
import jwst

4.3. CRDS 13

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

14 Chapter 4. Reference Files, Parameter Files and CRDS

CHAPTER

FIVE

PARAMETERS

Parameters, which exist at both the step level and the global pipeline level, can be set to change various aspects of
processing. Parameters can be set in a parameter file, on the command line, or passed in as an argument when running
in Python. Note that because there are multiple ways to set parameters, there is a hierarchy involved - overrides set
on a pipeline or step object will take precedence over values in a parameter file. See Parameter Precedence for a full
description of how a parameter gets its final value.

If there is need to re-use a set of parameters often, parameters can be stored in parameter files. See Parameter Files
for more information.

To see what parameters are available for any given pipeline or step, use the -h option on strun. Some examples are:

$ strun calwebb_detector1 -h
$ strun jwst.dq_init.DQInitStep -h

5.1 Universal Parameters

The set of parameters that are common to all pipelines and steps are referred to as universal parameters and are
described below. When these parameters are set at the pipeline level, they will apply to all steps within that pipeline,
unless explicitly overridden for a specific step.

5.1.1 Output Directory

By default, all pipeline and step outputs will drop into the current working directory, i.e., the directory in which the
process is running. To change this, use the output_dir parameter. See .. _python_output_directory: for instructions
when running in Python, and .. _cli_output_directory: for instructions using the command line interface.

5.1.2 Output File

When running a pipeline, the stpipe infrastructure automatically passes the output data model from one step to the
input of the next step, without saving any intermediate results to disk. If you want to save the results from individual
steps, you have two options:

1. Specify save_results. This option will save the results of the step, using a filename created by the step.

2. Specify a file name using output_file <basename>. This option will save the step results using the name
specified.

To do this using the Python pipeline interface, see .. _python_output_file:. To do this when using the command line
interface, see .. _cli_output_file:.

15

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

5.1.3 Override Reference File

For any step that uses a calibration reference file you always have the option to override the automatic selection of a ref-
erence file from CRDS and specify your own file to use. Parameters for this are of the form --override_<ref_type>,
where ref_type is the name of the reference file type, such as mask, dark, gain, or linearity. When in doubt as
to the correct name, just use the -h argument to strun to show you the list of available override parameters.

To override the use of the default linearity file selection, for example, you would use:

$ strun calwebb_detector1 jw00017001001_01101_00001_nrca1_uncal.fits
--steps.linearity.override_linearity='my_lin.fits'

5.1.4 Skip

Another parameter available to all steps in a pipeline is skip. If skip=True is set for any step, that step will be skipped,
with the output of the previous step being automatically passed directly to the input of the step following the one that
was skipped. For example, if you want to skip the linearity correction step, one can specify the skip parameter for the
strun command:

$ strun calwebb_detector1 jw00017001001_01101_00001_nrca1_uncal.fits
--steps.linearity.skip=True

Alternatively, if using a parameter file, edit the file to add the following snippet:

steps:
- class: jwst.linearity.linearity_step.LinearityStep
parameters:
skip: true

5.2 Pipeline/Step Parameters

All pipelines and steps have parameters that can be set to change various aspects of how they execute. To see what
parameters are available for any given pipeline or step, use the -h option on strun. Some examples are:

$ strun calwebb_detector1 -h
$ strun jwst.dq_init.DQInitStep -h

To set a parameter, simply specify it on the command line. For example, to have calwebb_detector1 save the calibrated
ramp files, the strun command would be as follows:

$ strun calwebb_detector1 jw00017001001_01101_00001_nrca1_uncal.fits --save_calibrated_
→˓ramp=true

To specify parameter values for an individual step when running a pipeline use the syntax --steps.<step_name>.
<parameter>=value. For example, to override the default selection of a dark current reference file from CRDS when
running a pipeline:

$ strun calwebb_detector1 jw00017001001_01101_00001_nrca1_uncal.fits
--steps.dark_current.override_dark='my_dark.fits'

If there is need to re-use a set of parameters often, parameters can be stored in parameter files. See Parameter Files
for more information.

16 Chapter 5. Parameters

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

5.3 Pipeline/Step Parameters

5.3. Pipeline/Step Parameters 17

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

18 Chapter 5. Parameters

CHAPTER

SIX

RUNNING THE JWST PIPELINE: PYTHON INTERFACE

Note: The use of the run method to run a pipeline or step is not recommended. By default, using the pipeline.
run() method defaults to pipeline and step-level coded defaults, ignoring parameter files, unless explicitly overridden.
Please see Advanced use - pipeline.run() vs. pipeline.call for more details.

The Python interface is one of two options for running the pipeline. See here for an overview of the alternative command
line interface.

6.1 Overview of Running the Pipeline in Python

When using the Python interface to the JWST pipeline, each pipeline and step is available as a module that can be
imported into your Python session, configured (either directly as arguments/attributes or with a parameter file), and
used to process input data. The following section will describe the necessary steps to run a pipeline or step in Python.

6.1.1 CRDS Environment Variables

The CRDS environment variables need to be defined before importing anything from jwst or crds to allow access to
reference and parameter files. These environment variables can be set in the shell, or in a Python session by using os.
environ (https://docs.python.org/3/library/os.html#os.environ). See Setting CRDS Environment Variables in Python
for more information.

6.1.2 Importing and Running Pipelines and Steps in Python

All full pipeline stages can be imported by name from the pipeline module:

from jwst.pipeline import Image3Pipeline
from jwst.pipeline import Spec2Pipeline

Individual pipeline steps can be imported by name from their respective module in jwst:

from jwst.saturation import SaturationStep
from jwst.ramp_fitting import RampFitStep

Details of all the available pipeline modules and their names can be found at Pipeline Modules.

Once imported, you can execute a pipeline or a step from within Python by using the .call() method of the class. The
input can be either a string path to a file on disk or an open DataModel object. Note that the .run() class method is also
available for use, but is discouraged and should be used only with caution (see here for more information).

19

https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/os.html#os.environ

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Example: Running a Pipeline or Step with Default Parameters and Reference Files

running a full pipeline stage, input is path to file
from jwst.pipeline import Detector1Pipeline
result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits')

running a single pipeline step, input is datamodel object
from jwst.linearity import LinearityStep
import stdatamodels.jwst.datamodels as dm
input_model = dm.open('jw00001001001_01101_00001_mirimage_uncal.fits')
result = LinearityStep.call(input_model)

In the examples above, the returned value result, is a Datamodel containing the corrected data - no files are written
out, by default. See Controlling Output File Behavior for information on how to control the generation of output files.

Additionally in both examples above, there are no arguments other than the input data being passed in to the call
method, so the appropriate parameter files and reference files are chosen by CRDS based on the current context. The
following section will show how to configure the pipeline to override these defaults.

6.2 Configuring a Pipeline/Step in Python

By default when using the .call() method to run a pipeline/step, pipeline/step parameters and reference files are
chosen by CRDS based on instrument, observing mode, date, etc. If set to the most current context, these represent the
‘best’ set of parameters and reference files for the dataset passed in, as determined by the JWST instrument teams.

To override parameter and reference file defaults, a pipeline/step can be configured for custom processing. Pipeline-
level and step-level parameters can be changed, output file behavior can be set, reference files can be overridden, and
pipeline steps can be skipped if desired. This section will be a general overview on how to configure the pipeline when
running in Python, and the following sections will elaborate on each of these options.

When running in Python, there are two ways two configure a Pipeline/Step.
1. By passing in keyword arguments to a pipeline/step’s call method

2. By using a parameter file

A combination of both keyword arguments and custom parameter files can be used for configuration, but keep in mind
the hierarchy of parameter precedence to keep track of which value will get used if set in multiple locations.

Example: Configuring a pipeline/step with keyword arguments

configuring a pipeline and the steps within the pipeline with keyword arguments
result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits',

save_results=False,
steps={'jump': {'rejection_threshold': 12.0, 'save_

→˓results':True}})
configuring a pipeline step with keyword arguments
result = JumpStep.call('jw00017001001_01101_00001_nrca1_uncal.fits',

save_results=True, 'rejection_threshold'=12.0)

Both examples above show how to configure the jump detection step with the same settings - the
rejection_threshold set to 12.0, and save_results set to True to indicate the result from the step should be
written to an output file.

The first example shows when the jump step is run inside a pipeline - because a pipeline consists of many steps,
parameters for a substep are specified within the steps argument, a nested dictionary keyed by each substep and again
by each possible parameter for each substep. Pipeline-level arguments (in this case, save_results) are passed in

20 Chapter 6. Running the JWST pipeline: Python Interface

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

individually as keyword arguments. Note that in this example, the ‘save_results’ argument within steps will override
the pipeline-level ‘save_results’ argument.

The second example shows the same configuration to the jump step, but this time when the step is run standalone. Here,
there is no steps dictionary argument and all arguments can be passed to the step directly since it is now at the step
level.

Example: Configuring a pipeline/step with a parameter file
To use a custom parameter file, set the config_file parameter:

passing a custom parameter file to a pipeline
result = Detector1Pipeline.call("jw00017001001_01101_00001_nrca1_uncal.fits",\

config_file='calwebb_detector1.asdf')

Again, note the parameter precedence rules. If an override parameter file passed in does not contain the full set of
required parameters for a step, the others will be obtained according to those rules and may grab values from the
CRDS-chosen parameter file as well. If a custom parameter file is passed in to config_file AND an argument is
passed directly to the pipeline/step class, the value in the parameter file is overridden.

6.2.1 Setting Step Parameters on a Pipeline or Individual Step

All steps have parameters that can be set to change various aspects of how they execute (e.g switching on and off certain
options in a step, setting thresholds). By default, the values of these parameters are set in the CRDS-chosen parameter
file (and if absent, defer to the coded defaults), but they can be overridden if desired.

As Arguments to a Pipeline / Step
As discussed in above, when setting a step-level parameter when that step is a substep of a pipeline, it must be passed
to the steps argument dictionary. For exaple, to change the rejection_threshold parameter of the jump detection
step when running the full Detector1Pipeline:

from jwst.pipeline import Detector1Pipeline
result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits',

steps={'jump': {'rejection_threshold':12.0)}})

When running a single step, step-level parameters can be passed in directly as keyword arguments. For example, to
change the parameter rejection_threshold for the jump detection step when running the step individually:

from jwst.jump import JumpStep
result = JumpStep.call('jw00017001001_01101_00001_nrca1_uncal.fits', rejection_
→˓threshold=12.0)

Using a Parameter File
Alternatively, if using a parameter file, edit the file to add the following snippet (in this example, to a file named
my_config_file.asdf in the current working directory):

steps:
- class: jwst.jump.jump_step.JumpStep
parameters:
rejection_threshold : 12

And pass in the modified file to the config_file argument:

result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits',
config_file='my_config_file.asdf')

6.2. Configuring a Pipeline/Step in Python 21

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Disabling all CRDS Step Parameters

Retrieval of Step parameters from CRDS can be completely disabled by setting the
STPIPE_DISABLE_CRDS_STEPPARS environment variable to TRUE. This can be done in the shell, or using
the os.environ() command:

os.environ["STPIPE_DISABLE_CRDS_STEPPARS"] = 'True'

6.2.2 Overriding Reference Files

To override the reference file for a step selected by CRDS:

As Arguments to a Pipeline / Step
To override a reference file for a step within a pipeline, for example the saturation step in the Detector1Pipeline the
override_saturation argument can be set in the saturation section of the steps argument.

To override a reference file of a step within a pipeline
from jwst.pipeline import Detector1Pipeline
result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits',

steps={"saturation" : {"override_saturation": '/path/to/
→˓new_saturation_ref_file.fits'}})

Multiple reference file overrides can be provided, for example:

To override a reference file for multiple steps within a pipeline
from jwst.pipeline import Detector1Pipeline
result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits',

steps={"saturation": {
→˓"override_saturation": '/path/to/new_saturation_ref_file.fits'},

{"jump" : {
→˓"override_jump": '/path/to/new_jump_ref_file.fits'}})

To override a reference file for a standalone step, “override_<stepname>” can be passed directly as a keyword argument
to that step’s call method:

To override a reference file when running a standalone step
from jwst.linearity import SaturationStep
SaturationStep.call('jw00017001001_01101_00001_nrca1_uncal.fits',

override_saturation='/path/to/new_saturation_
→˓ref_file.fits')

Using a Parameter File
If using a parameter file for configuration, to override a reference edit the file to add the following snippet (in this
example, to a file named my_config_file.asdf in the current working directory):

steps:
- class: jwst.linearity.saturation_step.SaturationStep
parameters:
override_saturation: '/path/to/new_saturation_ref_file.fits'

And pass in the modified file to the config_file argument:

22 Chapter 6. Running the JWST pipeline: Python Interface

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits',
config_file='my_config_file.asdf')

To use an entire set of past reference files from a previous CRDS mapping, see here.

6.2.3 Skipping a Pipeline Step

Note: Some steps in a pipeline expect certain previous steps to have been run beforehand, and therefore won’t run if
that expected previous correction has not been applied. Proceed with caution when skipping steps.

When using the Python interface you wish to run a pipeline but skip one or some of the steps contained in that pipeline,
this can be done in two different ways:

As Arguments to a Pipeline / Step
Every step in a pipeline has a skip parameter that when set to true, will entirely skip that step. For example, to skip
the saturation step in the Detector1Pipeline:

To set a step parameter on a step within a pipeline
from jwst.pipeline import Detector1Pipeline
result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits', steps={
→˓"saturation": {"skip": True}})

Using a Parameter File
The equivalent to the above example can be done by adding the following snippet to your parameter file (in this example,
to a file named my_config_file.asdf in the current working directory):

steps:
- class: jwst.linearity.linearity_step.LinearityStep
parameters:
skip: true

And pass in the modified file to the config_file argument:

result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits',
config_file='my_config_file.asdf')

6.3 Controlling Output File Behavior

By default, when running in Python, all outputs are returned in-memory (typically as a Datamodel) and no output files
are written - even the final result of a pipeline. To control this behavior, and other aspects of output file generation like
directory and file name, certain pipeline and step-level parameters can be set.

Output file behavior can be modified with the ``save_results``, ``output_file``, and ``output_dir`` parameters

6.3. Controlling Output File Behavior 23

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

6.3.1 Saving Final Pipeline Results

The save_results parameter, when set at the pipeline-level, indicates that the final pipeline output products should
be saved to a file. The output files will be in the current working directory, and be named based on the input file name
and the appropriate file suffix. Note that setting save_results at the pipeline-level will not save the results from each
step, only the final results from the full pipeline.

To save the final results from a pipeline to a file
from jwst.pipeline import Detector1Pipeline
result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits', save_
→˓results=True)

In this example, the following output files will be written in the current working directory:
• jw00017001001_01101_00001_nrca1_trapsfilled.fits

• jw00017001001_01101_00001_nrca1_rate.fits

• jw00017001001_01101_00001_nrca1_rateints.fits

Changing Output File Name
Setting output_file at the pipeline-level indicates that the pipeline’s final result should be saved (so, also setting
save_results is redundant), and that a new file base name should be used with the appropriate file suffix appended.
For example, to save the intermediate result from the saturation step when running Detector1Pipeline with a file
name based on the string detector_1_final instead of jw00017001001_01101_00001_nrca1:

saving the final results from running a pipeline with a custom output file basename
from jwst.pipeline import Detector1Pipeline
result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits', output_
→˓file='detector_1_final_result')

In this example, the following output files will be written in the current working directory

• detector_1_final_result_trapsfilled.fits

• detector_1_final_result_rate.fits

• detector_1_final_result_rateints.fits

Changing Output File Directory
When set at the pipeline level, the output_dir parameter will set where the final pipeline output products are placed.
The default is the current working directory. For example, to save the results from Detector1Pipeline in a subdirectoy
/calibrated:

Setting output_dir at the pipeline-level indicates that the pipeline’s final results should be saved (so, also setting
save_results is redundant), and that the files should be saved in the directory specified instead of the current working
directory. For example, to save the intermediate results of Detector1Pipeline in a subdirectory /calibrated:

to save the final result of a pipeline in a different specified output directory
from jwst.pipeline import Detector1Pipeline
result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits', output_
→˓dir='calibrated')

24 Chapter 6. Running the JWST pipeline: Python Interface

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

6.3.2 Saving Intermediate Step Results

When the save_results parameter is set at the step-level (either within a pipeline, or on a standalone step), it indicates
that the result from that step should be saved to a file.

To save the intermediate output from a step within a pipeline:

To save the intermediate results of a step within a pipeline to a file
from jwst.pipeline import Detector1Pipeline
result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits',

steps={"saturation": {
→˓"save_results": True}})

Similarly, when save_results is set on an individual step class, this will indicate that the final result from that step
should be saved.

To save the final results from SaturationStep when run standalone
from jwst.linearity import SaturationStep
SaturationStep.call('jw00017001001_01101_00001_nrca1_uncal.fits', save_results=True)

Setting Output File Name
Setting output_file at the step-level indicates that the step’s result should be saved (so, also setting save_results
is redundant), and that a new file base name should be used with the appropriate file suffix appended. For example, to
save the intermediate result from the saturation step when running Detector1Pipeline with a file name based on the
string saturation_result instead of jw00017001001_01101_00001_nrca1:

To save the intermediate results of a step within a pipeline to a file with a custom␣
→˓name
from jwst.pipeline import Detector1Pipeline
result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits',

steps={"saturation": {
→˓"output_file": 'saturation_result'})

Similarly, when output_file is set on an individual step class, this will indicate that the result from that step should
be saved to a file with that basename and the appropriate suffix.

To save the final results from SaturationStep with a custom output file name when run␣
→˓standalone
from jwst.linearity import SaturationStep
SaturationStep.call('jw00017001001_01101_00001_nrca1_uncal.fits', output_file=
→˓"saturation_result")

Setting Output File Directory
Setting output_dir at the step-level indicates that the step’s result should be saved (so, also setting save_results
is redundant), and that the files should be saved in the directory specified instead of the current working directory. For
example, to save the intermediate results of DarkCurrentStep when running Detector1Pipeline in a subdirectory
/calibrated:

to save the intermediate step result in a different specified output directory
from jwst.pipeline import Detector1Pipeline
result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits',

steps={'dark': {'output_
→˓dir': 'calibrated'}})

6.3. Controlling Output File Behavior 25

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Similarly, when output_dir is set on an individual step class, this will indicate that the result from that step should
be saved to the specified directory:

to save the final result of a
from jwst.pipeline import Detector1Pipeline
result = DarkCurrentStep.call('jw00017001001_01101_00001_nrca1_uncal.fits', output_dir=
→˓'calibrated')

6.4 Advanced use - pipeline.run() vs. pipeline.call

Another option for running pipelines or steps is to use the run() method instead of the call() method. Using .run()
is not reccomended and considered advanced use, but it is an option to users.

The difference between .run() in .call() is in the retrieval and use of parameters from CRDS parameter files. When
the .call() method is invoked, there is additional setup done to retrieve parameter and reference files and reconcile
those with any passed into the pipeline directly as an argument or in a custom parameter file. When .call() is invoked,
a new instance of the pipeline/step class is created internally, and after parameters are determined the .run() method
of that internal class is called. Because the actual processing occurs on this new instance, attributes cannot be set
directly on the original pipeline/step class. They must be passed in as arguments to .call() or set in the parameter
file.

In contrast, when using the .run() method directly on a pipeline/step, the additional logic to determine parameters
and reference files is skipped. The pipeline instance is being run as-is, and coded defaults for the pipeline and each
intermediate step will be used unless explicitly overridden individually. Because the instance created is being run
directly on the data, attributes can be set directly:

from jwst.pipeline import Detector1Pipeline
pipe = Detector1Pipeline()
pipe.jump.rejection_threshold = 12
pipe.ramp_fit.skip = True
result = pipe.run('jw00017001001_01101_00001_nrca1_uncal.fits')

The pipe object created and the attributes set will persist and this object can be reused within a Python session for
processing data. Keep in mind that each individual step parameter must be set when using this method, or else the
coded defaults will be used, which may be inappropriate for the dataset being processed.

See Executing a pipeline or pipeline step via call() for more information.

26 Chapter 6. Running the JWST pipeline: Python Interface

CHAPTER

SEVEN

RUNNING THE JWST PIPELINE: COMMAND LINE INTERFACE (STRUN)

Note: For seasoned users who are familiar with using collect_pipeline_cfgs and running pipelines by the default
configuration (CFG) files, please note that this functionality has been deprecated. Please read CFG Usage Deprecation
Notice.

Individual steps and pipelines (consisting of a series of steps) can be run and configured from the command line using
the strun command. strun is one of two options for running the pipeline. See here for an overview of the alternative
Python interface.

7.1 CRDS Environment Variables

The CRDS environment variables need to be defined before running a pipeline or step with strun to allow the pipeline
to access reference and parameter files. See CRDS for more information.

7.2 Overview of Running the Pipeline with strun

The first argument to strun must be one of either a pipeline name, Python class of the step or pipeline to be run, or
the name of a parameter file for the desired step or pipeline (see Parameter Files). The second argument to strun is
the name of the input data file to be processed.

$ strun <pipeline_name, class_name, or parameter_file> <input_file>

Pipeline classes also have a pipeline name, or alias, that can be used instead of the full class specification. For example,
jwst.pipeline.Detector1Pipeline has the alias calwebb_detector1 and can be run as

$ strun calwebb_detector1 jw00017001001_01101_00001_nrca1_uncal.fits

A full list of pipeline aliases can be found in Pipeline Stages.

27

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

7.3 Exit Status

strun produces the following exit status codes:

• 0: Successful completion of the step/pipeline

• 1: General error occurred

• 64: No science data found

The “No science data found” condition is returned by the assign_wcs step of the calwebb_spec2 pipeline when,
after successfully determining the WCS solution for a file, the WCS indicates that no science data will be found. This
condition most often occurs with NIRSpec’s Multi-object Spectroscopy (MOS) mode: There are certain optical and
MSA configurations in which dispersion will not cross one or the other of NIRSpec’s detectors.

7.3.1 Configuring a Pipeline/Step with strun

By default, pipeline parameters and reference files are chosen by CRDS based on instrument, observing mode, date,
etc. If set to the most current Reference Files Mappings (CRDS Context), these represent the ‘best’ set of parameters
and reference files for the pipeline as determined by the JWST instrument teams.

A Pipeline/Step can be configured for custom processing. Pipeline-level and step-level parameters can be changed,
output file behavior can be set, references files can be overridden, and pipeline steps can be skipped if desired. This
section will be a general overview on how to configure the pipeline when running with strun, and the following
sections will elaborate on each of these possible customizations and demonstrate usage.

When running command line with ``strun``, there are two ways two configure a Pipeline/Step.
1. By passing in arguments to a pipeline/step on the command line

2. By using a parameter file and passing this in as an argument on the command line

A combination of arguments and custom parameter files can be used for configuration, but keep in mind the hierarchy
of parameter precedence to keep track of which value will get used if set in multiple locations.

7.4 Setting Step Parameters on a Pipeline or Individual Step

All pipelines and steps have parameters that can be set to change various aspects of how they execute (e.g switching on
and off certain options in a step, setting thresholds). By default, the values of these parameters are set in the CRDS-
chosen parameter file, but they can be overridden when running the pipeline with strun. As mentioned, this can
either be done by passing in command line arguments or by passing in a custom parameter file - both methods will be
described in this section.

Using Command Line Arguments
When running a pipeline, step-level parameters can be changed by passing in a command line argument to that step.
For example, to change the rejection_threshold parameter of the jump detection step when running the full De-
tector1Pipeline:

$ strun calwebb_detector1 jw00017001001_01101_00001_nrca1_uncal.fits
--steps.jump.rejection_threshold=12.0

When running a standalone step, command line arguments do not need to be nested within steps. For example, to
change the parameter rejection_threshold for the jump detection step when running the step individually:

$ strun jump jw00017001001_01101_00001_nrca1_uncal.fits --rejection_threshold=12.0

28 Chapter 7. Running the JWST pipeline: Command Line Interface (strun)

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Using a Parameter File
Alternatively, if using a parameter file, edit the file to add the following snippet (in this example, to a file named
‘my_config_file.asdf’ in the current working directory):

steps:
- class: jwst.jump.jump_step.JumpStep
name: jump
parameters:
rejection_threshold : 12

And pass in the modified file to strun:

$ strun my_config_file.asdf jw00017001001_01101_00001_nrca1_uncal.fits

7.5 Overriding Reference Files

By default, when the pipeline or step is run, CRDS will determine the best set of reference files based on file metadata
and the current CRDS mapping (also known as ‘context’). It is possible to override these files and use a custom reference
file, or one not chosen by CRDS.

Using Command Line Arguments
For any step that uses a calibration reference file you always have the option to override the automatic selection of a ref-
erence file from CRDS and specify your own file to use. Parameters for this are of the form --override_<ref_type>,
where ref_type is the name of the reference file type, such as mask, dark, gain, or linearity. When in doubt as
to the correct name, just use the -h argument to strun to show you the list of available override parameters.

To override the use of the default linearity reference file selection with a custom file in the current working directory
called my_lin.fits, for example, you would do:

$ strun calwebb_detector1 jw00017001001_01101_00001_nrca1_uncal.fits
--steps.linearity.override_linearity='my_lin.fits'

Or, if running the step individually, to override the reference file:

$ strun linearity jw00017001001_01101_00001_nrca1_uncal.fits
--override_linearity='my_lin.fits'

Using a Parameter File
If using a parameter file for configuration, to override a reference edit the file to add the following snippet (in this
example, to a file named ‘my_config_file.asdf’ in the current working directory):

steps:
- class: jwst.saturation.saturation_step.SaturationStep
name: saturation
parameters:
override_saturation: '/path/to/new_saturation_ref_file.fits'

And pass in the modified file to strun:

$ strun my_config_file.asdf jw00017001001_01101_00001_nrca1_uncal.fits

To use an entire set of past reference files from a previous CRDS mapping, see here.

7.5. Overriding Reference Files 29

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

7.6 Skipping a Pipeline Step

Note: Some steps in a pipeline expect certain previous steps to have been run beforehand, and therefore won’t run if
that expected previous correction has not been applied. Proceed with caution when skipping steps.

When running a pipeline with strun, one or several steps within that pipeline can be skipped.

Using Command Line Arguments
Every step in a pipeline has a skip parameter that when set to true, will entirely skip that step. For example, to skip
the saturation step in the Detector1Pipeline:

$ strun calwebb_detector1 jw00017001001_01101_00001_nrca1_uncal.fits
--steps.saturation.skip=True

Using a Parameter File
The equivalent to the above example can be done by adding the following snippet to your parameter file (in this example,
to a file named ‘my_config_file.asdf’ in the current working directory):

steps:
- class: jwst.saturation.saturation_step.SaturationStep
parameters:
skip: true

And pass in the modified file to the config_file argument:

result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits',
config_file='my_config_file.asdf')

7.6.1 Controlling Output File Behavior with strun

By default, when running the pipeline with strun, the final outputs of a pipeline (or final outputs when running an
individual step) will be written out to a file in the current working directory. The base name of these final output files
is derived from the input file name, by default. Additionally, no intermediate step results will be saved. This behavior
can be modified to change output file names, locations, and specify that intermediate results from a step in a pipeline
should be written out to a file.

7.7 Saving Intermediate Pipeline Results to a File

The stpipe infrastructure automatically passes the output data model from one step to the input of the next step,
without saving any intermediate results to disk. If you want to save the results from individual steps, you have two
options:

• Specify save_results on an individual step within the pipeline. This option will save the results of the step,
using a filename created by the step.

• Specify a file name using output_file <basename> for an individual step. This option indicated that results
should be saved, and to use the name specified.

For example, to save the result from the dark current step of Detector1Pipeline (using the alias name
calwebb_detector1):

30 Chapter 7. Running the JWST pipeline: Command Line Interface (strun)

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

$ strun calwebb_detector1 jw00017001001_01101_00001_nrca1_uncal.fits
--steps.dark_current.save_results=true

This will create the file jw00017001001_01101_00001_dark_current.fits in the current working directory.

7.8 Setting Output File Name

As demonstrated in the section above, the output_file parameter is used to specify the desired name for output files.
When done at the step-level as shown in those examples, the intermediate output files from steps within a pipeline are
saved with the specified name.

You can also specify a particular file name for saving the end result of the entire pipeline using the --output_file
parameter:

$ strun calwebb_detector1 jw00017001001_01101_00001_nrca1_uncal.fits
--output_file='stage1_processed'

In this situation, using the default configuration, three files are created:

• stage1_processed_trapsfilled.fits

• stage1_processed_rate.fits

• stage1_processed_rateints.fits

When running a standalone step, setting --output_file at the top-level will determine the name of the final output
product for that step, overriding the default based on input name:

$ strun linearity jw00017001001_01101_00001_nrca1_uncal.fits
--output_file='intermediate_linearity'

Similarly, to save the result from a step within a pipeline (for example, the dark current step of calwebb_detector1)
with a different file name:

$ strun calwebb_detector1 jw00017001001_01101_00001_nrca1_uncal.fits
--steps.dark_current.output_file='intermediate_result'

A file, intermediate_result_dark_current.fits, will then be created. Note that the name of the step will be
appended as the file name suffix

7.9 Setting Output File Directory

To change the output directory of the final pipeline products from the default of the current working directory, use the
output_dir option.

$ strun calwebb_detector1 jw00017001001_01101_00001_nrca1_uncal.fits
--steps.dark_current.output_dir='calibrated'

When this is run, all three final output products of Detector1Pipeline will be saved within the subdirectory
calibrated.

Setting output_dir at the step-level indicates that the step’s result should be saved (so, also setting save_results
is redundant), and that the files should be saved in the directory specified instead of the current working directory. For

7.8. Setting Output File Name 31

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

example, to save the intermediate results of DarkCurrentStep when running Detector1Pipeline in a subdirectory
/calibrated:

$ strun calwebb_detector1 jw00017001001_01101_00001_nrca1_uncal.fits
--steps.dark_current.output_dir='calibrated'

Similarly, when output_dir is set on an individual step class, this will indicate that the result from that step should
be saved to the specified directory:

$ strun dark_current jw00017001001_01101_00001_nrca1_uncal.fits --output_dir='calibrated'

32 Chapter 7. Running the JWST pipeline: Command Line Interface (strun)

CHAPTER

EIGHT

AVAILABLE PIPELINES

There are many pre-defined pipeline modules for processing data from different instrument observing modes through
each of the 3 stages of calibration. For all of the details see Pipeline Stages.

8.1 Pipeline/Step Suffix Definitions

However the output file name is determined (see above), the various stage 1, 2, and 3 pipeline modules will use that file
name, along with a set of predetermined suffixes, to compose output file names. The output file name suffix will always
replace any known suffix of the input file name. Each pipeline module uses the appropriate suffix for the product(s) it
is creating. The list of suffixes is shown in the following table. Replacement occurs only if the suffix is one known to
the calibration code. Otherwise, the new suffix will simply be appended to the basename of the file.

33

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Product Suffix
Uncalibrated raw input uncal
Corrected ramp data ramp
Corrected countrate image rate
Corrected countrate per integration rateints
Optional fitting results from ramp_fit step fitopt
Background-subtracted image bsub
Per integration background-subtracted image bsubints
Calibrated image cal
Calibrated per integration images calints
CR-flagged image crf
CR-flagged per integration images crfints
Resampled 2D image i2d
Resampled 2D spectrum s2d
Resampled 3D IFU cube s3d
1D extracted spectrum x1d
1D extracted spectra per integration x1dints
1D combined spectrum c1d
Source catalog cat
Segmentation map segm
Time Series imaging photometry phot
Time Series spectroscopic photometry whtlt
Coronagraphic PSF image stack psfstack
Coronagraphic PSF-aligned images psfalign
Coronagraphic PSF-subtracted images psfsub
AMI fringe and closure phases ami
AMI averaged fringe and closure phases amiavg
AMI normalized fringe and closure phases aminorm

8.2 For More Information

More information on logging and running pipelines can be found in the stpipe User’s Guide at For Users.

More detailed information on writing pipelines can be found in the stpipe Developer’s Guide at For Developers.

If you have questions or concerns regarding the software, please open an issue at https://github.com/spacetelescope/
jwst/issues or contact the JWST Help Desk (https://jwsthelp.stsci.edu).

34 Chapter 8. Available Pipelines

https://github.com/spacetelescope/jwst/issues
https://github.com/spacetelescope/jwst/issues
https://jwsthelp.stsci.edu

CHAPTER

NINE

INPUT AND OUTPUT FILE CONVENTIONS

9.1 Input Files

There are two general types of input to any step or pipeline: references files and data files. The references files, unless
explicitly overridden, are provided through CRDS.

Data files are the science input, such as exposure FITS files and association files. All files are assumed to be co-
resident in the directory where the primary input file is located. This is particularly important for associations: JWST
associations contain file names only. All files referred to by an association are expected to be located in the directory
in which the association file is located.

9.2 Output Files

Output files will be created either in the current working directory, or where specified by the output_dir parameter.

File names for the outputs from pipelines and steps come from three different sources:

• The name of the input file

• The product name defined in an association

• As specified by the output_file parameter

Regardless of the source, each pipeline/step uses the name as a base name, onto which several different suffixes are
appended, which indicate the type of data in that particular file. A list of the main suffixes can be found below.

The pipelines do not file manage versions. When re-running a pipeline, previous files will be overwritten.

9.2.1 Output Files and Associations

Stage 2 pipelines can take an individual file or an association as input. Nearly all Stage 3 pipelines require an association
as input. Normally, the output file is defined in each association’s “product name”, which defines the basename that
will be used for output file naming.

Often, one may reprocess the same set of data multiple times, such as to change reference files or parameters. When
doing so, it is highly suggested to use output_dir to place the results in a different directory instead of using
output_file to rename the output files. Most pipelines and steps create sets of output files. Separating runs by
directory may be much easier to manage.

35

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

9.2.2 Individual Step Outputs

If individual steps are executed without an output file name specified via the output_file parameter, the stpipe
infrastructure automatically uses the input file name as the root of the output file name and appends the name of the
step as an additional suffix to the input file name. If the input file name already has a known suffix, that suffix will be
replaced. For example:

$ strun jwst.dq_init.DQInitStep jw00017001001_01101_00001_nrca1_uncal.fits

produces an output file named jw00017001001_01101_00001_nrca1_dq_init.fits.

See Pipeline/Step Suffix Definitions for a list of the more common suffixes used.

36 Chapter 9. Input and Output File Conventions

CHAPTER

TEN

LOGGING CONFIGURATION

The name of a file in which to save log information, as well as the desired level of logging messages, can be specified
in an optional configuration file. Two options exist - if the configuration file should be used for all instances of the
pipeline, the configuration file should be named “stpipe-log.cfg”. This file must be in the same directory in which you
run the pipeline in order for it to be used.

If instead the configuration should be active only when specified, you should name it something other than “stpipe-
log.cfg”; this filename should be specified using either the --logcfg parameter to the command line strun or using
the logcfg keyword to a .call() execution of either a Step or Pipeline instance.

If this file does not exist, the default logging mechanism is STDOUT, with a level of INFO. An example of the contents
of the stpipe-log.cfg file is:

[*]
handler = file:pipeline.log
level = INFO

If there’s no stpipe-log.cfg file in the working directory, which specifies how to handle process log information,
the default is to display log messages to stdout.

For example:

$ strun calwebb_detector1 jw00017001001_01101_00001_nrca1_uncal.fits
--logcfg=pipeline-log.cfg

Or in an interactive python environment:

result = Detector1Pipeline.call("jw00017001001_01101_00001_nrca1_uncal.fits",
logcfg="pipeline-log.cfg")

and the file pipeline-log.cfg contains:

[*]
handler = file:pipeline.log
level = INFO

In this example log information is written to a file called pipeline.log. The level argument in the log cfg file can be
set to one of the standard logging level designations of DEBUG, INFO, WARNING, ERROR, and CRITICAL. Only messages
at or above the specified level will be displayed.

Note: Setting up stpipe-log.cfg can lead to confusion, especially if it is forgotten about. If one has not run
a pipeline in awhile, and then sees no logging information, most likely it is because stpipe-log.cfg is present.
Consider using a different name and specifying it explicitly on the command line.

37

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

38 Chapter 10. Logging Configuration

CHAPTER

ELEVEN

JWST DATAMODELS

The jwst package also contains the interface for JWST Datamodels. Datamodels are the recommended way of reading
and writing JWST data files (.fits) and reference files (.fits and .asdf). JWST data are encoded in FITS files, and reference
files consist of a mix of FITS and ASDF - datamodels were designed to abstract away these intricacies and provide a
simple interface to the data. They represent the data in FITS extensions and meta data in FITS headers in a Python
object with a tree-like structure. The following section gives a brief overview of Datamodels as they pertain to the
pipeline - see Data Models (https://stdatamodels.readthedocs.io/en/latest/jwst/datamodels/index.html#data-models) for
more detailed documentation on Datamodels.

11.1 Datamodels and the JWST pipeline

When running the pipeline in python, the inputs and outputs of running a pipeline or a step are JWST Datamodels.

The input to a pipeline/step can be a Datamodel, created from an input file on disk. E.g:

running a single pipeline step, input is datamodel object
from jwst.linearity import LinearityStep
import stdatamodels.jwst.datamodels as dm
input_model = dm.open('jw00001001001_01101_00001_mirimage_uncal.fits')
result = LinearityStep.call(input_model)

If a string path to a file on disk is passed in, a DataModel object will be created internally when the pipeline/step is
run.

By default, when running in Python, the corrected data will be returned in-memory as a DataModel instead of being
written as an output file. See controlling output file behavior` for instrucions on how to write the returned DataModel
to an output file.

39

https://stdatamodels.readthedocs.io/en/latest/jwst/datamodels/index.html#data-models

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

40 Chapter 11. JWST Datamodels

CHAPTER

TWELVE

CRDS PUB SERVER FREEZE AND DEPRECATION

12.1 Why and When

As of November 10, 2022, all observers should use the standard CRDS OPS server for JWST calibration reference files:

https://jwst-crds.stsci.edu

The PUB server:

https://jwst-crds-pub.stsci.edu

was set up in anticipation of rapid reference file updates during commissioning and Cycle 1. However, due to the trouble-
free commissioning process, the smooth transition to science operations, and the subsequent confusion that has resulted
from having two servers, it has been decided that the PUB server is no longer needed and will be decommissioned. To
make this transition as smooth as possible, this update will take place in stages.

On November 10, 2022, all observers should begin to transition to using only the CRDS OPS server, https://jwst-crds.
stsci.edu. See the software documentation for instructions about how to configure CRDS.

On December 2nd, access to the PUB server will no longer be available externally. The frozen PUB database will be
maintained internally for 3 months. On March 1, the PUB server will be fully decommissioned and the institute will
retain an internal archive of the maps and calibration reference files. Observers who wish to use historical files from
the PUB server in the future will need to file a JWST Pipeline help desk ticket to access the information.

Part of the decommissioning process will include establishing guidance for how best to maintain reproducibility for
new papers and for already-published papers that used the PUB server. This information will be included in a new
JDox page, currently in preparation. Visit the JDox site (https://jwst-docs.stsci.edu/) for new information concerning
JWST.

12.2 Transition Procedure

If using the PUB server, there are two simple tasks that need to be done to ensure a successful transition from using
the PUB server to the JWST OPS server.

First, the folder containing the local CRDS cache, pointed to by the environment variable CRDS_PATH, should be
cleared of all old CRDS information.

If created appropriately, the folder that CRDS_CACHE points to should contain ONLY CRDS content. The suggested
way of ensuring a new, empty cache, is to create a new folder. For example, to create a CRDS cache folder under a
user’s home folder, using Linux, the command is:

$ mkdir $HOME/crds_cache

Then set CRDS_PATH to point to this new, empty folder:

41

https://jwst-crds.stsci.edu
https://jwst-crds-pub.stsci.edu
https://jwst-crds.stsci.edu
https://jwst-crds.stsci.edu
https://jwst-docs.stsci.edu/

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

$ export CRDS_PATH=$HOME/crds_cache

The important point is that whatever folder is to be used to hold the CRDS cache should initially be empty; no other
content should be present in the folder.

Older CRDS cache folders are no longer needed and can be removed as the user sees fit.

It does not matter what the folder is called, nor where it is located, as long as the user has access permissions to that
folder. The location of the CRDS cache should contain sufficient space to hold the references. Current suggested
minimum of free space is 100GB.

Second, ensure that the environment variable CRDS_SERVER_URL is pointing to the JWST OPS server, https://
jwst-crds.stsci.edu:

$ export CRDS_SERVER_URL=https://jwst-crds.stsci.edu

Following these two steps ensures that further calibration processing will use references from the standard CRDS server.

42 Chapter 12. CRDS PUB Server Freeze and Deprecation

https://jwst-crds.stsci.edu
https://jwst-crds.stsci.edu

CHAPTER

THIRTEEN

DATA PRODUCTS INFORMATION

13.1 Processing Levels and Product Stages

Here we describe the structure and content of the most frequently used forms of files for JWST science data products,
the vast majority of which are in FITS format. Each type of FITS file is the result of serialization of a corresponding
data model. All JWST pipeline input and output products, with the exception of a few reference files and catalogs, are
serialized as FITS files. The ASDF (https://asdf-standard.readthedocs.io/en/stable/) representation of the data model
is serialized as a FITS BINTABLE extension within the FITS file, with EXTNAME=”ASDF”. The ASDF extension is
essentially a text character serialization in YAML (https://yaml.org) format of the data model. The ASDF representation
is read from the extension when a FITS file is loaded into a data model to provide the initial instance of the data model.
Values in the other FITS extensions then either override this initial model or are added to it.

Within the various STScI internal data processing and archiving systems that are used for routine processing of JWST
data, there are some different uses of terminology to refer to different levels or stages of processing and products.
For those who are interested or need to know, the table below gives high-level translations between those naming
conventions.

Data Processing Levels User Data Product Stages MAST/CAOM Data Lev-
els

N/A N/A -1 = Planned, but not yet ex-
ecuted

Level 0 = Science telemetry Not available to users Not available to users
Level 0.5 = POD files Not available to users Not available to users
Level 1a = Original FITS file Stage 0 = Original FITS file 0 = raw (not available to

users)
Level 1b = Uncal FITS file Stage 0 = Fully-populated

FITS file
1 = uncalibrated

Level 2a = Countrate exposure Stage 1 = Countrate FITS file 2 = calibrated
Level 2b = Calibrated exposure
*Level 2c = CR-flagged exposure

Stage 2 = Calibrated expo-
sure

2 = calibrated

Level 3 = Combined data Stage 3 = Combined data 3 = Science product

*Note that Level 2c files are intermediate files produced during pipeline Stage 3 processing, and are not final products
(as opposed to all the other product types that are listed here). Therefore, Level 2c files are not a final product of any
pipeline stage, but are produced within the pipeline Stage 3 processing. Level 2c files (identified by the ‘crf’ extension)
are in the same format as Level 2b products, with the difference being that their data quality flags have been updated
after running outlier detection in pipeline Stage 3 processing.

Throughout this document, we will use the “Stage” terminology to refer to data products. Stage 0, 1, and 2 products
are always files containing the data from a single exposure and a single detector. A NIRCam exposure that uses all 10
detectors will therefore result in 10 separate FITS files for each of the Stage 0, 1, and 2 products. Because these stages

43

https://asdf-standard.readthedocs.io/en/stable/
https://yaml.org

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

contain the data for a single exposure, they are refered to as “exposure-based” products and use an “exposure-based” file
naming syntax. Stage 3 products, on the other hand, are constructed from the combined data of multiple exposures for
a given source or target. They are referred to as “source-based” products and use a “source-based” file naming syntax.
Observing modes that include multiple defined sources within a single exposure or observation, such as NIRSpec MOS
and NIRCam/NIRISS WFSS, will result in multiple Stage 3 products, one for each defined or identifiable source.

13.2 File Naming Schemes

13.2.1 Exposure file names

The names of the exposure level data (stage 0 to 2) are constructed with information from the science header of the
exposure, allowing users to map it to the observation in their corresponding APT files. The FITS file naming scheme
for Stage 0, 1, and 2 “exposure-based” products is:

jw<ppppp><ooo><vvv>_<gg><s><aa>_<eeeee>(-<”seg”NNN>)_<detector>_<prodType>.fits

where

• ppppp: program ID number

• ooo: observation number

• vvv: visit number

• gg: visit group

• s: parallel sequence ID (1=prime, 2-5=parallel)

• aa: activity number (base 36)

• eeeee: exposure number

• segNNN: the text “seg” followed by a three-digit segment number (optional)

• detector: detector name (e.g. ‘nrca1’, ‘nrcblong’, ‘mirimage’)

• prodType: product type identifier (e.g. ‘uncal’, ‘rate’, ‘cal’)

An example Stage 1 product FITS file name is:

jw93065002001_02101_00001_nrca1_rate.fits

13.2.2 Stage 3 file names

In this stage, the calibration pipeline uses the association information to identify the relationship between exposures
that are to be combined by design to form a single product. These data products result from the combination of multiple
exposures like dithers or mosaics.

The format for the file name of a Stage 3 association product has all alphabetic characters in lower case, underscores
are only used to delineate between major fields, and dashes can be used as separators for optional fields. Just as for
Stage 2, the suffix distinguishes the different file products of Stage 3 of the calibration pipeline.

The FITS file naming scheme for Stage 3 “source-based” products is as follows, where items in parentheses are optional:

jw<ppppp>-<AC_ID>_[<”t”TargID | “s”SourceID>](-<”epoch”X>)_<instr>_<optElements>(-
<subarray>)_<prodType>(-<ACT_ID>).fits

where

• ppppp: Program ID number

44 Chapter 13. Data Products Information

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• AC_ID: Association candidate ID

• TargID: 3-digit Target ID (either TargID or SourceID must be present)

• SourceID: 5-digit Source ID

• epochX: The text “epoch” followed by a single digit epoch number (optional)

• instr: Science instrument name (e.g. ‘nircam’, ‘miri’)

• optElements: A single or hyphen-separated list of optical elements (e.g. filter, grating)

• subarray: Subarray name (optional)

• prodType: Product type identifier (e.g. ‘i2d’, ‘s3d’, ‘x1d’)

• ACT_ID: 2-digit activity ID (optional)

An example Stage 3 product FITS file name is:

jw87600-a3001_t001_niriss_f480m-nrm_amiavg.fits

Optional Components

A number of components are optional, all either proposal-dependent or data-specific. The general cases where an
optional component may appear are as follows:

TargID vs SourceID

For single-target modes, this is the target identifier as defined in the APT proposal.

For multi-object modes, such as NIRSpec MOS, this will be the slit ID for each object.

epochX

If a proposal has specified that observations be performed in multiple epochs, this will be the epoch id.

subarray

Present for all instruments/observing modes that allow subarray specification.

ACT_ID

Present when associations are dependent on being unique across visit activities. Currently, only Wavefront
Sensing & Control (WFS&C) coarse and fine phasing are activity-dependent.

13.2.3 Segmented Products

When the raw data volume for an individual exposure is determined to be large enough to result in Stage 2 products
greater than 2 GB in size, all Stage 0-2 products for the exposure are broken into multiple segments, so as to keep
total file sizes to a reasonable level. This is often the case with Time Series Observations (TSO), where individual
exposures can have thousands of integrations. The detector data are broken along integration boundaries (never within
an integration) and stored in “segmented” products. The segments are identified by the “segNNN” field in exposure-
based file names, where NNN is 1-indexed and always includes any leading zeros.

Segmented products contain extra keywords located in their primary headers that help to identify the segments and the
contents of each segment. The following segment-related keywords are used:

• EXSEGNUM: The segment number of the current product

• EXSEGTOT: The total number of segments

• INTSTART: The starting integration number of the data in this segment

13.2. File Naming Schemes 45

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• INTEND: The ending integration number of the data in this segment

All of the Stage 1 and Stage 2 calibration pipelines will process each segment independently, creating the full set of
intermediate and calibrated products for each segment. The calibrated data for all segments is then combined by one
of the Stage 3 pipelines into a source-based Stage 3 product.

13.3 Data Product Types

The following tables contain lists of all data product types, as given by their file name suffix. There is one table per
stage of processing. All tables indicate whether the file naming is exposure-based (Exp) or source-based (Src). When
the product is not created by default, the flag Optional is indicated in the description. The different stages of the
calibration pipeline are as defined in the Algorithms Documentation (https://jwst-docs.stsci.edu/jwst-data-reduction-
pipeline/algorithm-documentation). The product name suffixes are active links to detailed descriptions in the following
sections.

13.3.1 Stage 0 and Stage 1 Data Products

Pipeline Input Output(s) Stage Base Units Description
N/A uncal 0 Exp DN Uncalibrated 4-D exposure data
calwebb_dark uncal dark 1 Exp DN 4-D corrected dark exposure data
calwebb_detector1 uncal trapsfilled 1 Exp N/A Charge trap state data

rateints DN/s 3-D countrate data (per integration)
rate 2-D countrate data (per exposure)
fitopt various Optional fit info from ramp_fit step
dark DN Optional 3-D on-the-fly dark data
ramp Optional 4-D corrected ramp data

46 Chapter 13. Data Products Information

https://jwst-docs.stsci.edu/jwst-data-reduction-pipeline/algorithm-documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

13.3. Data Product Types 47

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

13.3.2 Stage 2 Data Products

Pipeline Input Output(s) Base Units Description
cal-
webb_image2

rate bsub Exp DN/s

2-D
background-
subtracted data,
when
background step
applied

cal MJy/sr, MJy2

2-D calibrated
data

i2d

2-D resampled
imaging data

cal-
webb_image2
with TSO data

rateints calints MJy/sr,
MJyPage 49, 2

3-D calibrated
data;
coronagraphy
and TSO

calwebb_spec2 rate bsub Exp DN/s

2-D
background-
subtracted data,
when
background step
applied

cal MJy/sr,
MJyPage 49, 2

2-D calibrated
data

s3d

3-D resampled
spectroscopic
data;
NIRSpec IFU
and MIRI MRS

s2d

2-D resampled
spectroscopic
data

x1d various

1-D extracted
spectral data

flat N/A

Optional for
NIRSpec data;
on-the-fly
constructed flat.

calwebb_spec2
with TSO data

rateints calints MJy/sr,
MJyPage 49, 2

3-D calibrated
data; TSO

x1dints various

1-D spectral
data (per
integration)

flat N/A

Optional for
NIRSpec data;
on-the-fly
constructed flat.

48 Chapter 13. Data Products Information

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

2 NIRSpec and NIRISS SOSS point sources have MJy units; all others are MJy/sr

13.3. Data Product Types 49

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

13.3.3 Stage 3 Data Products

Pipeline Input Outputs Base Units

Description

cal-
webb_image3

cal crf Exp MJy/sr,
MJyPage 49, 2

2-D CR-flagged
calibrated data

i2d Src

2-D resampled
imaging data

cat N/A

Source catalog

segm N/A

Segmentation
map

calwebb_spec3 cal crf Exp MJy/sr,
MJyPage 49, 2

2-D CR-flagged
calibrated data

s2d Src

2-D resampled
spectroscopic
data;
Non-IFU

s3d

3-D resampled
spectroscopic
data;
NIRSpec IFU
and MIRI MRS

x1d various

1-D extracted
spectroscopic
data

c1d various

1-D combined
spectroscopic
data

calwebb_ami3 cal ami Exp N/A

Fringe
parameters (per
exposure)

amiavg Src

Averaged fringe
parameters

aminorm

Normalized
fringe
parameters

calwebb_coron3 calints crfints Exp MJy/sr,
MJyPage 49, 2

3-D CR-flagged
calibrated data

psfstack Src

PSF library
images

psfalign Exp

Aligned PSF
images

psfsub Exp

PSF-subtracted
images

i2d Src

2-D resampled
PSF-subtracted
image

calwebb_tso3 calints crfints Exp MJy/sr,
MJyPage 49, 2

3-D CR-flagged
calibrated data

phot Src N/A

TSO imaging
photometry
catalog

x1dints various

TSO 1-D
extracted
spectra

whtlt N/A

TSO spectral
white-light
catalog

calwebb_wfs-
image3

cal wfscmb Src MJy/sr,
MJyPage 49, 2

2-D combined
WFS&C image

50 Chapter 13. Data Products Information

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

13.4 Common Features

All JWST FITS data products have a few common features in their structure and organization:

1. The FITS primary Header Data Unit (HDU) only contains header information, in the form of keyword records,
with an empty data array, which is indicated by the occurrence of NAXIS=0 in the primary header. Meta data
that pertains to the entire product is stored in keywords in the primary header. Meta data related to specific
extensions (see below) is stored in keywords in the headers of each extension.

2. All data related to the product are contained in one or more FITS IMAGE or BINTABLE extensions. The header
of each extension may contain keywords that pertain uniquely to that extension.

13.5 Science products

The following sections describe the format and contents of each of the JWST FITS science products. Things to note in
the descriptions include:

• Not all FITS extensions occur in every data product of a given type. Many are either optional or dependent on
the instrument or observing mode. Such optional extensions are noted with an asterisk in the tables below.

• Because some extensions are optional, as well as the fact that the exact ordering of the extensions is not guaran-
teed, the FITS HDU index numbers of a given extension type can vary from one product to another. The only
guarantee is that the SCI extension, containing the actual pixel values, will always be the first FITS extension
(HDU=1). Other common extensions, like DQ and ERR, usually immediately follow the SCI, but the order is not
guaranteed. Hence HDU index numbers are not listed for many extension types, because they can vary.

13.5.1 Uncalibrated raw data: uncal

Exposure raw data products are designated by a file name suffix of “uncal.” These files usually contain only the raw
detector pixel values from an exposure, with the addition of some table extensions containing various types of meta
data associated with the exposure. Additional extensions can be included for certain instruments and readout types, as
noted below. The FITS file structure is as follows.

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE uint16 ncols x nrows x ngroups x nints
2 GROUP BINTABLE N/A variable
3 INT_TIMES BINTABLE N/A nints (rows) x 7 cols

ZEROFRAME* IMAGE uint16 ncols x nrows x nints
REFOUT* IMAGE uint16 ncols/4 x nrows x ngroups x nints
ASDF BINTABLE N/A variable

• SCI: 4-D data array containing the raw pixel values. The first two dimensions are equal to the size of the detector
readout, with the data from multiple groups (NGROUPS) within each integration stored along the 3rd axis, and
the multiple integrations (NINTS) stored along the 4th axis.

• GROUP: A table of meta data for some (or all) of the data groups.

• INT_TIMES: A table of beginning, middle, and end time stamps for each integration in the exposure.

• ZEROFRAME: 3-D data array containing the pixel values of the zero-frame for each integration in the exposure,
where each plane of the cube corresponds to a given integration. Only appears if the zero-frame data were
requested to be downlinked separately.

13.4. Common Features 51

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• REFOUT: The MIRI detector reference output values. Only appears in MIRI exposures.

• ADSF: The data model meta data.

This FITS file structure is the result of serializing a Level1bModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.Level1bModel.html#jwst.datamodels.Level1bModel),
but can also be read into a RampModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel),
in which case zero-filled ERR, GROUPDQ, and PIXELDQ data arrays will be created and stored
in the model, having array dimensions based on the shape of the SCI array (see RampModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel)).

13.5.2 Ramp data: ramp

As raw data progress through the calwebb_detector1 pipeline they are stored internally in a RampModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel).
This type of data model is serialized to a ramp type FITS file on disk. The original detector pixel values (in the
SCI extension) are converted from integer to floating-point data type. The same is true for the ZEROFRAME and
REFOUT data extensions, if they are present. An ERR array and two types of data quality arrays are also added to the
product. The FITS file layout is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 ncols x nrows x ngroups x nints
2 PIXELDQ IMAGE uint32 ncols x nrows
3 GROUPDQ IMAGE uint8 ncols x nrows x ngroups x nints
4 ERR IMAGE float32 ncols x nrows x ngroups x nints

ZEROFRAME* IMAGE float32 ncols x nrows x nints
GROUP BINTABLE N/A variable
INT_TIMES BINTABLE N/A nints (rows) x 7 cols
REFOUT* IMAGE uint16 ncols/4 x nrows x ngroups x nints
ASDF BINTABLE N/A variable

• SCI: 4-D data array containing the pixel values. The first two dimensions are equal to the size of the detector
readout, with the data from multiple groups (NGROUPS) within each integration stored along the 3rd axis, and
the multiple integrations (NINTS) stored along the 4th axis.

• PIXELDQ: 2-D data array containing DQ flags that apply to all groups and all integrations for a given pixel (e.g.
a hot pixel is hot in all groups and integrations).

• GROUPDQ: 4-D data array containing DQ flags that pertain to individual groups within individual integrations,
such as the point at which a pixel becomes saturated within a given integration.

• ERR: 4-D data array containing uncertainty estimates on a per-group and per-integration basis.

• ZEROFRAME: 3-D data array containing the pixel values of the zero-frame for each integration in the exposure,
where each plane of the cube corresponds to a given integration. Only appears if the zero-frame data were
requested to be downlinked separately.

• GROUP: A table of meta data for some (or all) of the data groups.

• INT_TIMES: A table of beginning, middle, and end time stamps for each integration in the exposure.

• REFOUT: The MIRI detector reference output values. Only appears in MIRI exposures.

• ADSF: The data model meta data.

52 Chapter 13. Data Products Information

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.Level1bModel.html#jwst.datamodels.Level1bModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

13.5.3 Countrate data: rate and rateints

Countrate products are produced by applying the ramp_fitting step to the integrations within an exposure, in order to
compute count rates from the original accumulating signal ramps. For exposures that contain multiple integrations
(NINTS > 1) this is done in two ways, which results in two separate products. First, countrates are computed for each
integration within the exposure, the results of which are stored in a rateints product. These products contain 3-D
data arrays, where each plane of the data cube contains the countrate image for a given integration.

The results for each integration are also averaged together to form a single 2-D countrate image for the entire exposure.
These results are stored in a rate product.

The FITS file structure for a rateints product is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 ncols x nrows x nints
2 ERR IMAGE float32 ncols x nrows x nints
3 DQ IMAGE uint32 ncols x nrows x nints
4 INT_TIMES BINTABLE N/A nints (rows) x 7 cols
5 VAR_POISSON IMAGE float32 ncols x nrows x nints
6 VAR_RNOISE IMAGE float32 ncols x nrows x nints
7 ASDF BINTABLE N/A variable

• SCI: 3-D data array containing the pixel values, in units of DN/s. The first two dimensions are equal to the size
of the detector readout, with the data from multiple integrations stored along the 3rd axis.

• ERR: 3-D data array containing uncertainty estimates on a per-integration basis. These values are based on the
combined VAR_POISSON and VAR_RNOISE data (see below), given as standard deviation.

• DQ: 3-D data array containing DQ flags. Each plane of the cube corresponds to a given integration.

• INT_TIMES: A table of beginning, middle, and end time stamps for each integration in the exposure.

• VAR_POISSON: 3-D data array containing the per-integration variance estimates for each pixel, based on Pois-
son noise only.

• VAR_RNOISE: 3-D data array containing the per-integration variance estimates for each pixel, based on read
noise only.

• ADSF: The data model meta data.

These FITS files are compatible with the CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)
data model.

The FITS file structure for a rate product is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 ncols x nrows
2 ERR IMAGE float32 ncols x nrows
3 DQ IMAGE uint32 ncols x nrows
4 VAR_POISSON IMAGE float32 ncols x nrows x nints
5 VAR_RNOISE IMAGE float32 ncols x nrows x nints
6 ASDF BINTABLE N/A variable

• SCI: 2-D data array containing the pixel values, in units of DN/s.

13.5. Science products 53

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• ERR: 2-D data array containing uncertainty estimates for each pixel. These values are based on the combined
VAR_POISSON and VAR_RNOISE data (see below), given as standard deviation.

• DQ: 2-D data array containing DQ flags for each pixel.

• VAR_POISSON: 2-D data array containing the variance estimate for each pixel, based on Poisson noise only.

• VAR_RNOISE: 2-D data array containing the variance estimate for each pixel, based on read noise only.

• ADSF: The data model meta data.

These FITS files are compatible with the ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)
data model.

Note that the INT_TIMES table does not appear in rate products, because the data have been averaged over all inte-
grations and hence the per-integration time stamps are no longer relevant.

13.5.4 Background-subtracted data: bsub and bsubints

The calwebb_image2 and calwebb_spec2 pipelines have the capability to perform background subtraction on countrate
data. In its simplest form, this consists of subtracting background exposures or a CRDS background reference image
from science images. This operation is performed by the background step in the stage 2 pipelines. If the pipeline
parameter save_bsub is set to True, the result of the background subtraction step will be saved to a file. Because this
is a direct image-from-image operation, the form of the result is identical to input. If the input is a rate product, the
background-subtracted result will be a bsub product, which has the exact same structure as the rate product described
above. Similarly, if the input is a rateints product, the background-subtracted result will be saved to a bsubints
product, with the exact same structure as the rateints product described above.

13.5.5 Calibrated data: cal and calints

Single exposure calibrated products duplicate a lot of the format and content of countrate products. There are two
different high-level forms of calibrated products: one containing results for all integrations in an exposure (calints)
and one for results averaged over all integrations (cal). These products are the main result of Stage 2 pipelines like cal-
webb_image2 and calwebb_spec2. There are many additional types of extensions that only appear for certain observing
modes or instruments, especially for spectroscopic exposures.

The FITS file structure for a calints product is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 ncols x nrows x nints
2 ERR IMAGE float32 ncols x nrows x nints
3 DQ IMAGE uint32 ncols x nrows x nints

INT_TIMES BINTABLE N/A nints (rows) x 7 cols
VAR_POISSON IMAGE float32 ncols x nrows x nints
VAR_RNOISE IMAGE float32 ncols x nrows x nints
VAR_FLAT IMAGE float32 ncols x nrows x nints
AREA* IMAGE ncols x nrows
WAVELENGTH* IMAGE float32 ncols x nrows
ASDF BINTABLE N/A variable

• SCI: 3-D data array containing the pixel values, in units of surface brightness, for each integration.

• ERR: 3-D data array containing uncertainty estimates for each pixel, for each integration. These values are based
on the combined VAR_POISSON and VAR_RNOISE data (see below), given as standard deviation.

54 Chapter 13. Data Products Information

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• DQ: 3-D data array containing DQ flags for each pixel, for each integration.

• INT_TIMES: A table of beginning, middle, and end time stamps for each integration in the exposure.

• VAR_POISSON: 3-D data array containing the variance estimate for each pixel, based on Poisson noise only,
for each integration.

• VAR_RNOISE: 3-D data array containing the variance estimate for each pixel, based on read noise only, for each
integration.

• VAR_FLAT: 2-D data array containing the variance estimate for each pixel, based on uncertainty in the flat-field.

• AREA: 2-D data array containing pixel area values, added by the photom step, for imaging modes.

• WAVELENGTH: 2-D data array of wavelength values for each pixel, for some spectroscopic modes.

• ADSF: The data model meta data.

The FITS file structure for a cal product is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 ncols x nrows
2 ERR IMAGE float32 ncols x nrows
3 DQ IMAGE uint32 ncols x nrows
4 VAR_POISSON IMAGE float32 ncols x nrows
5 VAR_RNOISE IMAGE float32 ncols x nrows
6 VAR_FLAT IMAGE float32 ncols x nrows

AREA* IMAGE float32 ncols x nrows
WAVELENGTH* IMAGE float32 ncols x nrows
PATHLOSS_PS* IMAGE float32 ncols x nrows
PATHLOSS_UN* IMAGE float32 ncols x nrows
BARSHADOW* IMAGE float32 ncols x nrows
ASDF BINTABLE N/A variable

• SCI: 2-D data array containing the pixel values, in units of surface brightness.

• ERR: 2-D data array containing uncertainty estimates for each pixel. These values are based on the combined
VAR_POISSON and VAR_RNOISE data (see below), given as standard deviation.

• DQ: 2-D data array containing DQ flags for each pixel.

• VAR_POISSON: 2-D data array containing the variance estimate for each pixel, based on Poisson noise only.

• VAR_RNOISE: 2-D data array containing the variance estimate for each pixel, based on read noise only.

• VAR_FLAT: 2-D data array containing the variance estimate for each pixel, based on uncertainty in the flat-field.

• AREA: 2-D data array containing pixel area values, added by the photom step, for imaging modes.

• WAVELENGTH: 2-D data array of wavelength values for each pixel, for some spectroscopic modes.

• PATHLOSS_PS: 2-D data array of point-source pathloss correction factors, added by the pathloss step, for some
spectroscopic modes.

• PATHLOSS_UN: 1-D data array of uniform-source pathloss correction factors, added by the pathloss step, for
some spectroscopic modes.

• BARSHADOW: 2-D data array of NIRSpec MSA bar shadow correction factors, added by the barshadow step,
for NIRSpec MOS exposures only.

• ADSF: The data model meta data.

13.5. Science products 55

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

For spectroscopic modes that contain data for multiple sources, such as NIRSpec MOS, NIRCam WFSS, and NIRISS
WFSS, there will be multiple tuples of the SCI, ERR, DQ, VAR_POISSON, VAR_RNOISE, etc. extensions, where
each tuple contains the data for a given source or slit, as created by the extract_2d step. FITS “EXTVER” keywords
are used in each extension header to segregate the multiple instances of each extension type by source.

13.5.6 Cosmic-Ray flagged data: crf and crfints

Several of the stage 3 pipelines, such as calwebb_image3 and calwebb_spec3, include the outlier detection step, which
finds and flags outlier pixel values within calibrated images. The results of this process have the identical format and
content as the input cal and calints products. The only difference is that the DQ arrays have been updated to contain
CR flags. If the inputs are in the form of cal products, the CR-flagged data will be saved to a crf product, which has
the exact same structure and content as the cal product described above. Similarly, if the inputs are calints products,
the CR-flagged results will be saved to a crfints product, which has the same structure and content as the calints
product described above.

13.5.7 Resampled 2-D data: i2d and s2d

Images and spectra that have been resampled by the resample step use a different set of data arrays than other science
products. Resampled 2-D images are stored in i2d products and resampled 2-D spectra are stored in s2d products.
The FITS file structure for i2d and s2d products is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 ncols x nrows
2 ERR IMAGE float32 ncols x nrows
3 CON IMAGE int32 ncols x nrows x nplanes
4 WHT IMAGE float32 ncols x nrows
5 VAR_POISSON IMAGE float32 ncols x nrows
6 VAR_RNOISE IMAGE float32 ncols x nrows
7 VAR_FLAT IMAGE float32 ncols x nrows

HDRTAB* BINTABLE N/A variable
ASDF BINTABLE N/A variable

• SCI: 2-D data array containing the pixel values, in units of surface brightness

• ERR: 2-D data array containing resampled uncertainty estimates, given as standard deviation

• CON: 3-D context image, which encodes information about which input images contribute to a specific output
pixel

• WHT: 2-D weight image giving the relative weight of the output pixels

• VAR_POISSON: 2-D resampled Poisson variance estimates for each pixel

• VAR_RNOISE: 2-D resampled read noise variance estimates for each pixel

• VAR_FLAT: 2-D resampled flat-field variance estimates for each pixel

• HDRTAB: A table containing meta data (FITS keyword values) for all of the input images that were combined
to produce the output image. Only appears when multiple inputs are used.

• ADSF: The data model meta data.

For spectroscopic exposure-based products that contain spectra for more than one source or slit (e.g. NIRSpec MOS)
there will be multiple tuples of the SCI, ERR, CON, WHT, and variance extensions, one set for each source or slit.

56 Chapter 13. Data Products Information

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

FITS “EXTVER” keywords are used in each extension header to segregate the multiple instances of each extension
type by source.

For the context array, CON, though the schema represents it as an int32, users should interpret and recast the array as
uint32 post-processing. This inconsistency will be dealt with in a later release.

13.5.8 Resampled 3-D (IFU) data: s3d

3-D IFU cubes created by the cube_build step are stored in FITS files with the following structure:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 ncols x nrows x nwaves
2 ERR IMAGE float32 ncols x nrows x nwaves
3 DQ IMAGE uint32 ncols x nrows x nwaves
4 WMAP IMAGE float32 ncols x nrows x nwaves

WCS-TABLE BINTABLE N/A 2 cols x 1 row
HDRTAB* BINTABLE N/A variable
ASDF BINTABLE N/A variable

• SCI: 3-D data array containing the spaxel values, in units of surface brightness.

• ERR: 3-D data array containing uncertainty estimates for each spaxel.

• DQ: 3-D data array containing DQ flags for each spaxel.

• WMAP: 3-D weight image giving the relative weights of the output spaxels.

• WCS-TABLE: A table listing the wavelength to be associated with each plane of the third axis in the SCI, DQ,
ERR, and WMAP arrays, in a format that conforms to the FITS spectroscopic WCS standards. Column 1 of the
table (“nelem”) gives the number of wavelength elements listed in the table and column 2 (“wavelength”) is a
1-D array giving the wavelength values.

• HDRTAB: A table containing meta data (FITS keyword values) for all of the input images that were combined
to produce the output image. Only appears when multiple inputs are used.

• ADSF: The data model meta data.

s3d products contain several unique meta data elements intended to aid in the use of these products in data analysis
tools. This includes the following keywords located in the header of the FITS primary HDU:

• FLUXEXT: A string value containing the EXTNAME of the extension containing the IFU flux data. Normally
set to “SCI” for JWST IFU cube products.

• ERREXT: A string value containing the EXTNAME of the extension containing error estimates for the IFU cube.
Normally set to “ERR” for JWST IFU cube products.

• ERRTYPE: A string value giving the type of error estimates contained in ERREXT, with possible values of
“ERR” (error = standard deviation), “IERR” (inverse error), “VAR” (variance), and “IVAR” (inverse variance).
Normally set to “ERR” for JWST IFU cube products.

• MASKEXT: A string value containing the EXTNAME of the extension containing the Data Quality mask for
the IFU cube. Normally set to “DQ” for JWST IFU cube products.

In addition, the following WCS-related keywords are included in the header of the “SCI” extension to support the use
of the wavelength table contained in the “WCS-TABLE” extension. These keywords allow data analysis tools that are
compliant with the FITS spectroscopic WCS standards to automatically recognize and load the wavelength information
in the “WCS-TABLE” and assign wavelengths to the IFU cube data.

13.5. Science products 57

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• PS3_0 = ‘WCS-TABLE’: The name of the extension containing coordinate data for axis 3.

• PS3_1 = ‘wavelength’: The name of the table column containing the coordinate data.

The coordinate data (wavelength values in this case) contained in the “WCS-TABLE” override any coordinate infor-
mation normally computed from FITS WCS keywords like CRPIX3, CRVAL3, and CDELT3 for coordinate axis 3.

13.5.9 Extracted 1-D spectroscopic data: x1d and x1dints

Extracted spectral data produced by the extract_1d step are stored in binary table extensions of FITS files. The overall
layout of the FITS file is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 EXTRACT1D BINTABLE N/A variable
2 ASDF BINTABLE N/A variable

• EXTRACT1D: A 2-D table containing the extracted spectral data.

• ADSF: The data model meta data.

Multiple “EXTRACT1D” extensions can be present if there is data for more than one source or if the file is an x1dints
product. For x1dints products, there is one “EXTRACT1D” extension for each integration in the exposure.

The structure of the “EXTRACT1D” table extension is as follows:

Column Name Data Type Contents | Units
WAVELENGTH float64 Wavelength values | 𝜇 m
FLUX float64 Flux values Jy
FLUX_ERROR float64 Error values Jy
FLUX_VAR_POISSON float64 Error values Jy^2
FLUX_VAR_RNOISE float64 Error values Jy^2
FLUX_VAR_FLAT float64 Error values Jy^2
SURF_BRIGHT float64 Surface Brightness MJy/sr
SB_ERROR float64 Surf. Brt. errors MJy/sr
SB_VAR_POISSON float64 Surf. Brt. errors (MJy/sr)^2
SB_VAR_RNOISE float64 Surf. Brt. errors (MJy/sr)^2
SB_VAR_FLAT float64 Surf. Brt. errors (MJy/sr)^2
DQ uint32 DQ flags N/A
BACKGROUND float64 Background signal MJy/sr
BKGD_ERROR float64 Background error MJy/sr
BKGD_VAR_POISSON float64 Background error (MJy/sr)^2
BKGD_VAR_RNOISE float64 Background error (MJy/sr)^2
BKGD_VAR_FLAT float64 Background error (MJy/sr)^2
NPIXELS float64 Number of pixels N/A

The table is constructed using a simple 2-D layout, using one row per extracted spectral element in the dispersion
direction of the data (i.e. one row per wavelength bin). Note that for point sources observed with NIRSpec or NIRISS
SOSS mode, it is not possible to express the extracted spectrum as surface brightness and hence the SURF_BRIGHT
and SB_ERROR columns will be set to zero. NPIXELS gives the (fractional) number of pixels included in the source
extraction region at each wavelength bin.

58 Chapter 13. Data Products Information

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

13.5.10 Combined 1-D spectroscopic data: c1d

Combined spectral data produced by the combine_1d step are stored in binary table extensions of FITS files. The
overall layout of the FITS file is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 COMBINE1D BINTABLE N/A variable
2 ASDF BINTABLE N/A variable

• COMBINE1D: A 2-D table containing the combined spectral data.

• ADSF: The data model meta data.

The structure of the “COMBINE1D” table extension is as follows:

Column Name Data Type Contents Units
WAVELENGTH float64 Wavelength values 𝜇 m
FLUX float64 Flux values Jy
ERROR float64 Error values Jy
SURF_BRIGHT float64 Surface Brightness MJy/sr
SB_ERROR float64 Surf. Brt. errors MJy/sr
DQ uint32 DQ flags N/A
WEIGHT float64 Sum of weights N/A
N_INPUT float64 Number of inputs N/A

The table is constructed using a simple 2-D layout, using one row per extracted spectral element in the dispersion
direction of the data (i.e. one row per wavelength bin).

13.5.11 Source catalog: cat

The source_catalog step contained in the calwebb_image3 pipeline detects and quantifies sources within imaging prod-
ucts. The derived data for the sources is stored in a cat product, which is in the form of an ASCII table in ECSV
(http://docs.astropy.org/en/stable/_modules/astropy/io/ascii/ecsv.html) (Enhanced Character Separated Values) format.
It is a flat text file, containing meta data header entries and the source data in a 2-D table layout, with one row per source.

13.5.12 Segmentation map: segm

The source_catalog step contained in the calwebb_image3 pipeline uses an image segmentation procedure to detect
sources, which is a process of assigning a label to every image pixel that contains signal from a source, such that
pixels belonging to the same source have the same label. The result of this procedure is saved in a segm product. The
product is in FITS format, with a single image extension containing a 2-D image. The image has the same dimensions
as the science image from which the sources were detected, and each pixel belonging to a source has an integer value
corresponding to the label listed in the source catalog (cat product). Pixels not belonging to a source have a value of
zero.

13.5. Science products 59

http://docs.astropy.org/en/stable/_modules/astropy/io/ascii/ecsv.html

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

13.5.13 Photometry catalog: phot

The tso_photometry step in the calwebb_tso3 pipeline produces light curve from TSO imaging observations by
computing aperture photometry as a function of integration time stamp within one or more exposures. The
resulting photometric data are stored in a phot product, which is in the form of an ASCII table in ECSV
(http://docs.astropy.org/en/stable/_modules/astropy/io/ascii/ecsv.html) (Enhanced Character Separated Values) format.
It is a flat text file, containing meta data header entries and the photometric data in a 2-D table layout, with one row per
exposure integration.

13.5.14 White-light photometric timeseries: whtlt

The white_light step in the calwebb_tso3 pipeline produces a light curve from TSO spectroscopic observations by
computing the wavelength-integrated spectral flux as a function of integration time stamp within one or more exposures.
The resulting photometric timeseries data are stored in a whtlt product, which is in the form of an ASCII table in ECSV
(http://docs.astropy.org/en/stable/_modules/astropy/io/ascii/ecsv.html) (Enhanced Character Separated Values) format.
It is a flat text file, containing meta data header entries and the white-light flux data in a 2-D table layout, with one row
per exposure integration.

13.5.15 Stacked PSF data: psfstack

The stack_refs step in the calwebb_coron3 pipeline takes a collection of PSF reference image and assembles them
into a 3-D stack of PSF images, which results in a psfstack product. The psfstack product uses the CubeModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)
data model, which when serialized to a FITS file has the structure shown below.

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 ncols x nrows x npsfs
2 DQ IMAGE uint32 ncols x nrows x npsfs
3 ERR IMAGE float32 ncols x nrows x npsfs
4 ASDF BINTABLE N/A variable

• SCI: 3-D data array containing a stack of 2-D PSF images.

• DQ: 3-D data array containing DQ flags for each PSF image.

• ERR: 3-D data array containing a stack of 2-D uncertainty estimates for each PSF image.

• ADSF: The data model meta data.

13.5.16 Aligned PSF data: psfalign

The align_refs step in the calwebb_coron3 pipeline creates a 3-D stack of PSF images that are
aligned to corresponding science target images. The resulting psfalign product uses the QuadModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.QuadModel.html#jwst.datamodels.QuadModel)
data model, which when serialized to a FITS file has the structure and content shown below.

60 Chapter 13. Data Products Information

http://docs.astropy.org/en/stable/_modules/astropy/io/ascii/ecsv.html
http://docs.astropy.org/en/stable/_modules/astropy/io/ascii/ecsv.html
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.QuadModel.html#jwst.datamodels.QuadModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 ncols x nrows x npsfs x nints
2 DQ IMAGE uint32 ncols x nrows x npsfs x nints
3 ERR IMAGE float32 ncols x nrows x npsfs x nints
4 ASDF BINTABLE N/A variable

• SCI: 4-D data array containing a stack of 2-D PSF images aligned to each integration within a corresponding
science target exposure. each integration.

• DQ: 4-D data array containing DQ flags for each PSF image.

• ERR: 4-D data array containing a stack of 2-D uncertainty estimates for each PSF image, per science target
integration.

• ADSF: The data model meta data.

13.5.17 PSF-subtracted data: psfsub

The klip step in the calwebb_coron3 pipeline subtracts an optimized combination of PSF images from each in-
tegration in a science target exposure. The resulting PSF-subtracted science exposure data uses the CubeModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)
data model, which when serialized to a FITS file has the structure shown below.

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 ncols x nrows x nints
2 ERR IMAGE float32 ncols x nrows x nints
3 DQ IMAGE uint32 ncols x nrows x nints
4 INT_TIMES BINTABLE N/A nints (rows) x 7 cols
5 VAR_POISSON IMAGE float32 ncols x nrows x nints
6 VAR_RNOISE IMAGE float32 ncols x nrows x nints
7 ASDF BINTABLE N/A variable

• SCI: 3-D data array containing a stack of 2-D PSF-subtracted science target images, one per integration.

• ERR: 3-D data array containing a stack of 2-D uncertainty estimates for each science target integration.

• DQ: 3-D data array containing DQ flags for each science target integration.

• INT_TIMES: A table of beginning, middle, and end time stamps for each integration in the exposure.

• VAR_POISSON: 3-D data array containing the per-integration variance estimates for each pixel, based on Pois-
son noise only.

• VAR_RNOISE: 3-D data array containing the per-integration variance estimates for each pixel, based on read
noise only.

• ADSF: The data model meta data.

13.5. Science products 61

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

13.5.18 AMI data: ami, amiavg, and aminorm

AMI derived data created by the ami_analyze, ami_average, and ami_normalize steps, as part of the cal-
webb_ami3 pipeline, are stored in FITS files that contain a mixture of images and binary table exten-
sions. The output format of all three pipeline steps is the same, encapsulated within a AmiLgModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel)
data model. The overall layout of the corresponding FITS files is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 FIT IMAGE float32 ncols x nrows
2 RESID IMAGE float32 ncols x nrows
3 CLOSURE_AMP BINTABLE float64 1 col x 35 rows
4 CLOSURE_PHA BINTABLE float64 1 col x 35 rows
5 FRINGE_AMP BINTABLE float64 1 col x 21 rows
6 FRINGE_PHA BINTABLE float64 1 col x 21 rows
7 PUPIL_PHA BINTABLE float64 1 col x 7 rows
8 SOLNS BINTABLE float64 1 col x 44 rows
9 ASDF BINTABLE N/A variable

• FIT: A 2-D image of the fitted model.

• RESID: A 2-D image of the fit residuals.

• CLOSURE_AMP: A table of closure amplitudes.

• CLOSURE_PHA: A table of closure phases.

• FRINGE_AMP: A table of fringe amplitudes.

• FRINGE_PHA: A table of fringe phases.

• PUPIL_PHA: A table of pupil phases.

• SOLNS: A table of fringe coefficients.

• ADSF: The data model meta data.

13.6 Non-science products

13.6.1 Dark exposure: dark

Dark exposures processed by the calwebb_dark pipeline result in a product that has the same structure and content as
the ramp product described above. The details are as follows:

62 Chapter 13. Data Products Information

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 ncols x nrows x ngroups x nints
2 PIXELDQ IMAGE uint32 ncols x nrows
3 GROUPDQ IMAGE uint8 ncols x nrows x ngroups x nints
4 ERR IMAGE float32 ncols x nrows x ngroups x nints
5 GROUP BINTABLE N/A variable
6 INT_TIMES BINTABLE N/A nints (rows) x 7 cols

ZEROFRAME* IMAGE float32 ncols x nrows x nints
REFOUT* IMAGE uint16 ncols/4 x nrows x ngroups x nints
ASDF BINTABLE N/A variable

• SCI: 4-D data array containing the pixel values. The first two dimensions are equal to the size of the detector
readout, with the data from multiple groups (NGROUPS) within each integration stored along the 3rd axis, and
the multiple integrations (NINTS) stored along the 4th axis.

• PIXELDQ: 2-D data array containing DQ flags that apply to all groups and all integrations for a given pixel (e.g.
a hot pixel is hot in all groups and integrations).

• GROUPDQ: 4-D data array containing DQ flags that pertain to individual groups within individual integrations,
such as the point at which a pixel becomes saturated within a given integration.

• ERR: 4-D data array containing uncertainty estimates on a per-group and per-integration basis.

• GROUP: A table of meta data for some (or all) of the data groups.

• INT_TIMES: A table of beginning, middle, and end time stamps for each integration in the exposure.

• ZEROFRAME: 3-D data array containing the pixel values of the zero-frame for each integration in the exposure,
where each plane of the cube corresponds to a given integration. Only appears if the zero-frame data were
requested to be downlinked separately.

• REFOUT: The MIRI detector reference output values. Only appears in MIRI exposures.

• ADSF: The data model meta data.

13.6.2 Charge trap state data: trapsfilled

The persistence step in the calwebb_detector1 pipeline produces an image containing information on the number
of filled charge traps in each pixel at the end of an exposure. Internally these data exist as a TrapsFilledModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.TrapsFilledModel.html#jwst.datamodels.TrapsFilledModel)
data model, which is saved to a trapsfilled FITS product. The FITS file has the following format:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 ncols x nrows x 3
2 ASDF BINTABLE N/A variable

• SCI: 3-D data array giving the number of charge traps per pixel, with each plane corresponding to a different
trap family.

• ADSF: The data model meta data.

13.6. Non-science products 63

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.TrapsFilledModel.html#jwst.datamodels.TrapsFilledModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

13.6.3 WFS&C combined image: wfscmb

The wfs_combine step in the calwebb_wfs-image3 pipeline combines dithered pairs of Wavefront Sensing and Control
(WFS&C) images, with the result being stored in a wfscmb product. Unlike the drizzle methods used to combine and
resample science images, resulting in an i2d product, the WFS&C combination is a simple shift and add technique that
results in a standard imaging FITS file structure, as shown below.

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 ncols x nrows
2 ERR IMAGE float32 ncols x nrows
3 DQ IMAGE uint32 ncols x nrows
4 ASDF BINTABLE N/A variable

• SCI: 2-D data array containing the pixel values, in units of surface brightness.

• ERR: 2-D data array containing uncertainty estimates for each pixel.

• DQ: 2-D data array containing DQ flags for each pixel.

• ADSF: The data model meta data.

13.7 Guide star data products

The FGS guiding capabilities are provided by 4 guide star functions: Identification, Acquisition, Track, and Fine Guide.
Data downlinked by these functions is processed by DMS to provide uncalibrated and calibrated guide star data prod-
ucts. The uncalibrated products consist of raw pixel value data arrays, as well as different kinds of tabular information
related to the guide stars and centroid locations of the guide star as computed by the on-board FGS Flight Software
(FSW). Calibrated guide star products are created by the calwebb_guider pipeline. Briefly, the processing performed
applies bad pixel masks and flat-fields the science data, as well as computing countrate images from the multiple groups
within each integration contained in a given product. The countrate images, which are computed by the guider_cds
step, are computed for most modes by simply differencing groups 1 and 2 in each integration and dividing by the group
time.

13.7.1 File naming

Guide star product file names contain identifiers related to the function in use and the time at which the data were
obtained. The table below lists the file name syntax used for each of the guiding functions and the related value of the
EXP_TYPE keyword.

Function EXP_TYPE File name
Identification FGS_ID-IMAGE jw<pppppooovvv>_gs-id_<m>_image-uncal.fits

FGS_ID-STACK jw<pppppooovvv>_gs-id_<m>_stacked-uncal.fits
Acquisition FGS_ACQ1 jw<pppppooovvv>_gs-acq1_<yyyydddhhmmss>_uncal.fits

FGS_ACQ2 jw<pppppooovvv>_gs-acq2_<yyyydddhhmmss>_uncal.fits
Track FGS_TRACK jw<pppppooovvv>_gs-track_<yyyydddhhmmss>_uncal.fits
Fine Guide FGS_FINEGUIDE jw<pppppooovvv>_gs-fg_<yyyydddhhmmss>_uncal.fits

where the file name fields are:

64 Chapter 13. Data Products Information

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jw
mission identifier

ppppp
program id

ooo
observation number

vvv
visit number

m
ID attempt counter (1-8)

yyyydddhhmmss
time stamp at the end of the data in the file

Uncalibrated products use the “uncal” file name suffix as shown above, while calibrated products use a “cal” suffix.
The relevance of the “image” and “stacked” designations for the Identification mode products is described below.

13.7.2 ID mode

The “Identification” guiding function images the field of view by reading the detector in a series subarray “strips” that,
collectively, cover most of the field. A total of 36 subarray strips are read out, each of which is 64 x 2048 pixels in size.
Each strip has 8 pixels of overlap with its adjoining strips, resulting in a total of 2024 unique detector rows that’ve been
read out. ID mode uses 2 groups per integration and 2 integrations, resulting in a total of 4 reads. Each subarray strip
has its 4 reads performed before moving on to the next subarray.

DMS creates 2 different forms of products for ID mode data: one in which an image is constructed by simply stacking
or butting the data from adjacent subarray strips against one another and the other in which the overlap regions of the
strips are taken into account by averaging the pixel values. The first form is referred to as a “stacked” product and the
second as an “image” product.

The FITS file structure for uncalibrated ID “image” products is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE uint16 2024 x 2048 x 2 x 2
2 Flight Reference Stars BINTABLE N/A 4 cols x nstars
3 Planned Reference Stars BINTABLE N/A 10 cols x nstars

• SCI: 4-D data array containing the raw pixel values. The subarray overlaps have been accounted for, resulting
in image dimensions of 2024 x 2048 pixels, with the 2 groups and 2 integrations stacked along the 3rd and 4th
array axes.

• Flight Reference Stars: A table containing information on the actual reference stars used by the FSW. Detailed
contents are listed below.

• Planned Reference Stars: A table containing information on the planned reference stars. Detailed contents are
listed below.

The FITS file structure for uncalibrated ID “stacked” products is as follows:

13.7. Guide star data products 65

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE uint16 2304 x 2048 x 2 x 2
2 Flight Reference Stars BINTABLE N/A 4 cols x nstars
3 Planned Reference Stars BINTABLE N/A 10 cols x nstars

• SCI: 4-D data array containing the raw pixel values. The subarray data are butted against one another, resulting
in image dimensions of 2304 x 2048 pixels, with the 2 groups and 2 integrations stacked along the 3rd and 4th
array axes.

• Flight Reference Stars: A table containing information on the actual reference stars used by the FSW. Detailed
contents are listed below.

• Planned Reference Stars: A table containing information on the planned reference stars. Detailed contents are
listed below.

The FITS file structure for calibrated ID “image” products is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 2024 x 2048 x 1
2 ERR IMAGE float32 2024 x 2048 x 1
3 DQ IMAGE uint32 2024 x 2048
4 Flight Reference Stars BINTABLE N/A 4 cols x nstars
5 Planned Reference Stars BINTABLE N/A 10 cols x nstars
6 ASDF BINTABLE N/A variable

• SCI: 3-D data array containing the pixel values, in units of DN/s. The data for the 2 integrations has been
combined into a single image, as is done by the on-board FSW, resulting in a data array with NAXIS3 = 1.

• ERR: 3-D data array containing uncertainty estimates for each pixel.

• DQ: 2-D data array containing DQ flags for each pixel.

• Flight Reference Stars: A table containing information on the actual reference stars used by the FSW. Detailed
contents are listed below.

• Planned Reference Stars: A table containing information on the planned reference stars. Detailed contents are
listed below.

• ADSF: The data model meta data.

The FITS file structure for calibrated ID “stacked” products is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 2304 x 2048 x 1
2 ERR IMAGE float32 2304 x 2048 x 1
3 DQ IMAGE uint32 2304 x 2048
4 Flight Reference Stars BINTABLE N/A 4 cols x nstars
5 Planned Reference Stars BINTABLE N/A 10 cols x nstars
6 ASDF BINTABLE N/A variable

• SCI: 3-D data array containing the pixel values, in units of DN/s. The data for the 2 integrations has been
combined into a single image, as is done by the on-board FSW, resulting in a data array with NAXIS3=1.

66 Chapter 13. Data Products Information

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• ERR: 3-D data array containing uncertainty estimates for each pixel.

• DQ: 2-D data array containing DQ flags for each pixel.

• Flight Reference Stars: A table containing information on the actual reference stars used by the FSW. Detailed
contents are listed below.

• Planned Reference Stars: A table containing information on the planned reference stars. Detailed contents are
listed below.

• ADSF: The data model meta data.

Flight reference stars table

The structure and content of the Flight Reference Stars table is as follows.

Column Name Data Type Description
reference_star_id char*2 Reference star index
id_x float64 x position in FGS Ideal frame
id_y float64 y position in FGS Ideal frame
count_rate float64 count rate

Planned reference stars table

The structure and content of the Planned Reference Stars table is as follows.

Column Name Data Type Description
guide_star_order int32 Guide star index within list
reference_star_id char*12 GSC II identifier
ra float64 ICRS RA of the star
dec float64 ICRS Dec of the star
id_x float64 x position in FGS Ideal frame
id_y float64 y position in FGS Ideal frame
fgs_mag float64 magnitude
fgs_mag_uncert float64 magnitude uncertainty
count_rate float64 count rate
count_rate_uncert float64 count rate uncertainty

13.7.3 ACQ1 mode

The “Acquisition” guiding function ACQ1 performs 128 x 128 pixel subarray readouts of the detector, using 2 groups
per integration and a total of 6 integrations. The FITS file structure for ACQ1 uncalibrated products is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE uint16 128 x 128 x 2 x 6

• SCI: 4-D data array containing the raw pixel values.

13.7. Guide star data products 67

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

The FITS file structure for ACQ1 calibrated products is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 128 x 128 x 6
2 ERR IMAGE float32 128 x 128 x 6
3 DQ IMAGE uint32 128 x 128
4 ASDF BINTABLE N/A variable

• SCI: 3-D data array containing the pixel values, in units of DN/s. Count rate images have been computed for
each of the 6 integrations by differencing the 2 groups of each integration.

• ERR: 3-D data array containing uncertainty estimates for each pixel.

• DQ: 2-D data array containing DQ flags for each pixel.

• ADSF: The data model meta data.

13.7.4 ACQ2 mode

The “Acquisition” guiding function ACQ2 performs 32 x 32 pixel subarray readouts of the detector, using 2 groups per
integration and a total of 5 integrations. The FITS file structure for ACQ2 uncalibrated products is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE uint16 32 x 32 x 2 x 5

• SCI: 4-D data array containing the raw pixel values.

The FITS file structure for ACQ2 calibrated products is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 32 x 32 x 5
2 ERR IMAGE float32 32 x 32 x 5
3 DQ IMAGE uint32 32 x 32
4 ASDF BINTABLE N/A variable

• SCI: 3-D data array containing the pixel values, in units of DN/s. Count rate images have been computed for
each of the 5 integrations by differencing the 2 groups of each integration.

• ERR: 3-D data array containing uncertainty estimates for each pixel.

• DQ: 2-D data array containing DQ flags for each pixel.

• ADSF: The data model meta data.

68 Chapter 13. Data Products Information

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

13.7.5 Track mode

The “Track” guiding function performs 32 x 32 pixel subarray readouts, the location of which can move on the detector
as the FGS FSW tracks the position of the guide star. The subarray readouts are performed with a cadence of 16 Hz.
Each integration consists of 2 groups, and the total number of integrations (NINTS) can be very large (in the thousands).
The FITS file structure for TRACK uncalibrated products is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE uint16 32 x 32 x 2 x nints
2 Pointing BINTABLE N/A 12 cols x nrows
3 FGS Centroid Packet BINTABLE N/A 17 cols x nrows
4 Track subarray table BINTABLE N/A 5 cols x nrows

• SCI: 4-D data array containing the raw pixel values.

• Pointing: A table containing guide star position and jitter information. See below for details of the contents.

• FGS Centroid Packet: A table containing guide star centroiding information. See below for details of the contents.

• Track subarray table: A table containing subarray information over the duration of the product. See below for
details of the contents.

The FITS file structure for TRACK calibrated products is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 32 x 32 x nints
2 ERR IMAGE float32 32 x 32 x nints
3 DQ IMAGE uint32 32 x 32
4 POINTING BINTABLE N/A 12 cols x nrows
5 FGS CENTROID PACKET BINTABLE N/A 17 cols x nrows
6 TRACK SUBARRAY TABLE BINTABLE N/A 5 cols x nrows
7 ASDF BINTABLE N/A variable

• SCI: 3-D data array containing the pixel values, in units of DN/s. Count rate images for each integration have
been computed by differencing the 2 groups in each integration.

• ERR: 3-D data array containing uncertainty estimates for each pixel.

• DQ: 2-D data array containing DQ flags for each pixel.

• Pointing: A table containing guide star position and jitter information. See below for details of the contents.

• FGS Centroid Packet: A table containing guide star centroiding information. See below for details of the contents.

• Track subarray table: A table containing subarray information over the duration of the product. See below for
details of the contents.

• ADSF: The data model meta data.

13.7. Guide star data products 69

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Pointing table

The structure and content of the Pointing table is as follows.

Column Name Data Type Units Description
time float64 milli-sec Time since start of data file
jitter float64 milli-arcsec 𝑠𝑞𝑟𝑡(𝑑𝑒𝑙𝑡𝑎_𝑑𝑑𝑐_𝑟𝑎2 +

𝑑𝑒𝑙𝑡𝑎_𝑑𝑑𝑐_𝑑𝑒𝑐2)
delta_ddc_ra float64 milli-arcsec Initial DDC RA - Current
delta_ddc_dec float64 milli-arcsec Initial DDC Dec - Current
delta_aperture_pa float64 milli-arcsec Initial PA - Current
delta_v1_ra float64 milli-arcsec Initial V frame RA - Cur-

rent
delta_v1_dec float64 milli-arcsec Initial V frame Dec - Cur-

rent
delta_v3_pa float64 milli-arcsec Initial V frame PA - Cur-

rent
delta_j1_ra float64 milli-arcsec Initial J frame RA - Cur-

rent
delta_j1_dec float64 milli-arcsec Initial J frame Dec - Cur-

rent
delta_j3_pa float64 milli-arcsec Initial J frame PA - Cur-

rent
HGA_motion int32 N/A

HGA state: 0 = moving,
1 = finished, 2 = offline

FGS Centroid Packet table

The structure and content of the Centroid Packet table is as follows.

Column Name Data Type Description
observatory_time char*23 UTC time when packet was generated
centroid_time char*23 Fine guidance centroid time
guide_star_position_x float64 FGS Ideal Frame (arcsec)
guide_star_position_y float64 FGS Ideal Frame (arcsec)
guide_star_instrument_counts_per_sec float64 Instrument counts/sec
signal_to_noise_current_frame float64 For current image frame
delta_signal float64 Between current and previous frame
delta_noise float64 Between current and previous frame
psf_width_x int32 Bias from ideal guide star position (pixels)
psf_width_y int32 Bias from ideal guide star position (pixels)
data_quality int32 Centroid data quality
bad_pixel_flag char*4 Bad pixel status for current subwindow (0/1)
bad_centroid_dq_flag char*50 Bad centroid for current subwindow (0/1)
cosmic_ray_hit_flag char*5 NO/YES
sw_subwindow_loc_change_flag char*5 NO/YES
guide_star_at_detector_subwindow_boundary_flag char*5 NO/YES
subwindow_out_of_FOV_flag char*5 NO/YES

70 Chapter 13. Data Products Information

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Track Subarray table

The Track Subarray table contains location and size information for the detector subarray window that is used during
the track function to follow the guide star. The structure and content of the Track Subarray table is as follows.

Column Name Data Type Description
observatory_time char*23 UTC time when packet was generated
x_corner float64 Subarray x corner (pixels)
y_corner float64 Subarray y corner (pixels)
x_size int16 Subarray x size (pixels)
y_size int16 Subarray y size (pixels)

13.7.6 FineGuide mode

The “FineGuide” guiding function performs 8 x 8 pixel subarray readouts, at a fixed location on the detector, and
with a cadence of 16 Hz, from which the FGS FSW computes centroids for the guide star. To reduce readout noise
contribution to the centroid calculation, “Fowler” sampling of the readouts is employed. Each integration consists of
4 readouts at the beginning, a signal accumulation period, and 4 readouts at the end. The detector is then reset and the
readout cycle repeats for the next integration. The 4 readouts at the beginning are averaged together, the 4 readouts at
the end are averaged together, and then the difference of the 2 averages is computed to form a final countrate image
for each integration. This approach to creating the countrate images is used both on-board and in the calwebb_guider
pipeline when the raw data are processed on the ground.

The FITS file structure for FineGuide uncalibrated products is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE uint16 8 x 8 x 8 x nints
2 Pointing BINTABLE N/A 12 cols x nrows
3 FGS Centroid Packet BINTABLE N/A 17 cols x nrows

• SCI: 4-D data array containing the raw pixel values.

• Pointing: A table containing guide star position and jitter information. See above for details of the contents.

• FGS Centroid Packet: A table containing guide star centroiding information. See above for details of the contents.

The FITS file structure for FineGuide calibrated products is as follows:

HDU EXTNAME HDU Type Data Type Dimensions
0 N/A primary N/A N/A
1 SCI IMAGE float32 8 x 8 x nints
2 ERR IMAGE float32 8 x 8 x nints
3 DQ IMAGE uint32 8 x 8
4 POINTING BINTABLE N/A 12 cols x nrows
5 FGS CENTROID PACKET BINTABLE N/A 17 cols x nrows
6 ASDF BINTABLE N/A variable

• SCI: 3-D data array containing the pixel values, in units of DN/s. Count rate images for each integration have
been computed using the Fowler sampling scheme described above.

• ERR: 3-D data array containing uncertainty estimates for each pixel.

13.7. Guide star data products 71

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• DQ: 2-D data array containing DQ flags for each pixel.

• Pointing: A table containing guide star position and jitter information. See above for details of the contents.

• FGS Centroid Packet: A table containing guide star centroiding information. See above for details of the contents.

• ADSF: The data model meta data.

13.8 Migrating deprecated products

On rare occasion, the model schemas are changed in such a way as to break compatibility with data products produced
by earlier versions of this package. When these older files are opened the software will report validation errors:

>>> from stdatamodels.jwst import datamodels
>>> datamodels.open("jw95115001001_02102_00001_nrs1_x1d.fits")
...
ValueError: Column names don't match schema...

In some cases it will be possible to update the file to the new format using the migrate_data tool included with this
package:

$ migrate_data jw95115001001_02102_00001_nrs1_x1d.fits --in-place

It can also be run on multiple files:

$ migrate_data *_x1d.fits --in-place

Or configured to write updated files to a separate output directory:

$ migrate_data *_x1d.fits --output-dir some/other/directory

72 Chapter 13. Data Products Information

CHAPTER

FOURTEEN

ERROR PROPAGATION

14.1 Description

Steps in the various pipeline modules calculate variances due to different sources of noise or modify variances that
were computed by previous steps. In some cases the variance arrays are only used internally within a given step. For
several steps, these arrays must be propagated to subsequent steps in the pipeline. Anytime a step creates or updates
variances, the total error (ERR) array values are always recomputed as the square root of the quadratic sum of all
variances available at the time. Note that the ERR array values are always expressed as standard deviation (i.e. square
root of the variance).

The table below is a summary of which steps create or update variance and error arrays, as well as which steps make
use of these data. Details of how each step computes or uses these data are given in the subsequent sections below.

Step Stage Creates arrays Updates arrays Step uses
ramp_fitting 1 VAR_POISSON,

VAR_RNOISE
ERR None

gain_scale 1 None ERR, VAR_POISSON, VAR_RNOISE None
flat_field 2 VAR_FLAT ERR, VAR_POISSON, VAR_RNOISE None
fringe 2 None ERR None
barshadow 2 None ERR, VAR_POISSON, VAR_RNOISE,

VAR_FLAT
None

pathloss 2 None ERR, VAR_POISSON, VAR_RNOISE,
VAR_FLAT

None

photom 2 None ERR, VAR_POISSON, VAR_RNOISE,
VAR_FLAT

None

out-
lier_detection

3 None None ERR

resample 3 None None VAR_RNOISE
wfs_combine 3 None ERR None

73

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

14.2 Stage 1 Pipelines

Stage 1 pipelines perform detector-level corrections and ramp fitting for individual exposures, for nearly all imaging
and spectroscopic modes. Details of the pipelines can be found at Stage 1 Pipelines.

The Stage 1 pipeline steps that alter the ERR, VAR_POISSON, or VAR_RNOISE arrays of the science countrate data
are discussed below. Any step not listed here does not alter or use the variance or error arrays in any way and simply
propagates the information to the next step.

14.2.1 ramp_fitting

This step calculates and populates the VAR_POISSON and VAR_RNOISE arrays in the ‘rate’ and ‘rateints’ files, and
updates the ERR array as the square root of the quadratic sum of the variances. VAR_POISSON and VAR_RNOISE
represent the uncertainty in the computed slopes (per pixel) due to Poisson and read noise, respectively. The details of
the calculations can be found at ramp_fitting.

14.2.2 gain_scale

The gain_scale step is applied after ramp_fitting, and applies to both the rate and rateints products. The gain
correction is applied to the ERR, VAR_POISSON, and VAR_RNOISE arrays. The SCI and ERR arrays are multiplied
by the gain correction factor, and the variance arrays are multiplied by the square of the gain correction factor. More
details can be found at gain_scale.

14.3 Stage 2 Pipelines

Stage 2 pipelines perform additional instrument-level and observing-mode corrections and calibrations to produce fully
calibrated exposures. There are two main Stage 2 pipelines: one for imaging calwebb_image2 and one for spectroscopy
calwebb_spec2. In these pipelines, the various steps that apply corrections and calibrations apply those same correc-
tions/calibrations to all variance arrays and update the total ERR array.

14.3.1 flat_field

The SCI array of the exposure being processed is divided by the flat-field reference image. The VAR_FLAT array is
created, computed from the science data and the flat-field reference file ERR array.

For all modes except GUIDER, the VAR_POISSON and VAR_RNOISE arrays are divided by the square of the flat.
The science data ERR array is then updated to be the square root of the sum of the three variance arrays.

For the GUIDER mode, their are no VAR_POISSON and VAR_RNOISE arrays. The science data ERR array is updated
to be the square root of the sum of the variance VAR_FLAT and the square of the incoming science ERR array.

For more details see flat_field.

74 Chapter 14. Error Propagation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

14.3.2 fringe

For MIRI MRS (IFU) mode exposures, the SCI and ERR arrays in the science exposure are divided by the fringe
reference image. For details of the fringe correction, see fringe.

14.3.3 barshadow

This step is applied only to NIRSpec MSA data for extended sources. Once the 2-D correction array for each slit has
been computed, it is applied to the science (SCI), error (ERR), and variance (VAR_POISSON, VAR_RNOISE, and
VAR_FLAT) arrays of the slit. The correction values are divided into the SCI and ERR arrays, and the square of the
correction values are divided into the variance arrays. For details of the bar shadow correction, see barshadow.

14.3.4 pathloss

The pathloss step corrects NIRSpec and NIRISS SOSS data for various types of light losses. The correction factors
are divided into the SCI and ERR arrays of the science data, and the square of the correction values are divided into
the variance arrays. For details of this step, see pathloss.

14.3.5 photom

The calibration information for the photom step includes a scalar flux conversion constant, as well as optional arrays
of wavelength and relative response (as a function of wavelength). The combination of the scalar conversion factor
and any 2-D response values is applied to the science data, including the SCI and ERR arrays, as well as the variance
(VAR_POISSON, VAR_RNOISE, and VAR_FLAT) arrays. The flux calibration values are multiplied into the science
exposure SCI and ERR arrays, and the square of the calibration values is multiplied into all variance arrays. For details
of the photom correction, see photom.

14.4 Stage 3 pipelines

Stage 3 pipelines perform operations that work with multiple exposures and in most cases produce some kind of com-
bined product. The operations in these pipelines that either use or modify variance/error arrays that are propagated
through the pipeline are outlier_detection and wfs_combine.

14.4.1 outlier_detection

The outlier_detection step is used in all Stage 3 pipelines. It uses the ERR array to make a local noise model,
based on the readnoise and calibration errors of earlier steps in the pipeline. This step does not modify the ERR array
or any of the VAR arrays.

14.4. Stage 3 pipelines 75

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

14.4.2 resample/resample_spec

The resample and resample_spec steps make use of the VAR_RNOISE array to compute weights that are used
when combining data with the weight_type=ivm option selected. The step also resamples all of the variance and
error arrays, using the same output WCS frame as the science data.

14.4.3 wfs_combine

The wfs_combine step is only applied in the Stage 3 Wavefront Sensing and Control (calwebb_wfs-image3) pipeline
for dithered pairs of WFS&C exposures. This step can modify variance/error arrays, but only if the optional “do_refine”
parameter is set to True (the default is False). In this case the algorithm to refine image offsets will be used and the
ERR array values will be altered on output, using a combination of the input image errors. See the step documentation
at wfs_combine for more details.

76 Chapter 14. Error Propagation

CHAPTER

FIFTEEN

PACKAGE DOCUMENTATION

15.1 Package Index

15.1.1 Align PSF References

Description

Class
jwst.coron.AlignRefsStep

Alias
align_refs

The align_refs step is one of the coronagraphic-specific steps in the coron sub-package that is part of Stage 3
calwebb_coron3 processing. It computes offsets between science target images and reference PSF images, and shifts
the PSF images into alignment. This is performed on a per-integration basis for both the science target data and the
reference PSF data. Each integration contained in the stacked PSF data (the result of the stack_refs) step is aligned to
each integration within a given science target exposure. This results in a new product for each science target exposure
that contains a stack of individual PSF images that have been aligned to each integration in the science target exposure.

Shifts between each PSF and target image are computed using the scipy.optimize.leastsq function. A 2D mask,
supplied via a PSFMASK reference file, is used to indicate pixels to ignore when performing the minimization in the
leastsq routine. The mask acts as a weighting function in performing the fit. Alignment of a PSF image is performed
using the scipy.ndimage.fourier_shift function and the computed sub-pixel offsets.

Arguments

The align_refs step has two optional arguments:

--median_box_length (integer, default=3)
The box size to use when replacing bad pixels with the median in a surrounding box.

--bad_bits (string, default=”DO_NOT_USE”)
The DQ bit values from the input image DQ arrays that should be considered bad and replaced with the median
in a surrounding box. For example, setting to "OUTLIER, SATURATED" (or equivalently "16, 2" or "18") will
treat all pixels flagged as OUTLIER or SATURATED as bad, while setting to "" or None will treat all pixels as
good and omit any bad pixel replacement.

77

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Inputs

The align_refs step takes 2 inputs: a science target exposure containing a 3D stack of calibrated per-integration
images and a “_psfstack” product containing a 3D stack of reference PSF images. If the target or PSF images have any
of the data quality flags set to those specified by the bad_bits argument, these pixels are replaced with the median
value of a region around the flagged data. The size of the box region to use for the replacement can also be specified.
These corrected images are used in the align_refs step and passed along for subsequent processing.

3D calibrated images

Data model
CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_calints

One of the science target exposures specified in the ASN file used as input to the calwebb_coron3 pipeline. This should
be a “_calints” product from the calwebb_image2 pipeline and contains a 3D stack of per-integration images.

3D stacked PSF images

Data model
CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_psfstack

A “_psfstack” product created by the stack_refs step, which contains the collection of all PSF images to be used, in the
form of a 3D image stack.

Outputs

4D aligned PSF images

Data model
QuadModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.QuadModel.html#jwst.datamodels.QuadModel)

File suffix
_psfalign

The output is a 4D data model, where the 3rd axis has length equal to the total number of reference PSF images in the
input PSF stack and the 4th axis has length equal to the number of integrations in the input science target product (ncols x
nrows x npsfs x nints). Image[n,m] in the 4D data is the n th PSF image aligned to the m th science target integration. The
file name is exposure-based, using the input science target exposure name as the root, with the addition of the association
candidate ID and the “_psfalign” product type suffix, e.g. “jw8607342001_02102_00001_nrcb3_a3001_psfalign.fits.”

78 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.QuadModel.html#jwst.datamodels.QuadModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference Files

The align_refs step uses a PSFMASK reference file.

PSFMASK Reference File

REFTYPE
PSFMASK

Data model
PsfMaskModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.PsfMaskModel.html#jwst.datamodels.PsfMaskModel)

The PSFMASK reference file contains a 2-D mask that’s used as a weight function when computing shifts between
images.

Reference Selection Keywords for PSFMASK

CRDS selects appropriate PSFMASK references based on the following keywords. PSFMASK is not applicable for
instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
MIRI INSTRUME, FILTER, CORONMSK, SUBARRAY, DATE-OBS, TIME-OBS
NIRCam INSTRUME, FILTER, CORONMSK, SUBARRAY, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

15.1. Package Index 79

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.PsfMaskModel.html#jwst.datamodels.PsfMaskModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Type Specific Keywords for PSFMASK

In addition to the standard reference file keywords listed above, the following keywords are required in PSFMASK
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for PSFMASK):

Keyword Data Model Name
FILTER model.meta.instrument.filter
CORONMSK model.meta.instrument.coronagraph
SUBARRAY model.meta.subarray.name

Reference File Format

PSFMASK reference files are FITS format, with 1 IMAGE extension. The FITS primary HDU does not contain a data
array. The format and content of the file is as follows:

EXTNAME XTENSION NAXIS Dimensions Data type
SCI IMAGE 2 ncols x nrows float

The values in the SCI array give the mask values to be applied to the images when computing relative shifts. The mask
acts as a weighting function when performing Fourier fits. The values range from zero (full weighting) to one (pixel
completely masked out).

jwst.coron.align_refs_step Module

Replace bad pixels and align psf image with target image.

Classes

AlignRefsStep([name, parent, config_file, ...]) AlignRefsStep: Align coronagraphic PSF images with
science target images.

AlignRefsStep

class jwst.coron.align_refs_step.AlignRefsStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

AlignRefsStep: Align coronagraphic PSF images with science target images.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

80 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(target, psf) This is where real work happens.

Attributes Documentation

class_alias = 'align_refs'

reference_file_types = ['psfmask']

spec

median_box_length = integer(default=3,min=0) # box size for the median filter
bad_bits = string(default="DO_NOT_USE") # the DQ bit values of bad pixels

Methods Documentation

process(target, psf)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

15.1. Package Index 81

https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Class Inheritance Diagram

AlignRefsStepJwstStepStep

15.1.2 AMI Analyze

Description

Class
jwst.ami.AmiAnalyzeStep

Alias
ami_analyze

The ami_analyze step is one of the AMI-specific steps in the ami sub-package that is part of Stage 3 calwebb_ami3
processing. It applies the Lacour-Greenbaum (LG) image plane modeling algorithm to a NIRISS AMI image. The
routine computes a number of parameters, including a model fit (and residuals) to the image, fringe amplitudes and
phases, and closure phases and amplitudes.

The JWST AMI observing template allows for exposures to be obtained using either full-frame (SUBARRAY=”FULL”)
or subarray (SUBARRAY=”SUB80”) readouts. When processing a full-frame exposure, the ami_analyze step ex-
tracts and processes a region from the image corresponding to the size and location of the SUB80 subarray, in order to
reduce execution time.

Arguments

The ami_analyze step has four optional arguments:

–oversample
The oversampling factor to be used in the model fit (default=3).

–rotation
Initial guess for the rotation of the PSF in the input image, in units of degrees (default=0.0).

–psf_offset
List of PSF offset values to use when creating the model array (default=’0.0 0.0’).

–rotation_search
List of start, stop, and step values that define the list of rotation search values. The default setting of
‘-3 3 1’ results in search values of [-3, -2, -1, 0, 1, 2, 3].

82 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Inputs

2D calibrated image

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)

File suffix
_cal

The ami_analyze step takes a single calibrated image as input, which should be the “_cal” product resulting from
calwebb_image2 processing. Multiple exposures can be processed via use of an ASN file that is used as input to the
calwebb_ami3 pipeline. The ami_analyze step itself does not accept an ASN as input.

Outputs

LG model parameters

Data model
AmiLgModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel)

File suffix
_ami

The ami_analyze step produces a single output file, containing the following list of extensions:

1) FIT: a 2D image of the fitted model

2) RESID: a 2D image of the fit residuals

3) CLOSURE_AMP: table of closure amplitudes

4) CLOSURE_PHA: table of closure phases

5) FRINGE_AMP: table of fringe amplitudes

6) FRINGE_PHA: table of fringe phases

7) PUPIL_PHA: table of pupil phases

8) SOLNS: table of fringe coefficients

The output file name syntax is exposure-based, using the input file name as the root, with the addition of the association
candidate ID and the “_ami” product type suffix, e.g. “jw87600027001_02101_00002_nis_a3001_ami.fits.”

Reference Files

The ami_analyze step uses a THROUGHPUT reference file.

15.1. Package Index 83

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

THROUGHPUT Reference File

REFTYPE
THROUGHPUT

Data model
ThroughputModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ThroughputModel.html#jwst.datamodels.ThroughputModel)

The THROUGHPUT reference file contains throughput data for the filter used in the AMI image.

Reference Selection Keywords for THROUGHPUT

CRDS selects appropriate THROUGHPUT references based on the following keywords. THROUGHPUT is not ap-
plicable for instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
NIRISS INSTRUME, FILTER, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for THROUGHPUT

In addition to the standard reference file keywords listed above, the following keywords are required in THROUGHPUT
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for THROUGHPUT):

Keyword Data Model Name
FILTER model.meta.instrument.filter

84 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ThroughputModel.html#jwst.datamodels.ThroughputModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference File Format

THROUGHPUT reference files are FITS files with one BINTABLE extension. The FITS primary data array is assumed
to be empty. The format of the file is as follows:

EXTNAME XTENSION NAXIS Dimensions Data type
THROUGHPUT BINTABLE 2 TFIELDS = 2 N/A

The table extension contains two columns, giving wavelength and throughput values for a particular filter:

Column name Data type Units
wavelength float Angstroms
throughput float (unitless)

AMI unit tests

There are unit tests for AMI Analyze and AMI interface.

test_ami_interface

• Make sure ami_analyze fails if input is an input file of type _calints

• Make sure ami_analyze fails if input is CubeModel for _calints

• Make sure that ami_analyze fails if no throughput reffile is available

test_ami_analyze

utils module tests:

For the module utils we have several tests that compare the calculated value with a known value. The tests are:

• Test of rebin() and krebin()

• Test of quadratic

• Test of findmax

• Test of makeA

• Test of fringes2pistons

• Test of rcrosscorrelate()

• Test of crosscorrelate()

15.1. Package Index 85

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

leastsqnrm module tests:

•Test of rotatevectors()
Positive x decreases under slight rotation, and positive y increases under slight rotation.

•Test of flip()
Change sign of 2nd coordinate of holes.

•Test of mas2rad()
Convert angle in milli arc-sec to radians.

•Test of rad2mas()
Convert input angle in radians to milli arc sec.

•Test of sin2deltapistons()
Each baseline has one sine and one cosine fringe with a coefficient that depends on the piston difference
between the two holes that make the baseline. For a 7-hole mask there are 21 baselines and therefore there
are 42 sine and cosine terms that contribute to the fringe model. This function calculates the sine of this
piston difference.

•Test of cos2deltapistons()
Each baseline has one sine and one cosine fringe with a coefficient that depends on the piston difference
between the two holes that make the baseline. For a 7-hole mask there are 21 baselines and therefore there
are 42 sine and cosine terms that contribute to the fringe model. This function calculate the cosine of this
piston difference.

•Test of replacenan()
Replace singularities encountered in the analytical hexagon Fourier transform with the analytically derived
limits. (pi/4)

•Test of hexpb()
Calculate the primary beam for hexagonal holes.

•Test of model_array
Create a model using the specified wavelength.

•Test of ffc
Calculate cosine terms of analytic model.

•Test of ffs
Calculate sine terms of analytic model.

•Test of return_CAs
Calculate the closure amplitudes.

•Test of closurephase
Calculate closure phases between each pair of holes.

•Test of redundant_cps
Calculate closure phases for each set of 3 holes.

•Test of populate_symmamparray
Populate the symmetric fringe amplitude array.

•Test of populate_antisymmphasearray
Populate the antisymmetric fringe phase array.

•Test of tan2visibilities
From the solution to the fit, calculate the fringe amplitude and phase.

•Test of multiplyenv
Multiply the envelope by each fringe ‘image’.

86 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

hexee module tests:

•Test of g_eeAG()
Calculate the Fourier transform of one half of a hexagon that is bisected from one corner to its diametrically
opposite corner.

•Test of glimit()
Calculate the analytic limit of the Fourier transform of one half of the hexagon along eta=0.

analyticnrm2 module tests:

• Test of PSF()

• Test of ASFhex() in the analyticnrm2 module FOR HEX

• Test of interf()

• Test of phasor()

webb_psf module test:

•Test of PSF()
Create a Throughput datamodel, having a dummy filter bandpass data that peaks at 1.0 at the center and
decreases in the wings.

jwst.ami.ami_analyze_step Module

Classes

AmiAnalyzeStep([name, parent, config_file, ...]) Performs analysis of an AMI mode exposure by applying
the LG algorithm.

AmiAnalyzeStep

class jwst.ami.ami_analyze_step.AmiAnalyzeStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

Performs analysis of an AMI mode exposure by applying the LG algorithm.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

15.1. Package Index 87

https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) Performs analysis of an AMI mode exposure by ap-
plying the LG algorithm.

Attributes Documentation

class_alias = 'ami_analyze'

reference_file_types = ['throughput']

spec

oversample = integer(default=3, min=1) # Oversampling factor
rotation = float(default=0.0) # Rotation initial guess [deg]
psf_offset = string(default='0.0 0.0') # Psf offset values to use to create the␣
→˓model array
rotation_search = string(default='-3 3 1') # Rotation search parameters: start,␣
→˓stop, step

Methods Documentation

process(input)
Performs analysis of an AMI mode exposure by applying the LG algorithm.

Parameters
input (string) – input file name

Returns
result – AMI image to which the LG fringe detection has been applied

Return type
AmiLgModel object

88 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Class Inheritance Diagram

AmiAnalyzeStepJwstStepStep

15.1.3 AMI Average

Description

Class
jwst.ami.AmiAverageStep

Alias
ami_average

The ami_average step is one of the AMI-specific steps in the ami sub-package and is part of Stage 3 calwebb_ami3
processing. It averages the results of LG processing from the ami_analyze step for multiple exposures of a given target.
It computes a simple average for all 8 components of the “ami” product files from all input exposures.

For a given association of exposures, the “ami” products created by the ami_analyze step may have fit_image and
resid_image images that vary in size from one exposure to another. If this is the case, the smallest image size of all
the input products is used for the averaged product and the averaged fit_image and resid_image images are created
by trimming extra rows/columns from the edges of images that are larger.

Arguments

The ami_average step does not have any step-specific arguments.

Inputs

LG model parameters

Data model
AmiLgModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel)

File suffix
_ami

The only input to the ami_average step is a list of one or more “ami” files to be processed. These should be output
files from the ami_analyze step. The input to the step must be in the form of a list of “ami” file names. Passing data
models or ASN files is not supported at this time. Use the calwebb_ami3 pipeline to conveniently process multiple
inputs.

15.1. Package Index 89

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Outputs

Average LG model parameters

Data model
AmiLgModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel)

File suffix
_amiavg or _psf-amiavg

The ami_average step produces a single output file, having the same format as the input files, where the data for the
8 file components are the averages from the list of input files. If the inputs in the ASN file are designated as “science”,
the output product type will be “_amiavg”, whereas if the inputs are designated as “psf”, the output product type will
be “_psf-amiavg.” The output file name syntax is source-based, using the product name specified in the input ASN file,
e.g. “jw87600-a3001_t001_niriss_f480m-nrm_amiavg.fits.”

Reference Files

The ami_average step does not use any reference files.

jwst.ami.ami_average_step Module

Classes

AmiAverageStep([name, parent, config_file, ...]) AmiAverageStep: Averages LG results for multiple
NIRISS AMI mode exposures

AmiAverageStep

class jwst.ami.ami_average_step.AmiAverageStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

AmiAverageStep: Averages LG results for multiple NIRISS AMI mode exposures

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

90 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

spec

Methods Summary

flatten_input(input_items) Remove any nested list/tuple structure and return gen-
erator to provide iterable simple list with no nested
structure.

process(*input_list) Averages the results of LG analysis for a set of multi-
ple NIRISS AMI mode exposures.

Attributes Documentation

class_alias = 'ami_average'

spec

Methods Documentation

flatten_input(input_items)
Remove any nested list/tuple structure and return generator to provide iterable simple list with no nested
structure.

process(*input_list)
Averages the results of LG analysis for a set of multiple NIRISS AMI mode exposures.

Parameters
input_list (list (https://docs.python.org/3/library/stdtypes.html#list)) – input file names

Returns
result – Averaged AMI data model

Return type
AmiLgModel object

Class Inheritance Diagram

AmiAverageStepJwstStepStep

15.1. Package Index 91

https://docs.python.org/3/library/stdtypes.html#list

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

15.1.4 AMI Normalize

Description

Class
jwst.ami.AmiNormalizeStep

Alias
ami_normalize

The ami_normalize step is one of the AMI-specific steps in the ami sub-package and is used in Stage 3 calwebb_ami3
processing. It provides normalization of LG processing results for a science target using LG results of a reference PSF
target. The algorithm subtracts the PSF target closure phases from the science target closure phases and divides the
science target fringe amplitudes by the PSF target fringe amplitudes.

Arguments

The ami_normalize step does not have any step-specific arguments.

Inputs

LG model parameters

Data model
AmiLgModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel)

File suffix
_amiavg and _psf-amiavg

The ami_normalize step takes two inputs: the first is the LG results for a science target and the sec-
ond is the LG results for the PSF target. These should be the “_amiavg” and “_psf-amiavg” prod-
ucts resulting from the ami_average step. The inputs can be in the form of file names or AmiLgModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel)
data models.

Outputs

Normalized LG model parameters

Data model
AmiLgModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel)

File suffix
_aminorm

The output is a new LG product for the science target in which the closure phases and fringe amplitudes have been nor-
malized using the PSF target closure phases and fringe amplitudes. The remaining components of the science target data
model are left unchanged. The output file name syntax is source-based, using the product name specified in the input
ASN file and having a product type of “_aminorm”, e.g. “jw87600-a3001_t001_niriss_f480m-nrm_aminorm.fits.”

92 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference Files

The ami_normalize step does not use any reference files.

jwst.ami.ami_normalize_step Module

Classes

AmiNormalizeStep([name, parent, ...]) AmiNormalizeStep: Normalize target LG results using
reference LG results

AmiNormalizeStep

class jwst.ami.ami_normalize_step.AmiNormalizeStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

AmiNormalizeStep: Normalize target LG results using reference LG results

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

spec

15.1. Package Index 93

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

process(target, reference) Normalizes the LG results for a science target, using
the LG results for a reference target.

Attributes Documentation

class_alias = 'ami_normalize'

spec

Methods Documentation

process(target, reference)
Normalizes the LG results for a science target, using the LG results for a reference target.

Parameters
• target (string or model) – target input

• reference (string or model) – reference input

Returns
result – AMI data model that’s been normalized

Return type
AmiLgModel object

Class Inheritance Diagram

AmiNormalizeStepJwstStepStep

15.1.5 Assign Moving Target WCS

Description

Class
jwst.assign_mtwcs.AssignMTWcsStep

Alias
assign_mtwcs

94 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

The jwst.assign_mtwcs step modifies the WCS output frame in each exposure of a Moving Target (MT) observation
association, such that the WCS is centered at the average location of the target within the whole association. This results
in proper alignment of multiple exposures, which takes place downstream in the calibration pipeline, in the target frame,
rather than the background sky frame.

A moving target will naturally be located at different sky coordinates (RA, Dec) across multiple exposures within an
MT observation. When multiple images or spectra get combined during Stage 3 processing, the relative alignment of
the images/spectra is based on the sky coordinates of each exposure. In the case of moving targets, where the RA/Dec
of the target is changing between exposures, the normal alignment process would result in the target being at different
image coordinates and hence coming out either smeared (for slowly moving targets) or at multiple locations within the
combined data. This step modifies the WCS of each exposure to recenter it at a common RA/Dec for the target, so that
subsequent image alignment and combination has the target properly aligned.

The step is executed at the beginning of the calwebb_image3 and calwebb_spec3 pipelines, so that all subsequent steps
that rely on WCS information use the frame centered on the target.

This step depends on keywords that are unique to MT exposures, as shown in the following table.

FITS
Keyword

Data model attribute

Type
(Value)

Description

TARGTYPE meta.target.type string
(moving)

Type of target

MT_RA
MT_DEC

meta.wcsinfo.mt_ra
meta.wcsinfo.mt_dec

number
number

Target RA and Dec at
mid-point of exposure
[deg]

MT_AVRA
MT_AVDEC

meta.wcsinfo.mt_avra
meta.wcsinfo.mt_avdec

number
number

Target RA and Dec
averaged
between exposures [deg]

A “TARGTYPE” value of “moving” is used to identify exposures as containing a moving target. The keywords
“MT_RA” and “MT_DEC” are populated in the uncalibrated (uncal) product for each exposure and give the position
of the target at the mid-point of each exposure. The assign_mtwcs step computes the average of the “MT_RA” and
“MT_DEC” values across all expsoures in an association and stores the result in the “MT_AVRA” and “MT_AVDEC”
keywords of each exposure.

In addition to populating the “MT_AVRA” and “MT_AVDEC” keywords, this step adds another transform to the
original WCS in each exposure that results in the WCS frame being centered at “MT_AVRA” and “MT_AVDEC”. The
transform of the original WCS associated with the science aperture pointing (i.e. without the additional MT correction)
can be accessed by executing:

sci_transform = model.meta.wcs.get_transform('detector', 'world')

15.1. Package Index 95

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.assign_mtwcs Package

Classes

AssignMTWcsStep([name, parent, config_file, ...]) AssignMTWcsStep: Create a gWCS object for a moving
target.

AssignMTWcsStep

class jwst.assign_mtwcs.AssignMTWcsStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

AssignMTWcsStep: Create a gWCS object for a moving target.

Parameters
input (Association) – A JWST association file.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

spec

Methods Summary

process(input) This is where real work happens.

96 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Documentation

class_alias = 'assign_mtwcs'

spec

suffix = string(default='assign_mtwcs') # Default suffix for output files
output_use_model = boolean(default=True) # When saving use `DataModel.meta.
→˓filename`

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

AssignMTWcsStepJwstStepStep

15.1.6 Assign WCS

Description

Class
jwst.assign_wcs.AssignWcsStep

Alias
assign_wcs

jwst.assign_wcs is run in the beginning of the level 2B JWST pipeline. It associates a WCS object with each science
exposure. The WCS object transforms positions in the detector frame to positions in a world coordinate frame - ICRS
and wavelength. In general there may be intermediate coordinate frames depending on the instrument. The WCS is
saved in the ASDF extension of the FITS file. It can be accessed as an attribute of the meta object when the fits file is
opened as a data model.

The forward direction of the transforms is from detector to world coordinates and the input positions are 0-based.

jwst.assign_wcs expects to find the basic WCS keywords in the SCI header. Distortion and spectral models are
stored in reference files in the ASDF (http://asdf-standard.readthedocs.org/en/latest/) format.

For each observing mode, determined by the value of EXP_TYPE in the science header, assign_wcs retrieves reference
files from CRDS and creates a pipeline of transforms from input frame detector to a frame v2v3. This part of the
WCS pipeline may include intermediate coordinate frames. The basic WCS keywords are used to create the transform
from frame v2v3 to frame world.

15.1. Package Index 97

http://asdf-standard.readthedocs.org/en/latest/

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

For image display with software like DS9 that relies on specific WCS information, a SIP-based approximation to the
WCS is fit. The results are FITS keywords stored in model.meta.wcsinfo. This is not an exact fit, but is accurate
to ~0.25 pixel and is sufficient for display purposes. This step, which occurs for imaging modes early, is performed by
default but can be switched off, and parameters controlling the fit can also be adjusted.

jwst.assign_wcs is based on gwcs (https://gwcs.readthedocs.io/en/latest/) and uses asdf
(http://asdf.readthedocs.io/en/latest/).

Basic WCS keywords and the transform from v2v3 to world

All JWST instruments use the following FITS header keywords to define the transform from v2v3 to world:

RA_REF, DEC_REF - a fiducial point on the sky, ICRS, [deg]

V2_REF, V3_REF - a point in the V2V3 system which maps to RA_REF, DEC_REF, [arcsec]

ROLL_REF - local roll angle associated with each aperture, [deg]

RADESYS - standard coordinate system [ICRS]

These quantities are used to create a 3D Euler angle rotation between the V2V3 spherical system, associated with the
telescope, and a standard celestial system.

For spectroscopic data, jwst.assign_wcs populates keyword DISPAXIS with an integer value that indicates whether
the dispersion direction is oriented more nearly along the horizontal (DISPAXIS = 1) or vertical (DISPAXIS = 2)
direction.

Using the WCS interactively

Once a FITS file is opened as a DataModel the WCS can be accessed as an attribute of the meta object. Calling it as a
function with detector positions as inputs returns the corresponding world coordinates. Using MIRI LRS fixed slit as
an example:

>>> from stdatamodels.jwst.datamodels import ImageModel
>>> exp = ImageModel('miri_fixedslit_assign_wcs.fits')
>>> ra, dec, lam = exp.meta.wcs(x, y)
>>> print(ra, dec, lam)

(329.97260532549336, 372.0242999250267, 5.4176100046836675)

The WFSS modes for NIRCam and NIRISS have a slightly different calling structure, in addition to the (x, y) coordinate,
they need to know other information about the spectrum or source object. In the JWST backward direction (going from
the sky to the detector) the WCS model also looks for the wavelength and order and returns the (x,y) location of that
wavelength+order on the dispersed image and the original source pixel location, as entered, along with the order that
was specified:

>>> from stdatamodels.jwst.datamodels import ImageModel
>>> exp = ImageModel('nircam_wfss_assign_wcs.fits')
>>> x, y, x0, y0, order = exp.meta.wcs(x0, y0, wavelength, order)
>>> print(x0, y0, wavelength, order)

(365.523884327, 11.6539963919, 2.557881113, 2)
>>> print(x, y, x0, y0, order)

(1539.5898464615102, 11.6539963919, 365.523884327, 11.6539963919, 2)

The WCS provides access to intermediate coordinate frames and transforms between any two frames in the WCS
pipeline in forward or backward direction. For example, for a NIRSpec fixed slits exposure, which has been through
the extract_2d step:

98 Chapter 15. Package Documentation

https://gwcs.readthedocs.io/en/latest/
http://asdf.readthedocs.io/en/latest/

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

>>> exp = datamodels.MultiSlitModel('nrs1_fixed_assign_wcs_extract_2d.fits')
>>> exp.slits[0].meta.wcs.available_frames

['detector', 'sca', 'bgwa', 'slit_frame', 'msa_frame', 'ote', 'v2v3', 'world']
>>> msa2detector = exp.slits[0].meta.wcs.get_transform('msa_frame', 'detector')
>>> msa2detector(0, 0, 2*10**-6)

(5042.064255529629, 1119.8937888372516)

For each exposure, assign_wcs uses reference files and WCS header keywords to create the WCS object. What reference
files are retrieved from CRDS is determined based on EXP_TYPE and other keywords in the science file header.

The assign_wcs step can accept the single slope image that is the result of averaging over all integrations or a 3D cube
of integrations in the case of TSO exposures.

WCS of slitless grism exposures

The WCS forward transforms for slitless grism exposures (NIS_WFSS, NRC_WFSS, NRC_TSGRISM) take as input the
x, y coordinates on the dispersed image, the x0, y0 coordinate of the center of the object in the direct image and
spectral order. They return the x0, y0 coordinate of the center of the object in the direct image, wavelength and
spectral order.

For NIRISS WFSS data the reference files contain a reference value for the filter wheel position angle. The trace is
rotated about an angle which is the difference between the reference and actual angles.

For WFSS modes (NIS_WFSS, NRC_WFSS), an approximation of the GWCS object associated with a direct image with
the same instrument configuration as the grism image is saved as FITS WCS in the headers of grism images.

Corrections Due to Spacecraft Motion

The WCS transforms contain two corrections due to motion of the observatory.

Absolute velocity aberration is calculated onboard when acquiring the guide star, but differential velocity aberration
effects are calculated during the assign_wcs step. This introduces corrections in the conversion from sky coordinates
to observatory V2/V3 coordinates, and is stored in the WCS under the v2v3vacorr frame.

For spectroscopic data, a relativistic Doppler correction is applied to all wavelengths to place observations into the
barycentric reference frame. This correction factor is applied to the WCS wavelength solution created during the
assign_wcs step, such that extracted spectral products will have wavelength arrays in the barycentric frame.

Step Arguments

The assign_wcs step has the following optional arguments to control the behavior of the processing.

--sip_approx (boolean, default=True)
A flag to enable the computation of a SIP approximation for imaging modes.

--sip_degree (integer, max=6, default=None)
Polynomial degree for the forward SIP fit. “None” uses the best fit.

--sip_max_pix_error (float, default=0.1)
Maximum error for the SIP forward fit, in units of pixels. Ignored if sip_degree is set to an explicit value.

--sip_inv_degree (integer, max=6, default=None)
Polynomial degree for the inverse SIP fit. “None” uses the best fit.

--sip_max_inv_pix_error (float, default=0.1)
Maximum error for the SIP inverse fit, in units of pixels. Ignored if sip_inv_degree is set to an explicit value.

15.1. Package Index 99

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

--sip_npoints (integer, default=12)
Number of points for the SIP fit.

--slit_y_low (float, default=-0.55)
Lower edge of a NIRSpec slit.

--slit_y_high (float, default=0.55)
Upper edge of a NIRSpec slit.

Reference Files

WCS Reference files are in the Advanced Scientific Data Format (ASDF). The best way to create the file is to program-
matically create the model and then save it to a file. A tutorial on creating reference files in ASDF format is available
at:

https://github.com/spacetelescope/jwreftools/blob/master/docs/notebooks/referece_files_asdf.ipynb

Transforms are 0-based. The forward direction is from detector to sky.

Reference file types used by assign_wcs

REFTYPE Description Instruments
CAMERA NIRSpec Camera model NIRSpec
COLLIMATOR NIRSpec Collimator Model NIRSpec
DISPERSER Disperser parameters NIRSpec
DISTORTION Spatial distortion model FGS, MIRI, NIRCam, NIRISS
FILTEROFFSET MIRI Imager filter offsets MIRI, NIRCAM, NIRISS
FORE Transform through the NIRSpec FORE optics NIRSpec
FPA Transform in the NIRSpec FPA plane NIRSpec
IFUFORE Transform from the IFU slicer to the IFU entrance NIRSpec
IFUPOST Transform from the IFU slicer to the back of the

IFU
NIRSpec

IFUSLICER IFU Slicer geometric description NIRSpec
MSA Transform in the NIRSpec MSA plane NIRSpec
OTE Transform through the Optical Telescope Element NIRSpec
SPECWCS Wavelength calibration models MIRI, NIRCam, NIRISS
REGIONS Stores location of the regions on the detector MIRI
WAVELENGTH-
RANGE

Typical wavelength ranges MIRI, NIRCam, NIRISS, NIR-
Spec

How To Create Reference files in ASDF format

All WCS reference files are in ASDF (http://asdf-standard.readthedocs.org/en/latest/) format. ASDF is a human-
readable, hierarchical metadata structure, made up of basic dynamic data types such as strings, numbers, lists and
mappings. Data is saved as binary arrays. It is primarily intended as an interchange format for delivering products
from instruments to scientists or between scientists. It’s based on YAML and JSON schema and as such provides
automatic structure and metadata validation.

While it is possible to write or edit an ASDF file in a text editor, or to use the ASDF interface,
the best way to create reference files is using the datamodels in the jwst pipeline jwst.datamodels
(http://jwst-pipeline.readthedocs.io/en/latest/jwst/datamodels/index.html#classes) and astropy.modeling
(http://astropy.readthedocs.io/en/latest/modeling/index.html) .

100 Chapter 15. Package Documentation

https://github.com/spacetelescope/jwreftools/blob/master/docs/notebooks/referece_files_asdf.ipynb
http://asdf-standard.readthedocs.org/en/latest/
http://jwst-pipeline.readthedocs.io/en/latest/jwst/datamodels/index.html#classes
http://astropy.readthedocs.io/en/latest/modeling/index.html

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

There are two steps in this process:

• create a transform using the simple models and the rules to combine them

• save the transform to an ASDF file (this automatically validates it)

The rest of this document provides a brief description and examples of models in astropy.modeling
(http://astropy.readthedocs.org/en/latest/modeling/index.html) which are most relevant to WCS and examples of creat-
ing WCS reference files.

Create a transform

astropy.modeling (http://astropy.readthedocs.org/en/latest/modeling/index.html) is a framework for representing, eval-
uating and fitting models. All available models can be imported from the models module.

>>> from astropy.modeling import models as astmodels

If necessary all fitters can be imported through the fitting module.

>>> from astropy.modeling import fitting

Many analytical models are already implemented and it is easy to implement new ones. Models are initialized with
their parameter values. They are evaluated by passing the inputs directly, similar to the way functions are called. For
example,

>>> poly_x = astmodels.Polynomial2D(degree=2, c0_0=.2, c1_0=.11, c2_0=2.3, c0_1=.43, c0_
→˓2=.1, c1_1=.5)
>>> poly_x(1, 1)

3.639999

Models have their analytical inverse defined if it exists and accessible through the inverse property. An inverse model
can also be (re)defined by assigning to the inverse property.

>>> rotation = astmodels.Rotation2D(angle=23.4)
>>> rotation.inverse

<Rotation2D(angle=-23.4)>
>>> poly_x.inverse = astmodels.Polynomial2D(degree=3, **coeffs)

astropy.modeling also provides the means to combine models in various ways.

Model concatenation uses the & operator. Models are evaluated on independent inputs and results are concatenated.
The total number of inputs must be equal to the sum of the number of inputs of all models.

>>> shift_x = astmodels.Shift(-34.2)
>>> shift_y = astmodels.Shift(-120)
>>> model = shift_x & shift_y
>>> model(1, 1)

(-33.2, -119.0)

Model composition uses the | operator. The output of one model is passed as input to the next one, so the number of
outputs of one model must be equal to the number of inputs to the next one.

>>> model = poly_x | shift_x | astmodels.Scale(-2.3)
>>> model = shift_x & shift_y | poly_x

15.1. Package Index 101

http://astropy.readthedocs.org/en/latest/modeling/index.html
http://astropy.readthedocs.org/en/latest/modeling/index.html

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Two models, Mapping and Identity, are useful for axes manipulation - dropping or creating axes, or switching the
order of the inputs.

Mapping takes a tuple of integers and an optional number of inputs. The tuple represents indices into the inputs. For
example, to represent a 2D Polynomial distortion in x and y, preceded by a shift in both axes:

>>> poly_y = astmodels.Polynomial2D(degree=2, c0_0=.2, c1_0=1.1, c2_0=.023, c0_1=3, c0_
→˓2=.01, c1_1=2.2)
>>> model = shift_x & shift_y | astmodels.Mapping((0, 1, 0, 1)) | poly_x & poly_y
>>> model(1, 1)

(5872.03, 8465.401)

Identity takes an integer which represents the number of inputs to be passed unchanged. This can be useful when
one of the inputs does not need more processing. As an example, two spatial (V2V3) and one spectral (wavelength)
inputs are passed to a composite model which transforms the spatial coordinates to celestial coordinates and needs to
pass the wavelength unchanged.

>>> tan = astmodels.Pix2Sky_TAN()
>>> model = tan & astmodels.Identity(1)
>>> model(0.2, 0.3, 10**-6)

(146.30993247402023, 89.63944963170002, 1e-06)

Arithmetic Operators can be used to combine models. In this case each model is evaluated with all inputs and the
operator is applied to the results, e.g. model = m1 + m2 * m3 – m4/m5**m6

>>> model = shift_x + shift_y
>>> model(1)

-152.2

Create the reference file

The DistortionModel in jwst.datamodels is used as an example of how to create a reference file. Similarly data models
should be used to create other types of reference files as this process provides validation of the file structure.

>>> from stdatamodels.jwst.datamodels import DistortionModel
>>> dist = DistortionModel(model=model, strict_validation=True)
>>> dist.meta.description = "New distortion model"
>>> dist.meta.author = "INS team"
>>> dist.meta.useafter = "2012/01/21"
>>> dist.meta.instrument.name = "MIRI"
>>> dist .meta.instrument.detector = "MIRIMAGE"
>>> dist.meta.pedigree = "GROUND"
>>> dist.meta.reftype = "distortion"
>>> dist.meta.input_units = "pixel"
>>> dist.meta.output_units = "arcsec"
>>> dist.validate()
>>> dist.save("new_distortion.asdf")
'new_distortion.asdf'

102 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Save a transform to an ASDF file

asdf (http://asdf.readthedocs.io/en/latest/) is used to read and write reference files in ASDF (http://asdf-
standard.readthedocs.org/en/latest/) format. Once the model has been created using the rules in the above section,
it needs to be assigned to the ASDF tree.

>>> import asdf
>>> from asdf import AsdfFile
>>> f = AsdfFile()
>>> f.tree['model'] = model
>>> f.write_to('reffile.asdf')

The write_to command validates the file and writes it to disk. It will catch any errors due to inconsistent inputs/outputs
or invalid parameters.

To test the file, it can be read in again using the asdf.open() function:

>>> with asdf.open('reffile.asdf') as ff:
... model = ff.tree['model']
... model(1)

-152.2

WCS reference file information per EXP_TYPE

FGS_IMAGE, FGS_FOCUS, FGS_SKYFLAT, FGS_INTFLAT
reftypes: distortion
WCS pipeline coordinate frames: detector, v2v3, world
Implements: reference file provided by NIRISS team

MIR_IMAGE, MIR_TACQ, MIR_LYOT, MIR4QPM, MIR_CORONCAL
reftypes: distortion, filteroffset
WCS pipeline coordinate frames: detector, v2v3, world
Implements: CDP6 reference data delivery,
MIRI-TN-00070-ATC_Imager_distortion_CDP_Iss5.pdf

MIR_LRS-FIXEDSLIT, MIR_LRS-SLITLESS
reftypes: specwcs, distortion
WCS pipeline coordinate frames: detector, v2v3, world
Implements: CDP4 reference data delivery,
MIRI-TR-10020-MPI-Calibration-Data-Description_LRSPSFDistWave_v4.0.pdf

MIR_MRS
reftypes: distortion, specwcs, v2v3, wavelengthrange, regions
WCS pipeline coordinate frames: detector, miri_focal, xyan, v2v3, world
Implements: CDP4 reference data delivery,
MIRI-TN-00001-ETH_Iss1-3_Calibrationproduct_MRS_d2c.pdf

NRC_IMAGE, NRC_TSIMAGE, NRC_FOCUS, NRC_TACONFIRM, NRC_TACQ
reftypes: distortion, filteroffset
WCS pipeline coordinate frames: detector, v2v3, world
Implements: Distortion file created from TEL team data.

15.1. Package Index 103

http://asdf.readthedocs.io/en/latest/
http://asdf-standard.readthedocs.org/en/latest/

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NRC_WFSS, NRC_TSGRISM
reftypes: specwcs, distortion, filteroffset
WCS pipeline coordinate frames: grism_detector, detector, v2v3, world
Implements: reference files provided by NIRCam team

NIS_IMAGE, NIS_TACQ, NIS_TACONFIRM, NIS_FOCUS
reftypes: distortion, filteroffset
WCS pipeline coordinate frames: detector, v2v3, world
Implements: reference file provided by NIRISS team

NIS_WFSS
reftypes: specwcs, distortion, filteroffset
WCS pipeline coordinate frames: grism_detector, detector, v2v3, world
Implements: reference files provided by NIRISS team

NIS_SOSS
reftypes: distortion, specwcs
WCS pipeline coordinate frames: detector, v2v3, world
Implements: reference files provided by NIRISS team

NRS_FIXEDSLIT, NRS_MSASPEC, NRS_LAMP, NRS_BRIGHTOBJ
reftypes: fpa, camera, disperser, collimator, msa, wavelengthrange, fore, ote
WCS pipeline coordinate frames: detector, sca, bgwa, slit_frame, msa_frame, ote, v2v3, world
Implements: CDP 3 delivery

NRS_IFU
reftypes: fpa, camera, disperser, collimator, msa, wavelengthrange, fore, ote,
ifufore, ifuslicer, ifupost
WCS pipeline coordinate frames: detector, sca, bgwa, slit_frame, msa_frame, ote, v2v3, world
Implements: CDP 3 delivery

NRS_IMAGING, NRS_MIMF, NRS_BOTA, NRS_CONFIRM, NRS_TACONFIRM,
NRS_TASLIT, NRS_TACQ

reftypes: fpa, camera, disperser, collimator, msa, wavelengthrange, fore, ote
WCS pipeline coordinate frames: detector, sca, bgwa, slit_frame, msa_frame, ote, v2v3, world
Implements: CDP 3 delivery

jwst.assign_wcs Package

Functions

nrs_wcs_set_input(input_model, slit_name[, ...]) Returns a WCS object for a specific slit, slice or shutter.
nrs_ifu_wcs(input_model) Return a list of WCSs for all NIRSPEC IFU slits.
get_spectral_order_wrange(input_model, ...) Read the spectral order and wavelength range from the

reference file.
niriss_soss_set_input(model, order_number) Extract a WCS fr a specific spectral order.
update_fits_wcsinfo(datamodel[, ...]) Update datamodel.meta.wcsinfo based on a FITS

WCS + SIP approximation of a GWCS object.

104 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

nrs_wcs_set_input

jwst.assign_wcs.nrs_wcs_set_input(input_model, slit_name, wavelength_range=None, slit_y_low=None,
slit_y_high=None)

Returns a WCS object for a specific slit, slice or shutter.

Parameters
• input_model (JwstDataModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel))

– A WCS object for the all open slitlets in an observation.

• slit_name (int (https://docs.python.org/3/library/functions.html#int) or str
(https://docs.python.org/3/library/stdtypes.html#str)) – Slit.name of an open slit.

• wavelength_range (list (https://docs.python.org/3/library/stdtypes.html#list)) – Wave-
length range for the combination of filter and grating.

Returns
wcsobj – WCS object for this slit.

Return type
WCS (https://gwcs.readthedocs.io/en/stable/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS)

nrs_ifu_wcs

jwst.assign_wcs.nrs_ifu_wcs(input_model)
Return a list of WCSs for all NIRSPEC IFU slits.

Parameters
input_model (jwst.datamodels.JwstDataModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel))
– The data model. Must have been through the assign_wcs step.

get_spectral_order_wrange

jwst.assign_wcs.get_spectral_order_wrange(input_model, wavelengthrange_file)
Read the spectral order and wavelength range from the reference file.

Parameters
• input_model (JwstDataModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel))

– The input data model.

• wavelengthrange_file (str (https://docs.python.org/3/library/stdtypes.html#str)) – Ref-
erence file of type “wavelengthrange”.

niriss_soss_set_input

jwst.assign_wcs.niriss_soss_set_input(model, order_number)
Extract a WCS fr a specific spectral order.

Parameters
• model (ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel))

– An instance of an ImageModel

15.1. Package Index 105

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://gwcs.readthedocs.io/en/stable/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel
https://docs.python.org/3/library/stdtypes.html#str
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• order_number (int (https://docs.python.org/3/library/functions.html#int)) – the spectral
order

Return type
WCS - the WCS corresponding to the spectral order.

update_fits_wcsinfo

jwst.assign_wcs.update_fits_wcsinfo(datamodel, max_pix_error=0.01, degree=None, npoints=32,
crpix=None, projection='TAN', imwcs=None, **kwargs)

Update datamodel.meta.wcsinfo based on a FITS WCS + SIP approximation of a GWCS object. By default,
this function will approximate the datamodel’s GWCS object stored in datamodel.meta.wcs but it can also
approximate a user-supplied GWCS object when provided via the imwcs parameter.

The default mode in using this attempts to achieve roughly 0.01 pixel accuracy over the entire image.

This function uses the to_fits_sip() (https://gwcs.readthedocs.io/en/stable/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS.to_fits_sip)
to create FITS WCS representations of GWCS objects. Only most important to_fits_sip()
(https://gwcs.readthedocs.io/en/stable/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS.to_fits_sip)
parameters are exposed here. Other arguments to to_fits_sip()
(https://gwcs.readthedocs.io/en/stable/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS.to_fits_sip) can be passed
via kwargs - see “Other Parameters” section below. Please refer to the documentation of to_fits_sip()
(https://gwcs.readthedocs.io/en/stable/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS.to_fits_sip) for more details.

Warning: This function modifies input data model’s datamodel.meta.wcsinfo members.

Parameters
• datamodel (ImageModel) – The input data model for imaging or WFSS mode whose
meta.wcsinfo field should be updated from GWCS. By default, datamodel.meta.
wcs is used to compute FITS WCS + SIP approximation. When imwcs is not None
(https://docs.python.org/3/library/constants.html#None) then computed FITS WCS will be
an approximation of the WCS provided through the imwcs parameter.

• max_pix_error (float (https://docs.python.org/3/library/functions.html#float),
optional) – Maximum allowed error over the domain of the pixel array. This error
is the equivalent pixel error that corresponds to the maximum error in the output coordinate
resulting from the fit based on a nominal plate scale.

• degree (int (https://docs.python.org/3/library/functions.html#int), iterable,
None, optional) – Degree of the SIP polynomial. Default value None
(https://docs.python.org/3/library/constants.html#None) indicates that all allowed de-
gree values ([1...6]) will be considered and the lowest degree that meets accuracy
requerements set by max_pix_error will be returned. Alternatively, degree can be an
iterable containing allowed values for the SIP polynomial degree. This option is similar
to default None (https://docs.python.org/3/library/constants.html#None) but it allows caller
to restrict the range of allowed SIP degrees used for fitting. Finally, degree can be an
integer indicating the exact SIP degree to be fit to the WCS transformation. In this case
max_pixel_error is ignored.

• npoints (int (https://docs.python.org/3/library/functions.html#int), optional) – The
number of points in each dimension to sample the bounding box for use in the SIP fit. Min-
imum number of points is 3.

106 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#int
https://gwcs.readthedocs.io/en/stable/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS.to_fits_sip
https://gwcs.readthedocs.io/en/stable/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS.to_fits_sip
https://gwcs.readthedocs.io/en/stable/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS.to_fits_sip
https://gwcs.readthedocs.io/en/stable/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS.to_fits_sip
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• crpix (list (https://docs.python.org/3/library/stdtypes.html#list) of float
(https://docs.python.org/3/library/functions.html#float), None, optional) – Coordi-
nates (1-based) of the reference point for the new FITS WCS. When not provided, i.e., when
set to None (https://docs.python.org/3/library/constants.html#None) (default) the reference
pixel already specified in wcsinfo will be re-used. If wcsinfo does not contain crpix
information, then the reference pixel will be chosen near the center of the bounding box for
axes corresponding to the celestial frame.

• projection (str, Pix2SkyProjection, optional) – Projection to be used for the
created FITS WCS. It can be specified as a string of three characters specifying a
FITS projection code from Table 13 in Representations of World Coordinates in FITS
(https://doi.org/10.1051/0004-6361:20021326) (Paper I), Greisen, E. W., and Calabretta, M.
R., A & A, 395, 1061-1075, 2002. Alternatively, it can be an instance of one of the astropy’s
Pix2Sky_* (https://docs.astropy.org/en/stable/modeling/reference_api.html#module-
astropy.modeling.projections) projection models inherited from Pix2SkyProjection.

• imwcs (gwcs.WCS, None, optional) – Imaging GWCS object for WFSS mode whose FITS
WCS approximation should be computed and stored in the datamodel.meta.wcsinfo
field. When imwcs is None (https://docs.python.org/3/library/constants.html#None) then
WCS from datamodel.meta.wcs will be used.

Warning: Used with WFSS modes only. For other modes, supplying a different WCS
from datamodel.meta.wcs will result in the GWCS and FITS WCS descriptions to
diverge.

• max_inv_pix_error (float (https://docs.python.org/3/library/functions.html#float),
None, optional) – Maximum allowed inverse error over the domain
of the pixel array in pixel units. With the default value of None
(https://docs.python.org/3/library/constants.html#None) no inverse is generated.

• inv_degree (int (https://docs.python.org/3/library/functions.html#int), iterable,
None, optional) – Degree of the SIP polynomial. Default value None
(https://docs.python.org/3/library/constants.html#None) indicates that all allowed de-
gree values ([1...6]) will be considered and the lowest degree that meets accuracy
requerements set by max_pix_error will be returned. Alternatively, degree can be an
iterable containing allowed values for the SIP polynomial degree. This option is similar
to default None (https://docs.python.org/3/library/constants.html#None) but it allows caller
to restrict the range of allowed SIP degrees used for fitting. Finally, degree can be an
integer indicating the exact SIP degree to be fit to the WCS transformation. In this case
max_inv_pixel_error is ignored.

• bounding_box (tuple (https://docs.python.org/3/library/stdtypes.html#tuple), None,
optional) – A pair of tuples, each consisting of two numbers Represents the range of pixel
values in both dimensions ((xmin, xmax), (ymin, ymax))

• verbose (bool (https://docs.python.org/3/library/functions.html#bool), optional) –
Print progress of fits.

Return type
FITS header with all SIP WCS keywords

Raises
ValueError (https://docs.python.org/3/library/exceptions.html#ValueError) – If the WCS is not
at least 2D, an exception will be raised. If the specified accuracy (both forward and inverse, both
rms and maximum) is not achieved an exception will be raised.

15.1. Package Index 107

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://doi.org/10.1051/0004-6361:20021326
https://docs.astropy.org/en/stable/modeling/reference_api.html#module-astropy.modeling.projections
https://docs.astropy.org/en/stable/modeling/reference_api.html#module-astropy.modeling.projections
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Notes

Use of this requires a judicious choice of required accuracies. Attempts to use higher degrees (~7 or higher) will
typically fail due to floating point problems that arise with high powers.

For more details, see to_fits_sip() (https://gwcs.readthedocs.io/en/stable/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS.to_fits_sip).

Classes

AssignWcsStep([name, parent, config_file, ...]) AssignWcsStep: Create a gWCS object and store it in
Model.meta.

AssignWcsStep

class jwst.assign_wcs.AssignWcsStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

AssignWcsStep: Create a gWCS object and store it in Model.meta.

Reference file types:

camera Camera model (NIRSPEC) collimator Collimator Model (NIRSPEC) disperser Disperser model (NIR-
SPEC) distortion Spatial distortion model (FGS, MIRI, NIRCAM, NIRISS) filteroffset Filter offsets (MIRI Im-
ager) fore Transform through the FORE optics (NIRSPEC) fpa Transform in the FPA plane (NIRSPEC) ifufore
Transforms from the MSA plane to the plane of the IFU slicer (NIRSPEC) ifupost Transforms from the slicer
plane to the MSA plane (NIRSPEC) ifuslicer Metrology of the IFU slicer (NIRSPEC) msa Metrology of the
MSA plane (NIRSPEC) ote Transform through the Optical Telescope Element (NIRSPEC) specwcs Wavelength
calibration models (MIRI, NIRCAM, NIRISS) regions Stores location of the regions on the detector (MIRI)
wavelengthrange Typical wavelength ranges (MIRI, NIRCAM, NIRISS, NIRSPEC)

Parameters
input (ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel),
IFUImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel),
CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel))
– Input exposure.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

108 Chapter 15. Package Documentation

https://gwcs.readthedocs.io/en/stable/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS.to_fits_sip
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input, *args, **kwargs) This is where real work happens.

Attributes Documentation

class_alias = 'assign_wcs'

reference_file_types = ['distortion', 'filteroffset', 'specwcs', 'regions',
'wavelengthrange', 'camera', 'collimator', 'disperser', 'fore', 'fpa', 'msa', 'ote',
'ifupost', 'ifufore', 'ifuslicer']

spec

sip_approx = boolean(default=True) # enables SIP approximation for imaging␣
→˓modes.
sip_max_pix_error = float(default=0.1) # max err for SIP fit, forward.
sip_degree = integer(max=6, default=None) # degree for forward SIP fit, None␣
→˓to use best fit.
sip_max_inv_pix_error = float(default=0.1) # max err for SIP fit, inverse.
sip_inv_degree = integer(max=6, default=None) # degree for inverse SIP fit,␣
→˓None to use best fit.
sip_npoints = integer(default=12) # number of points for SIP
slit_y_low = float(default=-.55) # The lower edge of a slit.
slit_y_high = float(default=.55) # The upper edge of a slit.

Methods Documentation

process(input, *args, **kwargs)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

15.1. Package Index 109

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Class Inheritance Diagram

AssignWcsStepJwstStepStep

15.1.7 Associations

Association Overview

What are Associations?

Associations are basically just lists of things, mostly exposures, that are somehow related. With respect to JWST and
the Data Management System (DMS), associations have the following characteristics:

• Relationships between multiple exposures are captured in an association.

• An association is a means of identifying a set of exposures that belong together and may be dependent upon one
another.

• The association concept permits exposures to be calibrated, archived, retrieved, and reprocessed as a set rather
than as individual objects.

• For each association, DMS will generate the most combined and least combined data products.

Associations and JWST

The basic chunk in which science data arrives from the observatory is termed an exposure. An exposure contains the
data from a single set of integrations per detector per instrument. In general, it takes many exposures to make up a
single observation, and a whole program is made up of a large number of observations.

On first arrival, an exposure is termed to be at Level1b: The only transformation that has occurred is the extraction of the
science data from the observatory telemetry into a FITS file. At this point, the science exposures enter the calibration
pipeline.

The pipeline consists of three stages: Stage 1, Stage 2, and Stage 3 processing. Stage 2 processing is the calibration
necessary to remove instrumental effects from the data. The resulting files contain flux and spatially calibrated data,
called Stage 2b data. The information is still in individual exposures.

Note: Older documentation and code may refer to the stages as levels. They are synonymous.

To be truly useful, the exposures need to be combined and, in the case of multi-object spectrometry, separated, into
data that is source-oriented. This type of calibration is called Stage 3 processing. Due to the nature of the individ-
ual instruments, observing modes, and the interruptibility of the observatory itself, how to group the right exposures
together is not straight-forward.

Enter the Association Generator. Given a set of exposures, called the Association Pool, and a set of rules found in
an Association Registry, the generator groups the exposures into individual associations. These associations are then

110 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

used as input to the Stage 3 calibration steps to perform the transformation from exposure-based data to source-based,
high(er) signal-to-noise data.

In short, Stage 2 and Stage 3 associations are created running the asn_generate task on an AssociationPool using
the default Level2 and Level 3 association rules to produce Stage 2 and Stage 3 associations. When retrieving the data
from the archive, users will find the list of associated data in JSON files that are submitted together with the requested
Stage 2 or Stage 3 data.

Association Pools

The information about what data will be associated is constructed with the information derived from the Astronomer
Proposal Tool and the rules on how data should be associated that are defined by the instrument teams. All the infor-
mation from a single proposal is captured in a single file known as the Association Pool.

Usage

Users should not need to run the generator. Instead, it is expected that one edits an already existing association that
accompanies the user’s JWST data. Care should be taken if editing an association file. Keep in mind all input files listed
in the association file are in the same directory as the association file and no path information can be put in expname,
only the file name. Or, if need be, an association can be created based on the existing Stage 2 or Stage 3 examples. If,
however, the user does need to run the generator, Association Generator documentation will be helpful.

Once an association is in-hand, one can pass it as input to a pipeline routine. For example:

% strun calwebb_image3 jw12345-o001_20210311t170002_image3_001_asn.json

Programmatically, to read in an Association, one uses the load_asn() function:

from jwst.associations import load_asn

with open('jw12345-o001_20210311t170002_image3_001_asn.json') as fp:
asn = load_asn(fp)

What exactly is returned depends on what the association is. However, for all Stage 2 and Stage 3 associations, a Python
dict is returned, whose structure matches that of the JSON or YAML file. Continuing from the above example, the
following shows how to access the first exposure file name of a Stage 3 associations:

exposure = asn['products'][0]['members'][0]['expname']

Since most JWST data are some form of a JWST Data Model an association can be opened with datamod-
els.open (https://stdatamodels.readthedocs.io/en/latest/jwst/datamodels/models.html#datamodels-open) which returns
a ModelContainer. All members of the association that can be represented as a DataModel, will be available in the
ModelContainer as their respective DataModels.

from stdatamodels.jwst.datamodels import open as dm_open
container_model = dm_open('jw12345-o001_20210311t170002_image3_001_asn.json')

15.1. Package Index 111

https://stdatamodels.readthedocs.io/en/latest/jwst/datamodels/models.html#datamodels-open
https://stdatamodels.readthedocs.io/en/latest/jwst/datamodels/models.html#datamodels-open

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Utilities

There are a number of utilities to create user-specific associations that are documented under Association Commands.

JWST Associations

JWST Conventions

Association Naming

When produced through the ground processing, all association files are named according to the following scheme:

jwPPPPP-TNNNN_YYYYMMDDtHHMMSS_ATYPE_MMMMM_asn.json

where:

• jw: All JWST-related products begin with jw

• PPPPP: 5 digit proposal number

• TNNNN: Candidate Identifier. Can be one of the following:

– oNNN: Observation candidate specified by the letter o followed by a 3 digit number.

– c1NNN: Association candidate, specified by the letter ‘c’, followed by a number starting at 1001.

– a3NNN: Discovered whole program associations, specified by the letter ‘a’, followed by a number starting
at 3001

– rNNNN: Reserved for future use. If you see this in practice, file an issue to have this document updated.

• YYYYMMDDtHHMMSS: This is generically referred to as the version_id. DMS specifies this as a timestamp. Note:
When used outside the workflow, this field is user-specifiable.

• ATYPE: The type of association. See Association Types

• MMMMM: A counter for each type of association created.

Association Types

Each association is intended to make a specific science product. The type of science product is indicated by the ATYPE
field in the association file name (see Association Naming), and in the asn_type meta keyword of the association itself
(see Association Meta Keywords).

The pipeline uses this type as the key to indicate which Level 2 or Level 3 pipeline module to use to process this
association.

The current association types are:

• ami3: Intended for calwebb_ami3 processing

• coron3: Intended for calwebb_coron3 processing

• image2: Intended for calwebb_image2 processing

• image3: Intended for calwebb_image3 processing

• nrslamp-spec2: Intended for calwebb_spec2 processing

• spec2: Intended for calwebb_spec2 processing

112 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• spec3: Intended for calwebb_spec3 processing

• tso3: Intended for calwebb_tso3 processing

• tso-image2: Intended for calwebb_image2 processing

• tso-spec2: Intended for calwebb_spec2 processing

• wfs-image2: Intended for calwebb_image2 processing

• wfs-image3: Intended for calwebb_wfs-image3 processing

Field Guide to File Names

The high-level distinctions between stage 2, stage 3, exposure-centric, and target-centric files can be determined by the
following file patterns. These patterns are not intended to fully define all the specific types of files there are. However,
these are the main classifications, from which the documentation for the individual calibrations steps and pipelines will
describe any further details.

The most general regex matches all files that have been produced by Stage 3 processing:

.+[aocr][0-9]{3:4}.+

The following regexes differentiate between exposure-centric and target-centric files.

• Files containing exposure-centric data

The following regex matches files names produced by either Stage 2 or 3 calibration and containing exposure-
centric data:

jw[0-9]{11}_[0-9]{5}_[0-9]{5}_.+\.fits

• Files containing target-centric data

The following regex matches file names produced by Stage 3 calibration and containing target-centric data:

jw[0-9]{5}-[aocr][0-9]{3:4}_.+

Science Data Processing Workflow

General Workflow for Generating Association Products

See Associations and JWST for an overview of how JWST uses associations. This document describes how associations
are used by the ground processing system to execute the stage 2 and stage 3 pipelines.

Up to the initial calibration step calwebb_detector1, the science exposures are treated individually. However, starting at
the stage 2 calibration step, exposures may need other exposures in order to be further processed. Instead of creating a
single monolithic pipeline, the workflow uses the associations to determine what pipeline should be executed and when
to execute them. In the figure below, this wait-then-execute process is represented by the workflow trigger. The
workflow reads the contents of an association file to determine what exposures, and possibly other files, are needed to
continue processing. The workflow then waits until all exposures exist. At that point, the related calibration pipeline is
executed with the association as input.

With this finer granularity, the workflow can run more processes parallel, and allows the operators deeper visibility into
the progression of the data through the system.

The figure represents the following workflow:

15.1. Package Index 113

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Fig. 1: General workflow through stage 2 and stage 3 processing
114 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• Data comes down from the observatory and is converted to the raw FITS files.

• calwebb_detector1 is run on each file to convert the data to the countrate format.

• In parallel with calwebb_detector1, the Pool Maker collects the list of downloaded exposures and places them in
the Association Pool.

• When enough exposures have been download to complete an Association Candidate, such as an Observation
Candidate, the Pool Maker calls the Association Generator, asn_generate, to create the set of associations based
on that Candidate.

• For each association generated, the workflow creates a file watch list from the association, then waits until all
exposures needed by that association come into existence.

• When all exposures for an association exist, the workflow then executes the corresponding pipeline, passing the
association as input.

Wide Field Slitless Spectroscopy

In most cases, the data will flow from stage 2 to stage 3, completing calibration. However, more complicated situations
can be handled by the same wait-then-execute process. One particular case is for the Wide Field Slitless Spectrometry
(WFSS) modes. The specific flow is show in the figure below:

For WFSS data, at least two observations are made, one consisting of a direct image of the field-of-view (FOV), and a
second where the FOV is dispersed using a grism. The direct image is first processed through stage 3. At the stage 3
stage, a source catalog of objects found in the image, and a segmentation map, used to record the minimum bounding
box sizes for each object, are generated. The source catalog is then used as input to the stage 2 processing of the spectral
data. This extra link between the two major stages is represented by the Segment & Catalog file set, shown in red
in the diagram. The stage 2 association grism_spec2_asn not only lists the needed countrate exposures, but also the
catalog file produced by the stage 3 image processing. Hence, the workflow knows to wait for this file before continuing
the spectral processing.

Stage 2 Associations: Technical Specifications

Logical Structure

All stage 2 associations have the following structure. The structure is defined and enforced by the stage 2 schema.

• Informational Meta Keywords

• List of products, each consisting of

– Output product name

– List of exposure members, each consisting of

∗ Filename of the exposure that is a member of this association

∗ Type of exposure

∗ If present, information about errors from the observatory log

15.1. Package Index 115

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Fig. 2: WFSS workflow
116 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Example Association

The following example will be used to explain the contents of an association:

{
"asn_type": "image2",
"asn_rule": "candidate_Asn_Lv2Image",
"version_id": "20210610t121508",
"code_version": "1.2.3",
"degraded_status": "No known degraded exposures in association.",
"program": "00623",
"constraints": "DMSAttrConstraint({'name': 'program', 'sources': ['program'], 'value

→˓': '623'})\nDMSAttrConstraint({'name': 'is_tso', 'sources': ['tsovisit'], 'value':␣
→˓None})\nDMSAttrConstraint({'name': 'instrument', 'sources': ['instrume'], 'value':
→˓'miri'})\nDMSAttrConstraint({'name': 'detector', 'sources': ['detector'], 'value':
→˓'mirimage'})\nDMSAttrConstraint({'name': 'opt_elem', 'sources': ['filter'], 'value':
→˓'f1130w'})\nDMSAttrConstraint({'name': 'opt_elem2', 'sources': ['pupil', 'grating'],
→˓'value': None})\nDMSAttrConstraint({'name': 'opt_elem3', 'sources': ['fxd_slit'],
→˓'value': None})\nDMSAttrConstraint({'name': 'subarray', 'sources': ['subarray'], 'value
→˓': 'brightsky'})\nDMSAttrConstraint({'name': 'channel', 'sources': ['channel'], 'value
→˓': None})\nDMSAttrConstraint({'name': 'slit', 'sources': ['fxd_slit'], 'value': None})\
→˓nConstraint_Image_Science({'name': 'exp_type', 'sources': ['exp_type'], 'value': 'mir_
→˓image'})\nConstraint_Single_Science({'name': 'single_science', 'value': False})\
→˓nDMSAttrConstraint({'name': 'asn_candidate', 'sources': ['asn_candidate'], 'value': \"\
→˓\\\('o037',\\\\ 'observation'\\\\)\"})",

"asn_id": "o037",
"asn_pool": "jw00623_20210610t121508_pool",
"target": "9",
"products": [

{
"name": "jw00623037001_02101_00001_mirimage",
"members": [

{
"expname": "jw00623037001_02101_00001_mirimage_rate.fits",
"exptype": "science",
"exposerr": "null"

}
]

}
]

}

Association Meta Keywords

The following are the informational, meta keywords of an association.

asn_id required
The association id. The id is what appears in the Association Naming

asn_pool required
Association pool from which this association was created.

asn_rule optional
Name of the association rule which created this association.

15.1. Package Index 117

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

asn_type optional
The type of association represented. See Association Types

code_version optional
The version of the generator that created this association. Typically this is the version of the jwst python package.

constraints optional
List of constraints used by the association generator to create this association. Format and contents are determined
by the defining rule.

degraded_status optional
If any of the included members have an actual issue, as reported by the exposerr keyword, degraded_status
will have the value One or more members have an error associated with them. If no errors are in-
dicated, the value will be No known degraded exposures in association.

program optional
Program number for which this association was created.

target optional
Target ID for which this association refers to. JWST currently uses the TARGETID header keyword in the stage
2 exposure files, but there is no formal restrictions on value.

version_id optional
Version identifier. DMS uses a time stamp with the format yyyymmddthhmmss Can be None or NULL

products Keyword

A list of products that would be produced by this association. For stage 2, each product is an exposure. Each product
should have one science member, the exposure on which the stage 2 processing will occur.

Association products have two components:

name optional
The string template to be used by stage 2 processing tasks to create the output file names. The product name, in
general, is a prefix on which the individual pipeline and step modules will append whatever suffix information is
needed.

If not specified, the stage 2 processing modules will create a name based off the name of the science member.

members required
This is a list of the exposures to be used by the stage 2 processing tasks. This keyword is explained in detail in
the next section.

members Keyword

members is a list of dictionaries, one for each member exposure in the association. Each member has the following
keywords.

expname required
The exposure file name. This must be a filename only, with no path. This file must be in the same directory
as the association file, so path is not needed. If path data is included, an exception is raised when loading the
association file.

exptype required
Type of information represented by the exposure. Possible values are as follows. Note that this is not the same
as the exposure ``EXP_TYPE`` header keyword.

• science: Primary science exposure. For each product, only one exposure can be science.

118 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• background: Background exposure to subtract.

• imprint: Imprint exposure to subtract.

• sourcecat: The catalog of sources to extract spectra for. Usually produced by calwebb_image3 for wide-
field slitless spectroscopy.

• segmap: The 2D segmentation map used to produce the source catalog. Usually produced by cal-
webb_image3 for wide-field slitless spectroscopy.

• direct_image: The direct image used to produce the source catalog.

Editing the member list

As discussed previously, a member is made up of a number of keywords, formatted as follows:

{
"expname": "jw_00003_cal.fits",
"exptype": "science",

},

To remove a member, simply delete its corresponding set.

To add a member, one need only specify the two required keywords:

{
"expname": "jw_00003_cal.fits",
"exptype": "science"

},

Stage 3 Associations: Technical Specifications

Logical Structure

Independent of the actual format, all stage 3 associations have the following structure. Again, the structure is defined
and enforced by the stage 3 schema

• Informational Meta Keywords

• List of products, each consisting of

– Output product name

– List of exposure members, each consisting of

∗ Filename of the exposure that is a member of this association

∗ Type of exposure

∗ If present, information about errors from the observatory log

∗ If present, the Association Candidates this exposure belongs to

15.1. Package Index 119

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Example Association

The following example will be used to explain the contents of an association:

{
"degraded_status": "No known degraded exposures in association.",
"version_id": "20160826t131159",
"asn_type": "image3",
"asn_id": "c3001",
"constraints": "Constraints:\n opt_elem2: CLEAR\n detector: (?!NULL).+\n ␣

→˓target_name: 1\n exp_type: NRC_IMAGE\n wfsvisit: NULL\n instrument: NIRCAM\n ␣
→˓ opt_elem: F090W\n program: 99009",

"asn_pool": "mega_pool",
"asn_rule": "Asn_Image",
"target": "1",
"program": "99009",
"products": [

{
"name": "jw99009-a3001_t001_nircam_f090w",
"members": [

{
"exposerr": null,
"expname": "jw_00001_cal.fits",
"asn_candidate": "[('o001', 'observation')]",
"exptype": "science"

},
{

"exposerr": null,
"expname": "jw_00002_cal.fits",
"asn_candidate": "[('o001', 'observation')]",
"exptype": "science"

}
]

}
]

}

Association Meta Keywords

The following are the informational, meta keywords of an association.

asn_id required
The association id. The id is what appears in the Association Naming

asn_pool required
Association pool from which this association was created.

asn_rule optional
Name of the association rule which created this association.

asn_type optional
The type of association represented. See Association Types

code_version optional
The version of the generator that created this association. Typically this is the version of the jwst python package.

120 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

constraints optional
List of constraints used by the association generator to create this association. Format and contents are determined
by the defining rule.

degraded_status optional
If any of the included members have an actual issue, as reported by the exposerr keyword, degraded_status
will have the value One or more members have an error associated with them. If no errors are in-
dicated, the value will be No known degraded exposures in association.

program optional
Program number for which this association was created.

target optional
Target ID to which this association refers. JWST currently uses the TARGETID header keyword in the stage 2
exposure files, but there are no formal restrictions on value.

version_id optional
Version identifier. DMS uses a time stamp with the format yyyymmddthhmmss Can be None or NULL

products Keyword

Association products have two components:

name optional
The string template to be used by stage 3 processing tasks to create the output file names. The product name, in
general, is a prefix on which the individual pipeline and step modules will append whatever suffix information is
needed.

If not specified, the stage 3 processing modules will create a name root.

members required
This is a list of the exposures to be used by the stage 3 processing tasks. This keyword is explained in detail in
the next section.

members Keyword

members is a list of dictionaries, one for each member exposure in the association. Each member has the following
keywords.

expname required
The exposure file name

exptype required
Type of information represented by the exposure. Possible values are

• science: The primary science exposures. There is usually more than one since stage 3 calibration in-
volves combining multiple science exposures. However, at least one exposure in an association needs to be
science.

• background: Exposures used for background subtraction.

• psf: Exposures that should be considered PSF references for coronagraphic and AMI calibration.

exposerr optional
If there was some issue the occurred on the observatory that may have affected this exposure, that condition is
listed here. Otherwise the value is null

asn_candidate optional
Contains the list of association candidates this exposure belongs to.

15.1. Package Index 121

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Editing the member list

As discussed previously, a member is made up of a number of keywords, formatted as follows:

{
"expname": "jw_00003_cal.fits",
"exptype": "science",
"exposerr": null,
"asn_candidate": "[('o001', 'observation')]"

},

To remove a member, simply delete its corresponding set.

To add a member, one need only specify the two required keywords:

{
"expname": "jw_00003_cal.fits",
"exptype": "science"

},

Stage 2 Associations: Rules

The following table describes exactly which exposures will go through any type of stage 2 processing, such as
Spec2Pipeline or Image2Pipeline.

Table 1: Exposure Modes for Stage 2 Processing

EXP_TYPE Member Exposure Type Specials Association Type
FGS_ACQ1 tracking N/A N/A
FGS_ACQ2 tracking N/A N/A
FGS_DARK dark N/A N/A
FGS_FINEGUIDE tracking N/A N/A
FGS_FOCUS science N/A image2
FGS_ID-IMAGE tracking N/A N/A
FGS_ID-STACK tracking N/A N/A
FGS_IMAGE science N/A image2
FGS_INTFLAT flat N/A N/A
FGS_SKYFLAT flat N/A N/A
FGS_TRACK tracking N/A N/A

MIR_4QPM psf PSF image2
MIR_4QPM science N/A image2
MIR_CORONCAL science N/A image2
MIR_DARKIMG dark N/A N/A
MIR_DARKMRS dark N/A N/A
MIR_FLATIMAGE flat N/A N/A
MIR_FLATIMAGE-EXT flat N/A N/A
MIR_FLATMRS flat N/A N/A
MIR_FLATMRS-EXT flat N/A N/A
MIR_IMAGE science N/A image2
MIR_LRS-FIXEDSLIT background BACKGROUND spec2
MIR_LRS-FIXEDSLIT science N/A spec2

continues on next page

122 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Table 1 – continued from previous page
EXP_TYPE Member Exposure Type Specials Association Type
MIR_LRS-SLITLESS background BACKGROUND spec2
MIR_LRS-SLITLESS science N/A spec2
MIR_LYOT psf PSF image2
MIR_LYOT science N/A image2
MIR_MRS background BACKGROUND spec2
MIR_MRS science N/A spec2
MIR_TACQ target_acquisition N/A image2

NIS_AMI psf PSF image2
NIS_AMI science N/A image2
NIS_DARK science N/A N/A
NIS_EXTCAL science N/A N/A
NIS_FOCUS science N/A image2
NIS_IMAGE science N/A images
NIS_LAMP science N/A N/A
NIS_SOSS science N/A spec2
NIS_TACONFIRM target_acquisition N/A image2
NIS_TACQ target_acquisition N/A image2
NIS_WFSS science N/A spec2

NRC_CORON psf PSF image2
NRC_CORON science N/A image2
NRC_DARK dark N/A N/A
NRC_FLAT flat N/A N/A
NRC_FOCUS science N/A/ image2
NRC_GRISM science N/A N/A
NRC_IMAGE science N/A image2
NRC_LED science N/A N/A
NRC_TACONFIRM target_acquisition N/A image2
NRC_TACQ target_acquisition N/A image2
NRC_TSGRISM science N/A tso-spec2
NRC_TSIMAGE science N/A tso-image2
NRC_WFSS science N/A spec2

NRS_AUTOFLAT nrs_autoflat N/A image2
NRS_AUTOWAVE nrs_autowave N/A image2
NRS_BRIGHTOBJ science N/A spec2
NRS_CONFIRM science N/A image2
NRS_DARK dark N/A N/A
NRS_FIXEDSLIT background BACKGROUND spec2
NRS_FIXEDSLIT science N/A spec2
NRS_FOCUS science N/A image2
NRS_IFU background BACKGROUND spec2
NRS_IFU imprint IMPRINT spec2
NRS_IFU science N/A spec2
NRS_IMAGE science N/A image2
NRS_LAMP1 science N/A nrslamp-spec2
NRS_MIMF science N/A wfs-image2
NRS_MSASPEC imprint IMPRINT spec2
NRS_MSASPEC science N/A spec2

continues on next page

15.1. Package Index 123

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Table 1 – continued from previous page
EXP_TYPE Member Exposure Type Specials Association Type
NRS_MSATA target_acquisition N/A image2
NRS_TACONFIRM target_acquisition N/A image2
NRS_VERIFY science N/A image2
NRS_WATA target_acquisition N/A image2

Footnotes

Notes

Column definitions

• EXP_TYPE : The exposure type.

• Member Exposure Type: How the association generator will classify the exposure.

• Specials : The association rule modifications to handle the exposure.

• Association Type : Association type created.

More about Specials: Many exposures that are not directly science, such as backgrounds, are primarily used as auxiliary
members for other science products. However, they are also often calibrated as if they were science products themselves.
In these situations, a special association rule is created to produce the necessary associations.

History

The original content of this page is from github issue #1188 (https://github.com/spacetelescope/jwst/issues/1188).

Stage3 Associations: Rules

Data Grouping

JWST exposures are identified and grouped in a specific order, as follows:

• program

The entirety of a science observing proposal is contained within a program. All observations, regardless of
instruments, pertaining to a proposal are identified by the program id.

• observation

A set of visits, any corresponding auxiliary exposures, such as wavelength calibration, using a specific instrument.
An observation does not necessarily contain all the exposures required for a specific observation mode. Also,
exposures within an observation can be taken with different optical configurations of the same instrument

• visit

A set of exposures which sharing the same source, or target, whether that would be external to the observatory
or internal to the instrument. The can be many visits for the same target, and visits to different targets can be
interspersed among themselves.

1 Association creation is heavily dependent upon other parameters such as LAMP, OPMODE, and GRATING.

124 Chapter 15. Package Documentation

https://github.com/spacetelescope/jwst/issues/1188

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• group

A set of exposures that share the same observatory configuration. This is basically a synchronization point
between observatory moves and parallel instrument observations.

• sequence

TBD

• activity

A set of exposures that are to be taken atomically. All exposures within an activity are associated with each other
and have been taken consecutively.

• exposure

The basic unit of science data. Starting at stage 1, an exposure contains a single integrations of a single detector
from a single instrument for a single snap. Note that a single integration actually is a number of readouts of the
detector during the integration.

Rules

All rules have as their base class DMS_Level3_Base This class defines the association structure, enforces the DMS
naming conventions, and defines the basic validity checks on the Level3 associations.

Along with the base class, a number of mixin classes are defined. These mixins define some basic constraints that are
found in a number of rules. An example is the AsnMixin_Base, which provides the constraints that ensure that the
program identification and instrument are the same in each association.

The rules themselves are subclasses of AsnMixin_Base and whatever other mixin classes are necessary to build the
rule. Conforming to the Class Naming scheme, all the final Level3 association rules begin with Asn_. An example is
the Asn_Image rule.

The following figure shows the above relationships. Note that this diagram is not meant to be a complete listing.

Design

Association Design

As introduced in the Association Overview, the figure above shows all the major players used in generating associations.
Since this section will be describing the code design, the figure below is the overview but using the class names involved.

Generator

Algorithm

The generator conceptual workflow is show below:

This workflow is encapsulated in the generate() function. Each member is first checked to see if it belongs to an
already existing association. If so, it is added to each association it matches with. Next, the set of association rules are
check to see if a new association, or associations, are created by the member. However, only associations that have not
already been created are checked for. This is to prevent cyclical creation of associations.

As discussed in Associations and Rules, associations are Python classes, often referred to as association rules,
and their instantiations, referred to as associations. An association is created by calling the Association.
create class method for each association rule. If the member matches the rule, an association is returned. Each

15.1. Package Index 125

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Fig. 3: Level3 Rule Class Inheritance

Fig. 4: Association Generator Overview

126 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Fig. 5: Association Class Relationship overview

Fig. 6: Generator Conceptual Workflow

15.1. Package Index 127

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

defined rule tried. This process of checking whether a member would create any associations is encapsulated in the
AssociationRegistry.match method

Conversely, to see if a member belongs to an already existing association, an attempt is made to add the member using
the Association.add method. If the addition succeeds, the member has been added to the association instance. The
generator uses match_member function to loop through its list of existing associations.

Output

Before exiting, generate() checks the Association.is_valid property of each association to ensure that an asso-
ciation has all the members it is required to have. For example, if a JWST coronagraphic observation was performed,
but the related PSF observation failed, the coronagraphic association would be marked invalid.

Once validation is complete, generate() returns a 2-tuple. The first item is a list of the associations created. The
second item is another AssociationPool containing all the members that did not get added to any association.

Member Attributes that are Lists

As mentioned in Association Pool, most member attributes are simply treated as strings. The exception is when an
attribute value looks like a list:

[element, ...]

When this is the case, a mini pool is created. This pool consists of duplicates of the original member. However, for
each copy of the member, the attribute that was the list is now populated with consecutive members of that list. This
mini pool and the rule or association in which this was found, is passed back up to the generate() function to be
reconsidered for membership. Each value of the list is considered separately because association membership may
depend on what those individual values are. The figure below demonstrates the member replication.

Fig. 7: Member list expansion
Attr.2 is a list of three values which expands into three members in the mini pool.

128 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

For JWST, this is used to filter through the various types of association candidates. Since an exposure can belong to
more than one association candidate, the exposure can belong to different associations depending on the candidates.

Association Candidates

TBD

Associations and Rules

Terminology

As has been described, an Association is a Python dict or list that is a list of things that belong together and are
created by association rules. However, as will be described, the association rules are Python classes which inherit from
the Association class.

Associations created from these rule classes, refered to as just rules, have the type of the class they are created from
and have all the methods and attributes of those classes. Such instances are used to populate the created associations
with new members and check the validity of said associations.

However, once an association has been saved, or serialized, through the Association.dump method, then reload
through the corresponding Association.load method, the restored association is only the basic list or dict. The
whole instance of the originating association is not serialized with the basic membership information.

This relationship is shown in the following figure:

Fig. 8: Rule vs. Association Relationship

15.1. Package Index 129

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Note About Loading

Association.load will only validate the incoming data against whatever schema or other validation checks the partic-
ular subclass calls for. The generally preferred method for loading an association is through the jwst.associations.
load_asn() function.

Rules

Association rules are Python classes which must inherit from the Association base class. What the rules do and
what they create are completely up to the rules themselves. Except for a few core methods, the only other requirement
is that any instance of an association rule must behave as the association it creates. If the association is a dict, the rule
instance must behave as the dict. If the association is a list, the rule instance must behave as a list. Otherwise, any other
methods and attributes the rules need for association creation may be added.

Rule Sets

In general, because a set of rules will share much the same functionality, for example how to save the association and
how to decide membership, it is suggested that an intermediate set of classes be created from which the rule classes
inherit. The set of rule classes which share the same base parent classes are referred to as a rule set. The JWST
Level 2 and Level 3 are examples of such rule sets. The below figure demonstrates the relationships between the base
Association, the defining ruleset classes, and the rule classes themselves.

Fig. 9: Rule Inheritance

Where Rules Live: The AssociationRegistry

In order to be used, rules are loaded into an Association Registry. The registry is used by the generate() to produce
the associations. The registry is also used by the load_asn() function to validate a potential association data against
list of rules.

130 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Association Registry

The AssociationRegistry is the rule organizer. An AssociationRegistry is instantiated with the files containing
the desired rules. The match() method is used to find associations that a member belongs to.

AssociationRegistry is a subclass of py3:dict and supports all of its methods. In particular, multiple
AssociationRegistry’s can be combined using the update() method.

Association Pool

Association pools are simply tables. Pools are instantiated using the AssociationPool. This class is simply a subclass
of astropy Table (http://docs.astropy.org/en/stable/table/index.html). As such, any file that is supported by astropy I/O
can be used as an association pool.

Each row of a pool defines a member, and the columns define the attributes of that member. It is these attributes that
the generator uses to determine which members go into which associations.

Regardless of any implied or explicit typing of data by a table file, internally all data are converted to lowercase strings.
It is left up to the individual association definitions on how they will use these attributes.

For JWST Level2/Level3 associations, there is a special case. If an attribute has a value that is equivalent to a Python
list:

[element, ...]

the list will be expanded by the Level2/Level3 associations. This expansion is explained in Member Attributes that are
Lists

Reference

Association Commands

asn_generate

Association generation is done either using the command line tool asn_generate or through the Python API using
either Main or generate().

Command Line

asn_generate --help

Association Candidates

A full explanation of association candidates be found under the design section.

15.1. Package Index 131

http://docs.astropy.org/en/stable/table/index.html

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Default Rules

The default rules are the Level2 and Level3. Unless the --ignore-default option is specified, these rules are included
regardless of any other rules also specified by the -r options.

DMS Workflow

The JWST pipeline environment has specific requirements that must be met by any task running in that environment.
The --DMS option ensures that asn_generate conforms to those specifications.

API

There are two programmatic entry points: the Main class and the generate() function. Main is the highest level
entry and is what is instantiated when the command line asn_generate is used. Main parses the command line op-
tions, creates the AssociationPool and AssociationRegistry instances, calls generate, and saves the resulting
associations.

generate() is the main mid-level entry point. Given an AssociationPool and an AssociationRegistry,
generate() returns a list of associations.

asn_from_list

Create an association using either the command line tool asn_from_list or through the Python API using either
jwst.associations.asn_from_list.Main or jwst.associations.asn_from_list.asn_from_list()

Command Line

asn_from_list --help

Usage

Level2 Associations

Refer to Stage 2 Associations: Technical Specifications for a full description of Level2 associations.

To create a Level2 association, use the following command:

asn_from_list -o l2_asn.json -r DMSLevel2bBase *.fits

The -o option defines the name of the association file to create.

The -r DMSLevel2bBase option indicates that a Level2 association is to be created.

Each file in the list will have its own product in the association file. When used as input to calwebb_image2 or
calwebb_spec2, each product is processed independently, producing the Level2b result for each product.

For those exposures that require an off-target background or imprint image, modify the members list for those exposure,
adding a new member with an exptype of background or imprint as appropriate. The expname for these members
are the Level2a exposures that are the background/imprint to use.

An example product that has both a background and imprint exposure would look like the following:

132 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

"products": [
{

"name": "jw99999001001_011001_00001_nirspec",
"members": [

{
"expname": "jw99999001001_011001_00001_nirspec_rate.fits",
"exptype": "science"

},
{

"expname": "jw99999001001_011001_00002_nirspec_rate.fits",
"exptype": "background"

},
{

"expname": "jw99999001001_011001_00003_nirspec_rate.fits",
"exptype": "imprint"

}
]

}
]

Level3 Associations

Refer to Stage 3 Associations: Technical Specifications for a full description of Level3 associations.

To create a Level3 association, use the following command:

asn_from_list -o l3_asn.json --product-name l3_results *.fits

The -o option defines the name of the association file to create.

The --product-name will set the name field that the Level3 calibration code will use as the output name. For the
above example, the output files created by calwebb_image3, or other Level3 pipelines, will all begin with l3_results.
The list of files will all become science members of the association, with the presumption that all files will be com-
bined.

For coronagraphic or AMI processing, set the exptype of the exposures that are the PSF reference exposures to psf.
If the PSF files are not in the members list, edit the association and add them as members. An example product with a
psf exposure would look like:

"products": [
{

"name": "jw99999-o001_t14_nircam_f182m-mask210r",
"members": [

{
"expname": "jw99999001001_011001_00001_nircam_cal.fits",
"exptype": "science"

},
{

"expname": "jw99999001001_011001_00002_nircam_cal.fits",
"exptype": "science"

},
{

"expname": "jw99999001001_011001_00003_nircam_cal.fits",
(continues on next page)

15.1. Package Index 133

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

"exptype": "psf"
}

]
}

]

API

There are two programmatic entry points: The Main is the highest level entry and is what is instantiated when the
command line asn_from_list is used. Main handles the command line interface.

asn_from_list() is the main mid-level entry point.

jwst.associations.asn_from_list Module

Create an association from a list

Functions

asn_from_list(items[, rule]) Creat an association from a list

asn_from_list

jwst.associations.asn_from_list.asn_from_list(items, rule=<class
'jwst.associations.lib.rules_level3_base.DMS_Level3_Base'>,
**kwargs)

Creat an association from a list

Parameters
• items ([object (https://docs.python.org/3/library/functions.html#object) [, ...]]) –

List of items to add.

• rule (Association rule) – The association rule to use.

• kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Other named param-
eters required or pertinent to adding the items to the association.

Returns
association – The association with the items added.

Return type
Association-based instance

134 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Notes

This is a lower-level tool for artificially creating an association. As such, the association created may not be valid.
It is presume the user knows what they are doing.

asn_gather

Copy members of an association from one location to another.

The association is copied into the destination, re-written such that the member list points to the new location of the
members.

Command Line

asn_gather --help

API

jwst.associations.asn_gather Module

asn_gather: Copy data that is listed in an association

Functions

asn_gather(association[, destination, ...]) Copy members of an association from one location to
another

asn_gather

jwst.associations.asn_gather.asn_gather(association, destination=None, exp_types=None,
exclude_types=None, source_folder=None, shellcmd='rsync
-urv --no-perms --chmod=ugo=rwX')

Copy members of an association from one location to another

The association is copied into the destination, re-written such that the member list points to the new location of
the members.

Parameters
• association (str (https://docs.python.org/3/library/stdtypes.html#str), pathlib.Path

(https://docs.python.org/3/library/pathlib.html#pathlib.Path)) – The association to gather.

• destination (str (https://docs.python.org/3/library/stdtypes.html#str), pathlib.Path
(https://docs.python.org/3/library/pathlib.html#pathlib.Path), or None) – The folder to
place the association and its members. If None, the current working directory is used.

• exp_types ([str (https://docs.python.org/3/library/stdtypes.html#str)[,...]] or
None) – List of exposure types to gather. If None, all are gathered.

15.1. Package Index 135

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• exclude_types ([str (https://docs.python.org/3/library/stdtypes.html#str)[,...]] or
None) – List of exposure types to exclude.

• source_folder (str (https://docs.python.org/3/library/stdtypes.html#str) or None) –
Folder where the members originate from. If None, the folder of the association is presumed.

• shellcmd (str (https://docs.python.org/3/library/stdtypes.html#str)) – The shell command
to use to do the copying of the individual members.

Returns
dest_asn – The copied association.

Return type
pathlib.Path (https://docs.python.org/3/library/pathlib.html#pathlib.Path)

asn_make_pool

Association pool creation from a list of FITS files can be done either using the command line tool asn_make_pool or
through the Python API mkpool().

Command Line

asn_make_pool --help

API

jwst.associations.mkpool Module

Tools for pool creation

Functions

mkpool(data[, asn_candidate, dms_note, ...]) Create an association pool from a list of FITS files.

mkpool

jwst.associations.mkpool.mkpool(data, asn_candidate=None, dms_note='', is_imprt='f', pntgtype='science',
**kwargs)

Create an association pool from a list of FITS files.

Normally, association pools and the associations generated from those pools are created by the automatic ground
system process. Users should download and modify those pools if need be. If desired, this function can be used
to create pools from scratch using a list of FITS files. Once created, the generate() can be used to create
associations from these pools.

A number of pool columns used by the Association rules cannot be derived from the header keywords. The
columns, and typical other values, are as follows:

136 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

•asn_candidate
The observation candidate is always defined in table creation, based on the observation id of each
exposure.

However, higher level associations can be created by specifying a list of candidate definitions. An
example of adding both background and coronographic candidates would be: [(‘c1000’, ‘background’),
(‘c1001’, ‘coronographic’)]

The specification can be either as a list of 2-tuples, as presented above, or as a single string rep-
resentation of the list. Using the previous example, the following is also a valid input: “[(‘c1000’,
‘background’), (‘c1001’, ‘coronographic’)]”

•dms_note
Notes from upstream processing of the downlinked data that may be pertinent to the quality of the data.
Currently the value “wfsc_los_jitter” is used by the Level 2 wavefront sensing rule, Asn_Lv2WFSC,
to ignore exposures.

•is_imprt
A ‘t’ indicates the exposure is a NIRSpec imprint exposure.

•pntgtype
The general class of exposure. The default value is “science”. For target acquisition, the value is
“target_acquisition”.

Parameters
• data (int (https://docs.python.org/3/library/functions.html#int)) – The data to get the pool

parameters from. Can be pathnames or astropy.io.fits.HDUL or astropy.io.fits.
ImageHDU.

• asn_candidate ([(id, type (https://docs.python.org/3/library/functions.html#type))[,
...]] or None) – Association candidates to add to each exposure. These are added to the
default (‘oXXX’, ‘observation’) candidate created from header information.

• dms_note (str (https://docs.python.org/3/library/stdtypes.html#str)) – Value for the
dms_note column.

• is_imprt ('t' or 'f') – Indicator whether exposures are imprint/leakcal exposures.

• pntgtype ('science', 'target_acquisition') – General exposure type.

• kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Other keyword ar-
guments to pass to the astropy.io.fits.getheader call.

Returns
pool – The association pool.

Return type
jwst.associations.AssociationPool

15.1. Package Index 137

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Association Rules

Association definitions, or rules, are Python classes, all based on Association. The base class provides only a
framework, much like an abstract base class; all functionality must be implemented in sub-classes.

Any subclass that is intended to produce an association is referred to as a rule. Any rule subclass must have a name
that begins with the string Asn_. This is to ensure that any other classes involved in defining the definition of the rule
classes do not get used as rules themselves, such as the Association itself.

Association Dynamic Definition

Associations are created by matching members to rules. However, an important concept to remember is that an as-
sociation is defined by both the rule matched, and by the initial member that matched it. The following example will
illustrate this concept.

For JWST Level 3, many associations created must have members that all share the same filter. To avoid writing rules
for each filter, the rules have a condition that states that it doesn’t matter what filter is specified, as long as the association
contains all the same filter.

To accomplish this, the association defines a constraint where filter must have a valid value, but can be any valid
value. When the association is first attempted to be instantiated with a member, and that member has a valid filter,
the association is created. However, the constraint on filter value in the newly created association is modified to match
exactly the filter value that the first member had. Now, when other members are attempted to be added to the association,
the filter of the new members must match exactly with what the association is expecting.

This dynamic definition allows rules to be written where each value of a specific attribute of a member does not have
to be explicitly stated. This provides for very robust, yet concise, set of rule definitions.

User-level API

Core Keys

To be repetitive, the basic association is simply a dict (default) or list. The structure of the dict is completely determined
by the rules. However, the base class defines the following keys:

asn_type
The type of the association.

asn_rule
The name of the rule.

version_id
A version number for any associations created by this rule.

code_version
The version of the generator library in use.

These keys are accessed in the same way any dict key is accessed:

asn = Asn_MyAssociation()
print(asn['asn_rule'])

#--> MyAssociation

138 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Core Methods

These are the methods of an association rule deal with creation or returning the created association. A rule may define
other methods, but the following are required to be implemented.

create()
Create an association.

add()
Add a member to the current association.

dump()
Return the string serialization of the association.

load()
Return the association from its serialization.

Creation

To create an association based on a member, the create method of the rule is called:

(association, reprocess_list) = Asn_SomeRule.create(member)

create returns a 2-tuple: The first element is the association and the second element is a list of reprocess instances.

If the member matches the conditions for the rule, an association is returned. If the member does not belong, None is
returned for the association.

Whether an association is created or not, it is possible a list of reprocess instances may be returned. This list represents
the expansion of the pool in Member Attributes that are Lists

Addition

To add members to an existing association, one uses the Association.add method:

(matches, reprocess_list) = association.add(new_member)

If the association accepts the member, the matches element of the 2-tuple will be True.

Typically, one does not deal with a single rule, but a collection of rules. For association creation, one typically uses an
AssociationRegistry to collect all the rules a pool will be compared against. Association registries provide extra
functionality to deal with a large and varied set of association rules.

Saving and Loading

Once created, an association can be serialized using its Association.dump method. Serialization creates a string
representation of the association which can then be saved as one wishes. Some code that does a basic save looks like:

file_name, serialized = association.dump()
with open(file_name, 'w') as file_handle:

file_handle.write(serialized)

Note that dump returns a 2-tuple. The first element is the suggested file name to use to save the association. The second
element is the serialization.

15.1. Package Index 139

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

To retrieve an association, one uses the Association.load method:

with open(file_name, 'r') as file_handle:
association = Association.load(file_handle)

Association.load will only validate the incoming data against whatever schema or other validation checks the partic-
ular subclass calls for. The generally preferred method for loading an association is through the jwst.associations.
load_asn() function.

Defining New Associations

All association rules are based on the Association base class. This class will not create associations on its own;
subclasses must be defined. What an association is and how it is later used is completely left to the subclasses. The
base class itself only defines the framework required to create associations. The rest of this section will discuss the
minimum functionality that a subclass needs to implement in order to create an association.

Class Naming

The AssociationRegistry is used to store the association rules. Since rules are defined by Python classes, a way
of indicating what the final rule classes are is needed. By definition, rule classes are classes that begin with the string
Asn_. Only these classes are used to produce associations.

Core Attributes

Since rule classes will potentially have a large number of attributes and methods, the base Association class defines
two attributes: data, which contains the actual association, and meta, the structure that holds auxiliary information
needed for association creation. Subclasses may redefine these attributes as they see fit. However, it is suggested that
they be used as conceptually defined here.

data Attribute

data contains the association itself. Currently, the base class predefines data as a dict. The base class itself is a
subclass of MutableMapping. Any instance behaves as a dict. The contents of that dict is the contents of the data
attribute. For example:

asn = Asn_MyAssociation()
asn.data['value'] = 'a value'

assert asn['value'] == 'a value'
True

asn['value'] = 'another value'
assert asn.data['value'] == 'another value'
True

140 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Instantiation

Instantiating a rule, in and of itself, does nothing more than setup the constraints that define the rule, and basic structure
initialization.

Implementing create()

The base class function performs the following steps:

• Instantiates an instance of the rule

• Calls add() to attempt to add the member to the instance

If add() returns matches==False, then create returns None as the new association.

Any override of this method is expected to first call super. On success, any further initialization may be performed.

Implementing add()

The add() method adds members to an association.

If a member does belong to the association, the following events occur:

Constraint Modification
Any wildcard constraints are modified so that any further matching must match exactly the value provided by the
current member.

self._init_hook() is executed
If a new association is being created, the rule’s _init_hook method is executed, if defined. This allows a rule
to do further initialization before the member is officially added to the association.

self._add() is executed
The rule class must define _add(). This method officially adds the member to the association.

Implementing dump() and load()

The base Association class defines the dump() and load()methods to serialize the data structure pointing to by the
data attribute. If the new rule uses the data attribute for storing the association information, no further overriding of
these methods is necessary.

However, if the new rule does not define data, then these methods will need be overridden.

Rule Registration

In order for a rule to be used by generate, the rule must be loaded into an AssociationRegistry. Since a rule is
just a class that is defined as part of a, most likely, larger module, the registry needs to know what classes are rules.
Classes to be used as rules are marked with the RegistryMarker.rule decorator as follows:

myrules.py
from jwst.associations import (Association, RegistryMarker)

@RegistryMarker.rule
class MyRule(Association):

...

15.1. Package Index 141

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Then, when the rule file is used to create an AssociationRegistry, the class MyRule will be included as one of the
available rules:

>>> from jwst.associations import AssociationRegistry
>>> registry = AssociationRegistry('myrules.py', include_default=False)
>>> print(registry)

{'MyRule': <class 'abc.MyRule'>}

jwst.associations Package

Association Generator

The Association Generator takes a list of items, an Association Pool, and creates sub-lists of those items depending on
each item’s attributes. How the sub-lists are created is defined by Association Rules.

For more, see the documentation overview.

Functions

generate(pool, rules[, version_id, finalize]) Generate associations in the pool according to the rules.
libpath (filepath) Return the full path to the module library.
load_asn(serialized[, format, first, ...]) Load an Association from a file or object
main([args, pool]) Command-line entrypoint for the association generator

generate

jwst.associations.generate(pool, rules, version_id=None, finalize=True)
Generate associations in the pool according to the rules.

Parameters
• pool (AssociationPool) – The pool to generate from.

• rules (AssociationRegistry) – The association rule set.

• version_id (None, True, or str (https://docs.python.org/3/library/stdtypes.html#str))
– The string to use to tag associations and products. If None, no tagging occurs. If True,
use a timestamp If a string, the string.

• finalize (bool (https://docs.python.org/3/library/functions.html#bool)) – Run all rule
methods marked as ‘finalized’.

Returns
associations – List of associations

Return type
[Association[,. . .]]

142 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Notes

Refer to the Association Generator documentation for a full description.

libpath

jwst.associations.libpath(filepath)
Return the full path to the module library.

load_asn

jwst.associations.load_asn(serialized, format=None, first=True, validate=True, registry=<class
'jwst.associations.registry.AssociationRegistry'>, **kwargs)

Load an Association from a file or object

Parameters
• serialized (object (https://docs.python.org/3/library/functions.html#object)) – The se-

rialized form of the association.

• format (str (https://docs.python.org/3/library/stdtypes.html#str) or None) – The format
to force. If None, try all available.

• validate (bool (https://docs.python.org/3/library/functions.html#bool)) – Validate against
the class’ defined schema, if any.

• first (bool (https://docs.python.org/3/library/functions.html#bool)) – A serialization po-
tentially matches many rules. Only return the first succesful load.

• registry (AssociationRegistry or None) – The AssociationRegistry to use. If
None, no registry is used. Can be passed just a registry class instead of instance.

• kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Other arguments to
pass to the load methods defined in the Association.IORegistry

Return type
The Association object

Raises
AssociationNotValidError – Cannot create or validate the association.

Notes

The serialized object can be in any format supported by the registered I/O routines. For example, for json
(https://docs.python.org/3/library/json.html#module-json) and yaml formats, the input can be either a string or
a file object containing the string.

If no registry is specified, the default Association.load method is used.

15.1. Package Index 143

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/json.html#module-json

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

main

jwst.associations.main(args=None, pool=None)
Command-line entrypoint for the association generator

Wrapper around Main.cli so that the return is either True or an exception.

Parameters
• args ([str (https://docs.python.org/3/library/stdtypes.html#str), ...], or None) – The

command line arguments. Can be one of

– None (https://docs.python.org/3/library/constants.html#None): sys.argv
(https://docs.python.org/3/library/sys.html#sys.argv) is then used.

– [str, ...]: A list of strings which create the command line with the similar structure
as sys.argv (https://docs.python.org/3/library/sys.html#sys.argv)

• pool (None or AssociationPool) – If None (https://docs.python.org/3/library/constants.html#None),
a pool file must be specified in the args. Otherwise, an AssociationPool

Classes

Association([version_id]) Association Base Class
AssociationError Basic errors related to Associations
AssociationNotAConstraint No matching constraint found
AssociationNotValidError Given data structure is not a valid association
AssociationPool(*args, **kwargs) Association Pool
AssociationRegistry([definition_files, ...]) The available associations
ListCategory(value[, names, module, ...]) The work_over categories for ProcessLists
Main([args, pool]) Generate Associations from an Association Pool
ProcessItem(obj) Items to be processed
ProcessList([items, rules, work_over, ...]) A Process list
ProcessQueue Make a deque iterable and mutable
ProcessQueueSorted([init]) Sort ProcessItem based on work_over
RegistryMarker() Mark rules, callbacks, and modules for inclusion into a

registry

Association

class jwst.associations.Association(version_id=None)
Bases: MutableMapping (https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping)

Association Base Class

Parameters
version_id (str (https://docs.python.org/3/library/stdtypes.html#str) or None) – Version ID
to use in the name of this association. If None, nothing is added.

Raises
AssociationError – If an item doesn’t match.

instance

The instance is the association data structure. See data below

144 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Type
dict-like

meta

Information about the association.

Type
dict (https://docs.python.org/3/library/stdtypes.html#dict)

data

The association. The format of this data structure is determined by the individual associations and, if
defined, validated against their specified schema.

Type
dict (https://docs.python.org/3/library/stdtypes.html#dict)

schema_file

The name of the output schema that an association must adhere to.

Type
str (https://docs.python.org/3/library/stdtypes.html#str)

Attributes Summary

DEFAULT_EVALUATE Default do not evaluate input values
DEFAULT_FORCE_UNIQUE Default whether to force constraints to use unique val-

ues.
DEFAULT_REQUIRE_CONSTRAINT Default require that the constraint exists or otherwise

can be explicitly checked.
GLOBAL_CONSTRAINT Global constraints
INVALID_VALUES Attribute values that indicate the attribute is not spec-

ified.
asn_name Suggest filename for the association
asn_rule Name of the rule
ioregistry The association IO registry
is_valid Check if association is valid
registry Registry this rule has been placed in.

15.1. Package Index 145

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

add(item[, check_constraints]) Add the item to the association
check_and_set_constraints(item) Check whether the given dictionaries match parame-

ters for for this association
create(item[, version_id]) Create association if item belongs
dump([format]) Serialize the association
finalize() Finalize association
is_item_member(item) Check if item is already a member of this association
items()

keys()

load(serialized[, format, validate]) Marshall a previously serialized association
match_constraint(item, constraint, conditions) Generic constraint checking
validate(asn) Validate an association against this rule
values()

Attributes Documentation

DEFAULT_EVALUATE = False

Default do not evaluate input values

DEFAULT_FORCE_UNIQUE = False

Default whether to force constraints to use unique values.

DEFAULT_REQUIRE_CONSTRAINT = True

Default require that the constraint exists or otherwise can be explicitly checked.

GLOBAL_CONSTRAINT = None

Global constraints

INVALID_VALUES = None

Attribute values that indicate the attribute is not specified.

asn_name

Suggest filename for the association

asn_rule

Name of the rule

ioregistry = {'json': <class 'jwst.associations.association_io.json'>, 'yaml':
<class 'jwst.associations.association_io.yaml'>}

The association IO registry

is_valid

Check if association is valid

registry = None

Registry this rule has been placed in.

146 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

add(item, check_constraints=True)
Add the item to the association

Parameters
• item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – The item to add.

• check_constraints (bool (https://docs.python.org/3/library/functions.html#bool)) – If
True, see if the item should belong to this association. If False, just add it.

Returns
2-tuple consisting of:

• bool : True if match

• [ProcessList[, . . .]]: List of items to process again.

Return type
(match, reprocess_list)

check_and_set_constraints(item)

Check whether the given dictionaries match parameters for for this association

Parameters
item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – The parameters to
check/set for this association. This can be a list of dictionaries.

Returns
2-tuple consisting of:

• bool : Did constraint match?

• [ProcessItem[, . . .]]: List of items to process again.

Return type
(match, reprocess)

classmethod create(item, version_id=None)
Create association if item belongs

Parameters
• item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – The item to initialize

the association with.

• version_id (str (https://docs.python.org/3/library/stdtypes.html#str) or None) – Ver-
sion ID to use in the name of this association. If None, nothing is added.

Returns
2-tuple consisting of:

• association or None: The association or, if the item does not match this rule, None

• [ProcessList[, . . .]]: List of items to process again.

Return type
(association, reprocess_list)

15.1. Package Index 147

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

dump(format='json', **kwargs)
Serialize the association

Parameters
• format (str (https://docs.python.org/3/library/stdtypes.html#str)) – The format to use to

dump the association into.

• kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – List of arguments
to pass to the registered routines for the current association type.

Returns
Tuple where the first item is the suggested base name for the file. Second item is the serial-
ization.

Return type
(name, serialized)

Raises
• AssociationError – If the operation cannot be done

• AssociationNotValidError – If the given association does not validate.

finalize()

Finalize association

Finalize or close-off this association. Perform validations, modifications, etc. to ensure that the association
is complete.

Returns
associations – List of fully-qualified associations that this association represents. None
(https://docs.python.org/3/library/constants.html#None) if a complete association cannot be
produced.

Return type
[association[, . . .]] or None

is_item_member(item)

Check if item is already a member of this association

Parameters
item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – The item to add.

Returns
is_item_member – True if item is a member.

Return type
bool (https://docs.python.org/3/library/functions.html#bool)

items()→ a set-like object providing a view on D's items

keys()→ a set-like object providing a view on D's keys

classmethod load(serialized, format=None, validate=True, **kwargs)
Marshall a previously serialized association

Parameters
• serialized (object (https://docs.python.org/3/library/functions.html#object)) – The se-

rialized form of the association.

• format (str (https://docs.python.org/3/library/stdtypes.html#str) or None) – The for-
mat to force. If None, try all available.

148 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• validate (bool (https://docs.python.org/3/library/functions.html#bool)) – Validate
against the class’ defined schema, if any.

• kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Other arguments
to pass to the load method

Returns
association – The association.

Return type
Association

Raises
AssociationNotValidError – Cannot create or validate the association.

Notes

The serialized object can be in any format supported by the registered I/O routines. For example, for
json (https://docs.python.org/3/library/json.html#module-json) and yaml formats, the input can be either
a string or a file object containing the string.

match_constraint(item, constraint, conditions)
Generic constraint checking

Parameters
• item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – The item to retrieve

the values from

• constraint (str (https://docs.python.org/3/library/stdtypes.html#str)) – The name of the
constraint

• conditions (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – The condi-
tions structure

Returns
2-tuple consisting of:

• bool : True if the all constraints are satisfied

• [ProcessList[, . . .]]: List of items to process again.

Return type
(matches, reprocess_list)

classmethod validate(asn)
Validate an association against this rule

Parameters
asn (Association or association-like) – The association structure to examine

Returns
valid – True if valid. Otherwise the AssociationNotValidError is raised

Return type
bool (https://docs.python.org/3/library/functions.html#bool)

Raises
AssociationNotValidError – If there is some reason validation failed.

15.1. Package Index 149

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Notes

The base method checks against the rule class’ schema If the rule class does not define a schema, a warning
is issued but the routine will return True.

values()→ an object providing a view on D's values

AssociationError

exception jwst.associations.AssociationError

Basic errors related to Associations

AssociationNotAConstraint

exception jwst.associations.AssociationNotAConstraint

No matching constraint found

AssociationNotValidError

exception jwst.associations.AssociationNotValidError

Given data structure is not a valid association

AssociationPool

class jwst.associations.AssociationPool(*args, **kwargs)
Bases: Table

Association Pool

An AssociationPool is essentially an astropy Table with the following default behaviors:

• ASCII tables with a default delimiter of |

• All values are read in as strings

Methods Summary

read(filename[, delimiter, format]) Read in a Pool file
write(*args, **kwargs) Write the pool to a file.

150 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

classmethod read(filename, delimiter='|', format='ascii', **kwargs)
Read in a Pool file

Parameters
• filename (str (https://docs.python.org/3/library/stdtypes.html#str)) – File path to read in

as a table.

• delimiter (str (https://docs.python.org/3/library/stdtypes.html#str)) – Character used to
delineate columns.

• format (str (https://docs.python.org/3/library/stdtypes.html#str)) – The format of the in-
put file.

Returns
The AssociationPool representation of the file.

Return type
AssociationPool

write(*args, **kwargs)
Write the pool to a file.

Parameters
• output (str (https://docs.python.org/3/library/stdtypes.html#str), file-like) – The

output file or file-like object.

• delimiter (str (https://docs.python.org/3/library/stdtypes.html#str)) – The string to use
to delineate columns. Default is ‘|’.

• format (str (https://docs.python.org/3/library/stdtypes.html#str)) – The format the file
should be written in. Default is ‘ascii’.

• args (obj) – Other parameters that astropy.io.ascii.write can accept.

• kwargs (obj) – Other parameters that astropy.io.ascii.write can accept.

AssociationRegistry

class jwst.associations.AssociationRegistry(definition_files=None, include_default=True,
global_constraints=None, name=None,
include_bases=False)

Bases: dict (https://docs.python.org/3/library/stdtypes.html#dict)

The available associations

Parameters
• definition_files ([str (https://docs.python.org/3/library/stdtypes.html#str),]) – The

files to find the association definitions in.

• include_default (bool (https://docs.python.org/3/library/functions.html#bool)) – True
to include the default definitions.

• global_constraints (Constraint) – Constraints to be added to each rule.

• name (str (https://docs.python.org/3/library/stdtypes.html#str)) – An identifying string,
used to prefix rule names.

15.1. Package Index 151

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• include_bases (bool (https://docs.python.org/3/library/functions.html#bool)) – If True,
include base classes not considered rules.

Notes

The general workflow is as follows:

•Create the registry

>>> from jwst.associations.registry import AssociationRegistry
>>> registry = AssociationRegistry()

•Create associations from an item

>>> associations, reprocess = registry.match(item)

•Finalize the associations

>>> final_asns = registry.callback.reduce('finalize', associations)

In practice, this is one step in a larger loop over all items to be associated. This does not account for adding items
to already existing associations. See generate() for more information.

Attributes Summary

rule_set Rules within the Registry

Methods Summary

add_rule(name, obj[, global_constraints]) Add object as rule to registry
load(serialized[, format, validate, first]) Load a previously serialized association
match (item[, version_id, allow, ignore]) See if item belongs to any of the associations defined.
populate(module[, global_constraints, ...]) Parse out all rules and callbacks in a module and add

them to the registry
validate(association) Validate a given association

Attributes Documentation

rule_set

Rules within the Registry

152 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#bool

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

add_rule(name, obj, global_constraints=None)
Add object as rule to registry

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str)) – Name of the object

• obj (object (https://docs.python.org/3/library/functions.html#object)) – The object to be
considered a rule

• global_constraints (dict (https://docs.python.org/3/library/stdtypes.html#dict)) –
The global constraints to attach to the rule.

load(serialized, format=None, validate=True, first=True, **kwargs)
Load a previously serialized association

Parameters
• serialized (object (https://docs.python.org/3/library/functions.html#object)) – The se-

rialized form of the association.

• format (str (https://docs.python.org/3/library/stdtypes.html#str) or None) – The for-
mat to force. If None, try all available.

• validate (bool (https://docs.python.org/3/library/functions.html#bool)) – Validate
against the class’ defined schema, if any.

• first (bool (https://docs.python.org/3/library/functions.html#bool)) – A serialization
potentially matches many rules. Only return the first succesful load.

• kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Other arguments
to pass to the load method

Return type
The Association object, or the list of association objects.

Raises
AssociationError – Cannot create or validate the association.

match(item, version_id=None, allow=None, ignore=None)
See if item belongs to any of the associations defined.

Parameters
• item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – An item, like from a

Pool, to find associations for.

• version_id (str (https://docs.python.org/3/library/stdtypes.html#str)) – If specified, a
string appended to association names. If None, nothing is used.

• allow ([type (https://docs.python.org/3/library/functions.html#type)(Association),
...]) – List of rules to allow to be matched. If None, all available rules will be used.

• ignore (list (https://docs.python.org/3/library/stdtypes.html#list)) – A list of associa-
tions to ignore when looking for a match. Intended to ensure that already created associa-
tions are not re-created.

Returns
(associations, reprocess_list) –

15.1. Package Index 153

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#list

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

associations
[[association,. . .]] List of associations item belongs to. Empty if none match

reprocess_list
[[AssociationReprocess, . . .]] List of reprocess events.

Return type
2-tuple

populate(module, global_constraints=None, include_bases=None)
Parse out all rules and callbacks in a module and add them to the registry

Parameters
module (module) – The module, and all submodules, to be parsed.

validate(association)
Validate a given association

Parameters
association (association-like) – The data to validate

Returns
rules – List of rules that validated

Return type
list (https://docs.python.org/3/library/stdtypes.html#list)

Raises
AssociationNotValidError – Association did not validate

ListCategory

class jwst.associations.ListCategory(value, names=None, *, module=None, qualname=None, type=None,
start=1, boundary=None)

Bases: Enum (https://docs.python.org/3/library/enum.html#enum.Enum)

The work_over categories for ProcessLists

Attributes Summary

BOTH

EXISTING

NONSCIENCE

RULES

154 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/enum.html#enum.Enum

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Documentation

BOTH = 1

EXISTING = 2

NONSCIENCE = 3

RULES = 0

Main

class jwst.associations.Main(args=None, pool=None)
Bases: object (https://docs.python.org/3/library/functions.html#object)

Generate Associations from an Association Pool

Parameters
• args ([str (https://docs.python.org/3/library/stdtypes.html#str), ...], or None) – The

command line arguments. Can be one of

– None (https://docs.python.org/3/library/constants.html#None): sys.argv
(https://docs.python.org/3/library/sys.html#sys.argv) is then used.

– [str, ...]: A list of strings which create the command line with the similar structure
as sys.argv (https://docs.python.org/3/library/sys.html#sys.argv)

• pool (None or AssociationPool) – If None (https://docs.python.org/3/library/constants.html#None),
a pool file must be specified in the args. Otherwise, an AssociationPool

pool

The pool read in, or passed in through the parameter pool

Type
AssociationPool

rules

The rules used for association creation.

Type
AssociationRegistry

associations

The list of generated associations.

Type
[Association, . . .]

15.1. Package Index 155

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/constants.html#None

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Notes

Refer to the Association Generator documentation for a full description.

Attributes Summary

orphaned The pool of exposures that do not belong to any asso-
ciation.

Methods Summary

cli([args, pool]) Run the full association generation process
configure([args, pool]) Configure to prepare for generation
generate() Generate the associations
parse_args([args, has_pool]) Set command line arguments
save() Save the associations to disk.

Attributes Documentation

orphaned

The pool of exposures that do not belong to any association.

Methods Documentation

classmethod cli(args=None, pool=None)
Run the full association generation process

Parameters
• args ([str (https://docs.python.org/3/library/stdtypes.html#str), ...], or None) –

The command line arguments. Can be one of

– None (https://docs.python.org/3/library/constants.html#None): sys.argv
(https://docs.python.org/3/library/sys.html#sys.argv) is then used.

– [str, ...]: A list of strings which create the command line with the similar structure
as sys.argv (https://docs.python.org/3/library/sys.html#sys.argv)

• pool (None or AssociationPool) – If None (https://docs.python.org/3/library/constants.html#None),
a pool file must be specified in the args. Otherwise, an AssociationPool

Returns
generator – A fully executed association generator.

Return type
Main

configure(args=None, pool=None)
Configure to prepare for generation

Parameters

156 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/constants.html#None

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• args ([str (https://docs.python.org/3/library/stdtypes.html#str), ...], or None) –
The command line arguments. Can be one of

– None (https://docs.python.org/3/library/constants.html#None): sys.argv
(https://docs.python.org/3/library/sys.html#sys.argv) is then used.

– [str, ...]: A list of strings which create the command line with the similar structure
as sys.argv (https://docs.python.org/3/library/sys.html#sys.argv)

• pool (None or AssociationPool) – If None (https://docs.python.org/3/library/constants.html#None),
a pool file must be specified in the args. Otherwise, an AssociationPool

generate()

Generate the associations

parse_args(args=None, has_pool=False)
Set command line arguments

Parameters
• args (list (https://docs.python.org/3/library/stdtypes.html#list), str

(https://docs.python.org/3/library/stdtypes.html#str), or None) – List of command-
line arguments. If a string, spaces seperate the arguments. If None, sys.argv
(https://docs.python.org/3/library/sys.html#sys.argv) is used.

• has_pool (bool-like) – Do not require pool from the command line if a pool is already
in hand.

save()

Save the associations to disk.

ProcessItem

class jwst.associations.ProcessItem(obj)
Bases: object (https://docs.python.org/3/library/functions.html#object)

Items to be processed

Create hashable objects from a list of arbitrary objects.

Parameters
obj (object (https://docs.python.org/3/library/functions.html#object)) – The object to make a
ProcessItem . Objects must be equatable.

Methods Summary

to_process_items(iterable) Iterable to convert a list to ProcessItem's

15.1. Package Index 157

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

classmethod to_process_items(iterable)
Iterable to convert a list to ProcessItem’s

Parameters
iterable (iterable) – A source of objects to convert

Returns
• An iterable where the object has been

• converted to a ProcessItem

ProcessList

class jwst.associations.ProcessList(items=None, rules=None, work_over=ListCategory.BOTH,
only_on_match=False, trigger_constraints=None,
trigger_rules=None)

Bases: object (https://docs.python.org/3/library/functions.html#object)

A Process list

Parameters
• items ([item[, ...]]) – The list of items to process

• rules ([Association[, ...]]) – List of rules to process the items against.

• work_over (int (https://docs.python.org/3/library/functions.html#int)) – What the repro-
cessing should work on: - ProcessList.RULES: Only on the rules to create new associa-
tions - ProcessList.EXISTING: Only existing associations - ProcessList.BOTH: Com-
pare to both existing and rules - ProcessList.NONSCIENCE: Only on non-science items

• only_on_match (bool (https://docs.python.org/3/library/functions.html#bool)) – Only use
this object if the overall condition is True.

• trigger_constraints ([Constraint[,...]]) – The constraints that created the Pro-
cessList

• trigger_rules ([Association[,...]]) – The association rules that created the Pro-
cessList

Attributes Summary

hash Create a unique hash

158 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

update(process_list[, full]) Update with information from ProcessList

Attributes Documentation

hash

Create a unique hash

Methods Documentation

update(process_list, full=False)
Update with information from ProcessList

Attributes from process_list are added to self’s attributes. If not full, the attributes rules,
‘work_over`, and only_on_match are not taken.

Note that if full, destructive action will occur with respect to work_over and only_on_match.

Parameters
• process_list (ProcessList) – The source process list to absorb.

• full (bool (https://docs.python.org/3/library/functions.html#bool)) – Include the hash at-
tributes rules, work_over, and only_on_match.

ProcessQueue

class jwst.associations.ProcessQueue

Bases: deque (https://docs.python.org/3/library/collections.html#collections.deque)

Make a deque iterable and mutable

ProcessQueueSorted

class jwst.associations.ProcessQueueSorted(init=None)
Bases: object (https://docs.python.org/3/library/functions.html#object)

Sort ProcessItem based on work_over

Create a generator that implements a First-In-First-Out (FIFO) queue, with the one modification that the queues
are handled in order of their work_over priority. For example, even if a ProcessList with work_over of ListCat-
egory.EXISTING had been added to the queue before a ProcessList with work_over of ListCategory.RULES, the
second ProcessList will be returned before the first.

ProcessQueueSorted is also mutable: ProcessLists can be added to the queue while the lists are being popped
from the queue. When doing so, it is important to remember that the order of return, as described above, still
pertains. For example, if the queue only has ProcessLists of work_over ListCategory.EXISTING, and a new
ProcessList of work_over ListCategory.RULES is added during iteration, the next list returned will be the RULES
one, because the RULES lists have priority over EXISTING lists, regardless of when the list was added.

Parameters
init ([ProcessList[,...]]) – List of ProcessList to start the queue with.

15.1. Package Index 159

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/collections.html#collections.deque
https://docs.python.org/3/library/functions.html#object

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

extend(process_lists) Add the list of process items to their appropriate
queues

Methods Documentation

extend(process_lists)
Add the list of process items to their appropriate queues

RegistryMarker

class jwst.associations.RegistryMarker

Bases: object (https://docs.python.org/3/library/functions.html#object)

Mark rules, callbacks, and modules for inclusion into a registry

Methods Summary

callback(event) Mark object as a callback for an event
is_marked(obj) Has an objected been marked?
mark(obj) Mark that an object should be part of the registry
rule(obj) Mark object as rule
schema(filename) Mark a file as a schema source
utility(class_obj) Mark the class as a Utility class

Methods Documentation

static callback(event)
Mark object as a callback for an event

Parameters
• event (str (https://docs.python.org/3/library/stdtypes.html#str)) – Event this is a callback

for.

• obj (func) – Function, or any callable, to be called when the corresponding event is trig-
gered.

Returns
Function to use as a decorator for the object to be marked.

Return type
func

160 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Notes

The following attributes are added to the object:

•_asnreg_role
[‘callback’] The role the object as been assigned.

•_asnreg_events
[[event[, . . .]]] The events this callable object is a callback for.

•_asnreg_mark
[True] Indicated that the object has been marked.

static is_marked(obj)
Has an objected been marked?

static mark(obj)
Mark that an object should be part of the registry

Parameters
obj (object (https://docs.python.org/3/library/functions.html#object)) – The object to mark

Returns
Object that has been marked. Returned to enable use as a decorator.

Return type
obj

Notes

The following attributes are added to the object:

•_asnreg_mark
[True] Attribute added to object and is set to True

•_asnreg_role
[str or None] If not already assigned, the role is left unspecified using None.

static rule(obj)
Mark object as rule

Parameters
obj (object (https://docs.python.org/3/library/functions.html#object)) – The object that
should be treated as a rule

Returns
obj – Return object to enable use as a decorator.

Return type
object (https://docs.python.org/3/library/functions.html#object)

15.1. Package Index 161

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Notes

The following attributes are added to the object:

•_asnreg_role
[‘rule’] Attributed added to object and set to rule

•_asnreg_mark
[True] Attributed added to object and set to True

static schema(filename)
Mark a file as a schema source

static utility(class_obj)
Mark the class as a Utility class

Class Inheritance Diagram

AssociationMutableMapping

AssociationError AssociationNotAConstraint

AssociationNotValidError

AssociationPoolTable

AssociationRegistry

Collection Mapping

Sized

Iterable

Container

Enum ListCategory

Main

ProcessItem

ProcessList

ProcessQueuedeque

ProcessQueueSorted

RegistryMarker

162 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.associations.lib.rules_level2b Module

Association Definitions: DMS Level2b product associations

Classes

Asn_Lv2CoronAsRate(*args, **kwargs) Create normal rate products for some coronographic data
Asn_Lv2FGS(*args, **kwargs) Level2b FGS Association
Asn_Lv2Image(*args, **kwargs) Level2b Non-TSO Science Image Association
Asn_Lv2ImageNonScience(*args, **kwargs) Level2b Non-science Image Association
Asn_Lv2ImageSpecial(*args, **kwargs) Level2b Auxiliary Science Image Association
Asn_Lv2ImageTSO(*args, **kwargs) Level2b Time Series Science Image Association
Asn_Lv2MIRLRSFixedSlitNod(*args, **kwargs) Level2b MIRI LRS Fixed Slit background nods Associ-

ation
Asn_Lv2NRSFSS(*args, **kwargs) Level2b NIRSpec Fixed-slit Association
Asn_Lv2NRSIFUNod(*args, **kwargs) Level2b NIRSpec IFU Association
Asn_Lv2NRSLAMPImage(*args, **kwargs) Level2b NIRSpec image Lamp Calibrations Association
Asn_Lv2NRSLAMPSpectral(*args, **kwargs) Level2b NIRSpec spectral Lamp Calibrations Associa-

tion
Asn_Lv2NRSMSA(*args, **kwargs) Level2b NIRSpec MSA Association
Asn_Lv2Spec(*args, **kwargs) Level2b Science Spectral Association
Asn_Lv2SpecImprint(*args, **kwargs) Level2b Treat Imprint/Leakcal as science
Asn_Lv2SpecSpecial(*args, **kwargs) Level2b Auxiliary Science Spectral Association
Asn_Lv2SpecTSO(*args, **kwargs) Level2b Time Series Science Spectral Association
Asn_Lv2WFSSNIS(*args, **kwargs) Level2b WFSS/GRISM Association
Asn_Lv2WFSSNRC(*args, **kwargs) Level2b WFSS/GRISM Association
Asn_Lv2WFSC(*args, **kwargs) Level2b Wavefront Sensing & Control Association

Asn_Lv2CoronAsRate

class jwst.associations.lib.rules_level2b.Asn_Lv2CoronAsRate(*args, **kwargs)
Bases: AsnMixin_Lv2Image, DMSLevel2bBase

Create normal rate products for some coronographic data

Characteristics;
• Association type: image2

• Pipeline: calwebb_image2

• NIRCam Coronagraphic

• Only subarray=Full exposures

• Treat as non-timeseries, producing “rate” products

15.1. Package Index 163

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

is_item_coron(item) Override to always return false

Methods Documentation

is_item_coron(item)

Override to always return false

The override will force make_member to create a “rate” product instead of a “rateints” product.

Asn_Lv2FGS

class jwst.associations.lib.rules_level2b.Asn_Lv2FGS(*args, **kwargs)
Bases: AsnMixin_Lv2Image, DMSLevel2bBase

Level2b FGS Association

Characteristics:
• Association type: image2

• Pipeline: calwebb_image2

• Image-based FGS science exposures

• Single science exposure

Asn_Lv2Image

class jwst.associations.lib.rules_level2b.Asn_Lv2Image(*args, **kwargs)
Bases: AsnMixin_Lv2Image, DMSLevel2bBase

Level2b Non-TSO Science Image Association

Characteristics:
• Association type: image2

• Pipeline: calwebb_image2

• Image-based science exposures

• Single science exposure

• Non-TSO

• Non-coronagraphic

164 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Asn_Lv2ImageNonScience

class jwst.associations.lib.rules_level2b.Asn_Lv2ImageNonScience(*args, **kwargs)
Bases: AsnMixin_Lv2Special, AsnMixin_Lv2Image, DMSLevel2bBase

Level2b Non-science Image Association

Characteristics:
• Association type: image2

• Pipeline: calwebb_image2

• Image-based non-science exposures, such as target acquisitions

• Single science exposure

Asn_Lv2ImageSpecial

class jwst.associations.lib.rules_level2b.Asn_Lv2ImageSpecial(*args, **kwargs)
Bases: AsnMixin_Lv2Special, AsnMixin_Lv2Image, DMSLevel2bBase

Level2b Auxiliary Science Image Association

Characteristics:
• Association type: image2

• Pipeline: calwebb_image2

• Image-based science exposures that are to be used as background or PSF exposures

• Single science exposure

• No other exposure can be part of the association

Asn_Lv2ImageTSO

class jwst.associations.lib.rules_level2b.Asn_Lv2ImageTSO(*args, **kwargs)
Bases: AsnMixin_Lv2Image, DMSLevel2bBase

Level2b Time Series Science Image Association

Characteristics:
• Association type: tso-image2

• Pipeline: calwebb_tso-image2

• Image-based Time Series exposures

• Single science exposure

15.1. Package Index 165

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Asn_Lv2MIRLRSFixedSlitNod

class jwst.associations.lib.rules_level2b.Asn_Lv2MIRLRSFixedSlitNod(*args, **kwargs)
Bases: AsnMixin_Lv2Spectral, DMSLevel2bBase

Level2b MIRI LRS Fixed Slit background nods Association

Characteristics:
• Association type: spec2

• Pipeline: calwebb_spec2

• MIRI LRS Fixed slit

• Single science exposure

• Include slit nods as backgrounds

Methods Summary

get_exposure_type(item[, default]) Modify exposure type depending on dither pointing
index

Methods Documentation

get_exposure_type(item, default='science')
Modify exposure type depending on dither pointing index

Behaves as the superclass method. However, if the constraint is_current_patt_num is True, mark the
exposure type as background.

Asn_Lv2NRSFSS

class jwst.associations.lib.rules_level2b.Asn_Lv2NRSFSS(*args, **kwargs)
Bases: AsnMixin_Lv2Nod, AsnMixin_Lv2Spectral, DMSLevel2bBase

Level2b NIRSpec Fixed-slit Association

Notes

Characteristics:
• Association type: spec2

• Pipeline: calwebb_spec2

• Spectral-based NIRSpec fixed-slit single target science exposures

• Single science exposure

• Handle along-the-slit background nodding

Association includes both the background and science exposures of the nodding. The identified science exposure
is fixed by the nod, pattern, and exposure number to prevent other science exposures being included.

166 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Asn_Lv2NRSIFUNod

class jwst.associations.lib.rules_level2b.Asn_Lv2NRSIFUNod(*args, **kwargs)
Bases: AsnMixin_Lv2Nod, AsnMixin_Lv2Spectral, DMSLevel2bBase

Level2b NIRSpec IFU Association

Characteristics:
• Association type: spec2

• Pipeline: calwebb_spec2

• Spectral-based NIRSpec IFU multi-object science exposures

• Single science exposure

• Handle 2 and 4 point background nodding

• Include related imprint exposures

Asn_Lv2NRSLAMPImage

class jwst.associations.lib.rules_level2b.Asn_Lv2NRSLAMPImage(*args, **kwargs)
Bases: AsnMixin_Lv2Image, AsnMixin_Lv2Special, DMSLevel2bBase

Level2b NIRSpec image Lamp Calibrations Association

Characteristics:
• Association type: image2

• Pipeline: calwebb_image2

• Image-based calibration exposures

• Single science exposure

Asn_Lv2NRSLAMPSpectral

class jwst.associations.lib.rules_level2b.Asn_Lv2NRSLAMPSpectral(*args, **kwargs)
Bases: AsnMixin_Lv2Special, DMSLevel2bBase

Level2b NIRSpec spectral Lamp Calibrations Association

Characteristics:
• Association type: nrslamp-spec2

• Pipeline: calwebb_nrslamp-spec2

• Spectral-based calibration exposures

• Single science exposure

15.1. Package Index 167

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Asn_Lv2NRSMSA

class jwst.associations.lib.rules_level2b.Asn_Lv2NRSMSA(*args, **kwargs)
Bases: AsnMixin_Lv2Nod, AsnMixin_Lv2Spectral, DMSLevel2bBase

Level2b NIRSpec MSA Association

Characteristics:
• Association type: spec2

• Pipeline: calwebb_spec2

• Spectral-based NIRSpec MSA multi-object science exposures

• Single science exposure

• Handle slitlet nodding for background subtraction

Asn_Lv2Spec

class jwst.associations.lib.rules_level2b.Asn_Lv2Spec(*args, **kwargs)
Bases: AsnMixin_Lv2Spectral, DMSLevel2bBase

Level2b Science Spectral Association

Characteristics:
• Association type: spec2

• Pipeline: calwebb_spec2

• Spectral-based single target science exposures

• Single science exposure

• Non-TSO

• Not part of a background dither observation

Asn_Lv2SpecImprint

class jwst.associations.lib.rules_level2b.Asn_Lv2SpecImprint(*args, **kwargs)
Bases: AsnMixin_Lv2Special, AsnMixin_Lv2Spectral, DMSLevel2bBase

Level2b Treat Imprint/Leakcal as science

Characteristics:
• Association type: spec2

• Pipeline: calwebb_spec2

• Only handles Imprint/Leakcal exposures

• Single science exposure

168 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Asn_Lv2SpecSpecial

class jwst.associations.lib.rules_level2b.Asn_Lv2SpecSpecial(*args, **kwargs)
Bases: AsnMixin_Lv2Special, AsnMixin_Lv2Spectral, DMSLevel2bBase

Level2b Auxiliary Science Spectral Association

Characteristics:
• Association type: spec2

• Pipeline: calwebb_spec2

• Spectral-based single target science exposures that are background exposures

• Single science exposure

Asn_Lv2SpecTSO

class jwst.associations.lib.rules_level2b.Asn_Lv2SpecTSO(*args, **kwargs)
Bases: AsnMixin_Lv2Spectral, DMSLevel2bBase

Level2b Time Series Science Spectral Association

Characteristics:
• Association type: tso-spec2

• Pipeline: calwebb_tso-spec2

• Spectral-based single target time series exposures

• Single science exposure

• No other exposure can be part of the association

Asn_Lv2WFSSNIS

class jwst.associations.lib.rules_level2b.Asn_Lv2WFSSNIS(*args, **kwargs)
Bases: AsnMixin_Lv2WFSS, AsnMixin_Lv2Spectral

Level2b WFSS/GRISM Association

Characteristics:
• Association type: spec2

• Pipeline: calwebb_spec2

• Multi-object science exposures

• Single science exposure

• Require a source catalog from processing of the corresponding direct imagery.

15.1. Package Index 169

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Asn_Lv2WFSSNRC

class jwst.associations.lib.rules_level2b.Asn_Lv2WFSSNRC(*args, **kwargs)
Bases: AsnMixin_Lv2WFSS, AsnMixin_Lv2Spectral

Level2b WFSS/GRISM Association

Characteristics:
• Association type: spec2

• Pipeline: calwebb_spec2

• Multi-object science exposures

• Single science exposure

• Require a source catalog from processing of the corresponding direct imagery.

Asn_Lv2WFSC

class jwst.associations.lib.rules_level2b.Asn_Lv2WFSC(*args, **kwargs)
Bases: DMSLevel2bBase

Level2b Wavefront Sensing & Control Association

Characteristics:
• Association type: wfs-image2

• Pipeline: calwebb_wfs-image2

• WFS and WFS&C observations

• Single science exposure

170 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Class Inheritance Diagram

ACIDMixin DMSBaseMixin

AsnMixin_Lv2Image

Asn_Lv2CoronAsRate

Asn_Lv2FGS

Asn_Lv2Image

Asn_Lv2ImageNonScience

Asn_Lv2ImageSpecial

Asn_Lv2ImageTSO

Asn_Lv2NRSLAMPImage

AsnMixin_Lv2Nod

Asn_Lv2NRSFSS

Asn_Lv2NRSIFUNod

Asn_Lv2NRSMSA

AsnMixin_Lv2Special

Asn_Lv2NRSLAMPSpectral

Asn_Lv2SpecImprint

Asn_Lv2SpecSpecial

AsnMixin_Lv2Spectral
Asn_Lv2MIRLRSFixedSlitNod

Asn_Lv2Spec

Asn_Lv2SpecTSO

Asn_Lv2WFSSNIS

Asn_Lv2WFSSNRC

DMSLevel2bBase

Asn_Lv2WFSC

AsnMixin_Lv2WFSS

AssociationMutableMappingCollection Mapping

Sized

Iterable

Container

jwst.associations.lib.rules_level3 Module

Association Definitions: DMS Level3 product associations

15.1. Package Index 171

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Classes

Asn_Lv3ACQ_Reprocess(*args, **kwargs) Level 3 Gather Target Acquisitions
Asn_Lv3AMI(*args, **kwargs) Level 3 Aperture Mask Interferometry Association
Asn_Lv3Image(*args, **kwargs) Level 3 Science Image Association
Asn_Lv3ImageBackground(*args, **kwargs) Level 3 Background Image Association
Asn_Lv3MIRCoron(*args, **kwargs) Level 3 Coronagraphy Association
Asn_Lv3MIRMRS(*args, **kwargs) Level 3 MIRI MRS Association
Asn_Lv3MIRMRSBackground(*args, **kwargs) Level 3 MIRI MRS Association Auxiliary data
Asn_Lv3NRCCoron(*args, **kwargs) Level 3 Coronagraphy Association
Asn_Lv3NRCCoronImage(*args, **kwargs) Level 3 Coronagraphy Association handled as regular

imaging
Asn_Lv3NRSFSS(*args, **kwargs) Level 3 NIRSpec Fixed-slit Science
Asn_Lv3NRSIFU(*args, **kwargs) Level 3 IFU gratings Association
Asn_Lv3NRSIFUBackground(*args, **kwargs) Level 3 Spectral Association
Asn_Lv3SlitlessSpectral(*args, **kwargs) Level 3 slitless, target-based or single-object spectro-

graphic Association
Asn_Lv3SpecAux(*args, **kwargs) Level 3 Spectral Association
Asn_Lv3SpectralSource(*args, **kwargs) Level 3 slit-like, multi-object spectrographic Associa-

tion
Asn_Lv3SpectralTarget(*args, **kwargs) Level 3 slit-like, target-based or single-object spectro-

graphic Association
Asn_Lv3TSO(*args, **kwargs) Level 3 Time-Series Association
Asn_Lv3WFSCMB(*args, **kwargs) Level 3 Wavefront Control & Sensing Association
Asn_Lv3WFSSNIS(*args, **kwargs) Level 3 WFSS/Grism Association

Asn_Lv3ACQ_Reprocess

class jwst.associations.lib.rules_level3.Asn_Lv3ACQ_Reprocess(*args, **kwargs)
Bases: DMS_Level3_Base

Level 3 Gather Target Acquisitions

Characteristics:
• Association type: Not applicable

• Pipeline: Not applicable

• Used to populate other related associations

Notes

For first loop, simply send acquisitions and confirms back.

172 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Asn_Lv3AMI

class jwst.associations.lib.rules_level3.Asn_Lv3AMI(*args, **kwargs)
Bases: AsnMixin_Science

Level 3 Aperture Mask Interferometry Association

Characteristics:
• Association type: ami3

• Pipeline: calwebb_ami3

• Gather science and related PSF exposures

Notes

AMI is nearly completely defined by the association candidates produced by APT. Tracking Issues:

• github #310 (https://github.com/STScI-JWST/jwst/issues/310)

Asn_Lv3Image

class jwst.associations.lib.rules_level3.Asn_Lv3Image(*args, **kwargs)
Bases: AsnMixin_Science

Level 3 Science Image Association

Characteristics:
• Association type: image3

• Pipeline: calwebb_image3

• Non-TSO

• Non-WFS&C

Asn_Lv3ImageBackground

class jwst.associations.lib.rules_level3.Asn_Lv3ImageBackground(*args, **kwargs)
Bases: AsnMixin_AuxData, AsnMixin_Science

Level 3 Background Image Association

Characteristics:
• Association type: image3

• Pipeline: calwebb_image3

• Non-TSO

• Non-WFS&C

15.1. Package Index 173

https://github.com/STScI-JWST/jwst/issues/310

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Asn_Lv3MIRCoron

class jwst.associations.lib.rules_level3.Asn_Lv3MIRCoron(*args, **kwargs)
Bases: AsnMixin_Coronagraphy, AsnMixin_Science

Level 3 Coronagraphy Association

Characteristics:
• Association type: coron3

• Pipeline: calwebb_coron3

• MIRI Coronagraphy

• Gather science and related PSF exposures

Notes

Coronagraphy is nearly completely defined by the association candidates produced by APT. Tracking Issues:

• github #311 (https://github.com/STScI-JWST/jwst/issues/311)

• JP-3219 (https://jira.stsci.edu/browse/JP-3219)

Asn_Lv3MIRMRS

class jwst.associations.lib.rules_level3.Asn_Lv3MIRMRS(*args, **kwargs)
Bases: AsnMixin_Spectrum

Level 3 MIRI MRS Association

Characteristics:
• Association type: spec3

• Pipeline: calwebb_spec3

• Just MIRI MRS

• optical path determined by calibration

• Cannot be TSO

• Must have pattern type defined

Attributes Summary

dms_product_name Define product name.

174 Chapter 15. Package Documentation

https://github.com/STScI-JWST/jwst/issues/311
https://jira.stsci.edu/browse/JP-3219

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Documentation

dms_product_name

Asn_Lv3MIRMRSBackground

class jwst.associations.lib.rules_level3.Asn_Lv3MIRMRSBackground(*args, **kwargs)
Bases: AsnMixin_AuxData, AsnMixin_Spectrum

Level 3 MIRI MRS Association Auxiliary data

Characteristics:
• Association type: spec3

• Pipeline: calwebb_spec3

• Just MIRI MRS

• optical path determined by calibration

• Cannot be TSO

• Must have pattern type defined

Attributes Summary

dms_product_name Define product name.

Attributes Documentation

dms_product_name

Asn_Lv3NRCCoron

class jwst.associations.lib.rules_level3.Asn_Lv3NRCCoron(*args, **kwargs)
Bases: AsnMixin_Coronagraphy, AsnMixin_Science

Level 3 Coronagraphy Association

Characteristics:
• Association type: coron3

• Pipeline: calwebb_coron3

• Gather science and related PSF exposures

• Exclude “extra” NIRCam detectors that don’t have target on them

15.1. Package Index 175

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Notes

Coronagraphy is nearly completely defined by the association candidates produced by APT. Tracking Issues:

• github #311 (https://github.com/STScI-JWST/jwst/issues/311)

• JP-3219 (https://jira.stsci.edu/browse/JP-3219)

Asn_Lv3NRCCoronImage

class jwst.associations.lib.rules_level3.Asn_Lv3NRCCoronImage(*args, **kwargs)
Bases: AsnMixin_Science

Level 3 Coronagraphy Association handled as regular imaging

Characteristics:
• Association type: image3

• Pipeline: calwebb_image3

• Gather science exposures only, no psf exposures

• Only include NRC SW images taken in full-frame

Attributes Summary

dms_product_name Define product name.

Methods Summary

is_item_coron(item) Override to ignore coronographic designation

Attributes Documentation

dms_product_name

Methods Documentation

is_item_coron(item)

Override to ignore coronographic designation

Coronagraphic data is to be processed both as coronagraphic (by default), but also as just plain imaging.
Coronagraphic data is processed using the Asn_Lv3Coron rule. This rule will handle the creation of the
image version. It causes the input members to be of type “cal”, instead of “calints”.

176 Chapter 15. Package Documentation

https://github.com/STScI-JWST/jwst/issues/311
https://jira.stsci.edu/browse/JP-3219

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Asn_Lv3NRSFSS

class jwst.associations.lib.rules_level3.Asn_Lv3NRSFSS(*args, **kwargs)
Bases: AsnMixin_Spectrum

Level 3 NIRSpec Fixed-slit Science

Characteristics:
• Association type: spec3

• Pipeline: calwebb_spec3

• NIRSpec Fixed-slit Science

• Non-TSO

Attributes Summary

dms_product_name Define product name.

Attributes Documentation

dms_product_name

Asn_Lv3NRSIFU

class jwst.associations.lib.rules_level3.Asn_Lv3NRSIFU(*args, **kwargs)
Bases: AsnMixin_Spectrum

Level 3 IFU gratings Association

Characteristics:
• Association type: spec3

• Pipeline: calwebb_spec3

• optical path determined by calibration

Asn_Lv3NRSIFUBackground

class jwst.associations.lib.rules_level3.Asn_Lv3NRSIFUBackground(*args, **kwargs)
Bases: AsnMixin_AuxData, AsnMixin_Spectrum

Level 3 Spectral Association

Characteristics:
• Association type: spec3

• Pipeline: calwebb_spec3

15.1. Package Index 177

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Asn_Lv3SlitlessSpectral

class jwst.associations.lib.rules_level3.Asn_Lv3SlitlessSpectral(*args, **kwargs)
Bases: AsnMixin_Spectrum

Level 3 slitless, target-based or single-object spectrographic Association

Characteristics:
• Association type: spec3

• Pipeline: calwebb_spec3

• Single target

• Non-TSO

Asn_Lv3SpecAux

class jwst.associations.lib.rules_level3.Asn_Lv3SpecAux(*args, **kwargs)
Bases: AsnMixin_AuxData, AsnMixin_Spectrum

Level 3 Spectral Association

Characteristics:
• Association type: spec3

• Pipeline: calwebb_spec3

Asn_Lv3SpectralSource

class jwst.associations.lib.rules_level3.Asn_Lv3SpectralSource(*args, **kwargs)
Bases: AsnMixin_Spectrum

Level 3 slit-like, multi-object spectrographic Association

Characteristics:
• Association type: spec3

• Pipeline: calwebb_spec3

• Multi-object

• Non-TSO

Attributes Summary

dms_product_name Define product name.

178 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Documentation

dms_product_name

Asn_Lv3SpectralTarget

class jwst.associations.lib.rules_level3.Asn_Lv3SpectralTarget(*args, **kwargs)
Bases: AsnMixin_Spectrum

Level 3 slit-like, target-based or single-object spectrographic Association

Characteristics:
• Association type: spec3

• Pipeline: calwebb_spec3

• Single target

• Non-TSO

Methods Summary

finalize() Finalize association

Methods Documentation

finalize()

Finalize association

For NRS Fixed-slit, finalization means creating new members for the background nods.

Returns
associations – List of fully-qualified associations that this association represents. None
(https://docs.python.org/3/library/constants.html#None) if a complete association cannot be
produced.

Return type
[association[, . . .]] or None

Asn_Lv3TSO

class jwst.associations.lib.rules_level3.Asn_Lv3TSO(*args, **kwargs)
Bases: AsnMixin_Science

Level 3 Time-Series Association

Characteristics:
• Association type: tso3

• Pipeline: calwebb_tso3

15.1. Package Index 179

https://docs.python.org/3/library/constants.html#None

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Asn_Lv3WFSCMB

class jwst.associations.lib.rules_level3.Asn_Lv3WFSCMB(*args, **kwargs)
Bases: AsnMixin_Science

Level 3 Wavefront Control & Sensing Association

For coarse and fine phasing, dither pairs need to be associated to be combined. The optical path is assumed to
be equivalent within an activity.

Characteristics:
• Association type: wfs-image3

• Pipeline: calwebb_wfs-image3

• Coarse and fine phasing dithers

Attributes Summary

dms_product_name Define product name

Attributes Documentation

dms_product_name

Define product name

Modification is to append the expspcin value after the calibration suffix.

Asn_Lv3WFSSNIS

class jwst.associations.lib.rules_level3.Asn_Lv3WFSSNIS(*args, **kwargs)
Bases: AsnMixin_Spectrum

Level 3 WFSS/Grism Association

Characteristics:
• Association type: spec3

• Pipeline: calwebb_spec3

• Gather all grism exposures

Attributes Summary

dms_product_name Define product name.

180 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Documentation

dms_product_name

Class Inheritance Diagram

ACIDMixin DMSBaseMixin

AsnMixin_AuxData

Asn_Lv3ImageBackground

Asn_Lv3MIRMRSBackground

Asn_Lv3NRSIFUBackground

Asn_Lv3SpecAux

AsnMixin_Coronagraphy Asn_Lv3MIRCoron

Asn_Lv3NRCCoron

AsnMixin_Science

AsnMixin_Spectrum

Asn_Lv3AMI

Asn_Lv3Image

Asn_Lv3NRCCoronImage

Asn_Lv3TSO

Asn_Lv3WFSCMB

DMS_Level3_Base

Asn_Lv3ACQ_Reprocess

Asn_Lv3MIRMRS

Asn_Lv3NRSFSS

Asn_Lv3NRSIFU

Asn_Lv3SlitlessSpectral

Asn_Lv3SpectralSource

Asn_Lv3SpectralTarget

Asn_Lv3WFSSNIS

AssociationMutableMappingCollection Mapping

Sized

Iterable

Container

jwst.associations.lib.dms_base Module

Association attributes common to DMS-based Rules

Classes

Constraint_TargetAcq(*args, **kwargs) Select on target acquisition exposures
Constraint_TSO(*args, **kwargs) Match on Time-Series Observations
Constraint_WFSC(*args, **kwargs) Match on Wave Front Sensing and Control Observations
DMSBaseMixin(*args, **kwargs) Association attributes common to DMS-based Rules

15.1. Package Index 181

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Constraint_TargetAcq

class jwst.associations.lib.dms_base.Constraint_TargetAcq(*args, **kwargs)
Bases: SimpleConstraint

Select on target acquisition exposures

Parameters
association (Association) – If specified, use the get_exposure_type method of the asso-
ciation rather than the utility version.

Force creation of the constraint attribute dict before anything else.

Constraint_TSO

class jwst.associations.lib.dms_base.Constraint_TSO(*args, **kwargs)
Bases: Constraint

Match on Time-Series Observations

Constraint_WFSC

class jwst.associations.lib.dms_base.Constraint_WFSC(*args, **kwargs)
Bases: Constraint

Match on Wave Front Sensing and Control Observations

DMSBaseMixin

class jwst.associations.lib.dms_base.DMSBaseMixin(*args, **kwargs)
Bases: ACIDMixin

Association attributes common to DMS-based Rules

sequence

The sequence number of the current association

Type
int (https://docs.python.org/3/library/functions.html#int)

Attributes Summary

acid Association ID
asn_name The association name
current_product

from_items The list of items that contributed to the association.
member_ids Set of all member ids in all products of this associa-

tion
validity Keeper of the validity tests

182 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#int

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

create(item[, version_id]) Create association if item belongs
get_exposure_type(item[, default]) Determine the exposure type of a pool item
is_item_ami(item) Is the given item AMI (NIRISS Aperture Masking

Interferometry)
is_item_coron(item) Is the given item Coronagraphic
is_item_member(item) Check if item is already a member of this association
is_item_tso(item[, other_exp_types]) Is the given item TSO
is_member(new_member) Check if member is already a member
item_getattr(item, attributes) Return value from any of a list of attributes
new_product([product_name]) Start a new product
reset_sequence()

update_asn([item, member]) Update association meta information
update_degraded_status() Update association degraded status
update_validity(entry)

validate(asn)

Attributes Documentation

acid

Association ID

asn_name

The association name

The name that identifies this association. When dumped, will form the basis for the suggested file name.

Typically, it is generated based on the current state of the association, but can be overridden.

current_product

from_items

The list of items that contributed to the association.

member_ids

Set of all member ids in all products of this association

validity

Keeper of the validity tests

15.1. Package Index 183

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

classmethod create(item, version_id=None)
Create association if item belongs

Parameters
• item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – The item to initialize

the association with.

• version_id (str (https://docs.python.org/3/library/stdtypes.html#str) or None) – Ver-
sion_Id to use in the name of this association. If None, nothing is added.

Returns
2-tuple consisting of:

• association : The association or, if the item does not match this rule, None

• [ProcessList[, . . .]]: List of items to process again.

Return type
(association, reprocess_list)

get_exposure_type(item, default='science')
Determine the exposure type of a pool item

Parameters
• item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – The pool entry to de-

termine the exposure type of

• default (str (https://docs.python.org/3/library/stdtypes.html#str) or None) – The de-
fault exposure type. If None, routine will raise LookupError

Returns
exposure_type –

Exposure type. Can be one of

• ’science’: Item contains science data

• ’target_acquisition’: Item contains target acquisition data.

• ’autoflat’: NIRSpec AUTOFLAT

• ’autowave’: NIRSpec AUTOWAVE

• ’psf’: PSF

• ’imprint’: MSA/IFU Imprint/Leakcal

Return type
str (https://docs.python.org/3/library/stdtypes.html#str)

Raises
LookupError (https://docs.python.org/3/library/exceptions.html#LookupError) – When
default is None and an exposure type cannot be determined

is_item_ami(item)

Is the given item AMI (NIRISS Aperture Masking Interferometry)

Determine whether the specific item represents AMI data or not. This simply includes items with
EXP_TYPE=’NIS_AMI’.

184 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#LookupError

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Parameters
item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – The item to check for.

Returns
is_item_ami – Item represents an AMI exposure.

Return type
bool (https://docs.python.org/3/library/functions.html#bool)

is_item_coron(item)

Is the given item Coronagraphic

Determine whether the specific item represents true Coronagraphic data or not. This will include all items
in CORON_EXP_TYPES (both NIRCam and MIRI), except for NIRCam short-wave detectors included in
a coronagraphic exposure but do not have an occulter in their field-of-view.

Parameters
item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – The item to check for.

Returns
is_item_coron – Item represents a true Coron exposure.

Return type
bool (https://docs.python.org/3/library/functions.html#bool)

is_item_member(item)

Check if item is already a member of this association

Parameters
item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – The item to check for.

Returns
is_item_member – True if item is a member.

Return type
bool (https://docs.python.org/3/library/functions.html#bool)

is_item_tso(item, other_exp_types=None)
Is the given item TSO

Determine whether the specific item represents TSO data or not. This is used to determine the naming of
files, i.e. “rate” vs “rateints” and “cal” vs “calints”.

Parameters
• item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – The item to check for.

• other_exp_types ([str (https://docs.python.org/3/library/stdtypes.html#str)[,...]]
or None) – List of other exposure types to consider TSO-like.

Returns
is_item_tso – Item represents a TSO exposure.

Return type
bool (https://docs.python.org/3/library/functions.html#bool)

is_member(new_member)
Check if member is already a member

Parameters
new_member (Member) – The member to check for

15.1. Package Index 185

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

item_getattr(item, attributes)
Return value from any of a list of attributes

Parameters
• item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – item to retrieve from

• attributes (list (https://docs.python.org/3/library/stdtypes.html#list)) – List of at-
tributes

Returns
Returns the value and the attribute from which the value was taken.

Return type
(attribute, value)

Raises
KeyError (https://docs.python.org/3/library/exceptions.html#KeyError) – None of the at-
tributes are found in the dict.

new_product(product_name='undefined')
Start a new product

classmethod reset_sequence()

update_asn(item=None, member=None)
Update association meta information

Parameters
• item (dict (https://docs.python.org/3/library/stdtypes.html#dict) or None) – Item to

use as a source. If not given, item-specific information will be left unchanged.

• member (Member or None) – An association member to use as source. If not given,
member-specific information will be update from current association/product membership.

Notes

If both item and member are given, information in member will take precedence.

update_degraded_status()

Update association degraded status

update_validity(entry)

classmethod validate(asn)

186 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Class Inheritance Diagram

ABC SimpleConstraintABC

ACIDMixin DMSBaseMixin

Constraint

Constraint_TSO

Constraint_WFSC

Constraint_TargetAcqSimpleConstraint

jwst.associations.lib.constraint Module

Constraints

Classes

AttrConstraint(*args, **kwargs) Test attribute of an item
Constraint([init, reduce, name, ...]) Constraint that is made up of SimpleConstraints
ConstraintTrue(*args, **kwargs) Always return True
SimpleConstraint(*args, **kwargs) A basic constraint

AttrConstraint

class jwst.associations.lib.constraint.AttrConstraint(*args, **kwargs)
Bases: SimpleConstraintABC

Test attribute of an item

Parameters
• sources ([str (https://docs.python.org/3/library/stdtypes.html#str)[,...]]) – List of at-

tributes to query

• value (str (https://docs.python.org/3/library/stdtypes.html#str), function or None) –
The value to check for. If None and force_unique, any value in the first available source
will become the value. If function, the function takes no arguments and returns a string.

• evaluate (bool (https://docs.python.org/3/library/functions.html#bool)) – Evaluate the
item’s value before checking condition.

• force_reprocess (ListCategory.state or False) – Add item back onto the repro-
cess list using the specified ProcessList work over state.

15.1. Package Index 187

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• force_unique (bool (https://docs.python.org/3/library/functions.html#bool)) – If the ini-
tial value is None (https://docs.python.org/3/library/constants.html#None) or a list of possi-
ble values, the constraint will be modified to be the value first matched.

• invalid_values ([str (https://docs.python.org/3/library/stdtypes.html#str)[,...]]) –
List of values that are invalid in an item. Will cause a non-match.

• name (str (https://docs.python.org/3/library/stdtypes.html#str) or None) – Name of the
constraint.

• only_on_match (bool (https://docs.python.org/3/library/functions.html#bool)) – If
force_reprocess, only do the reprocess if the entire constraint is satisfied.

• onlyif (function) – Boolean function that takes item as argument. If True, the rest of
the condition is checked. Otherwise return as a matched condition

• required (bool (https://docs.python.org/3/library/functions.html#bool)) – One of the
sources must exist. Otherwise, return as a matched constraint.

found_values

Set of actual found values for this condition.

Type
set (https://docs.python.org/3/library/stdtypes.html#set)(str
(https://docs.python.org/3/library/stdtypes.html#str)[,. . .])

matched

Last result of check_and_set

Type
bool (https://docs.python.org/3/library/functions.html#bool)

Force creation of the constraint attribute dict before anything else.

Methods Summary

check_and_set(item) Check and set constraints based on item

Methods Documentation

check_and_set(item)

Check and set constraints based on item

Parameters
item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – The item to check on.

Returns
success, reprocess –

Returns 2-tuple of

• True if check is successful.

• List of ProcessList.

Return type
bool (https://docs.python.org/3/library/functions.html#bool), [ProcessList[,. . .]]

188 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Constraint

class jwst.associations.lib.constraint.Constraint(init=None, reduce=None, name=None,
reprocess_on_match=False,
reprocess_on_fail=False,
work_over=ListCategory.BOTH,
reprocess_rules=None)

Bases: object (https://docs.python.org/3/library/functions.html#object)

Constraint that is made up of SimpleConstraints

Parameters
• init (object (https://docs.python.org/3/library/functions.html#object) or [object

(https://docs.python.org/3/library/functions.html#object)[,...]]) – A single object or list
of objects where the objects are as follows. - SimpleConstraint or subclass - Constraint

• reduce (function) – A reduction function with signature x(iterable) where iterable
is the components list. Returns boolean indicating state of the components. Default value
is Constraint.all

• name (str (https://docs.python.org/3/library/stdtypes.html#str) or None) – Optional name
for constraint.

• reprocess_on_match (bool (https://docs.python.org/3/library/functions.html#bool)) –
Reprocess the item if the constraint is satisfied.

• reprocess_on_fail (bool (https://docs.python.org/3/library/functions.html#bool)) – Re-
process the item if the constraint is not satisfied.

• work_over (ListCategory.[BOTH, EXISTING, RULES]) – The condition on which this
constraint should operate.

• reprocess_rules ([rule[,..]] or None) – List of rules to be applied to. If None,
calling function will determine the ruleset. If empty, [], all rules will be used.

constraints

List of Constraint or SimpleConstraint that make this constraint.

Type
[Constraint[,. . .]]

matched

Result of the last check_and_set

Type
bool (https://docs.python.org/3/library/functions.html#bool)

reduce

A reduction function with signature x(iterable) where iterable is the components list. Returns
boolean indicating state of the components. Predefined functions are: - all: True if all components return
True - any: True if any component returns True

Type
function

15.1. Package Index 189

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Notes

Named constraints can be accessed directly through indexing:

>>> c = Constraint(SimpleConstraint(name='simple', value='a_value'))
>>> c['simple']
SimpleConstraint({'sources': <function SimpleConstraint.__init__.<locals>.<lambda>␣
→˓at 0x7f8be05f5730>,

'force_unique': True,
'test': <bound method SimpleConstraint.eq of SimpleConstraint({...

→˓})>,
'reprocess_on_match': False,
'reprocess_on_fail': False,
'work_over': 1,
'reprocess_rules': None,
'value': 'a_value',
'name': 'simple',
'matched': False})

Attributes Summary

dup_names Return dictionary of constraints with duplicate names
id Return identifyer for the constraint

Methods Summary

all(item, constraints) Return positive only if all results are positive.
any(item, constraints) Return the first successful constraint.
append(constraint) Append a new constraint
check_and_set(item[, work_over]) Check and set the constraint
copy() Copy ourselves
get_all_attr(attribute) Return the specified attribute
notall(item, constraints) True if not all of the constraints match
notany(item, constraints) True if none of the constraints match
preserve() Preserve all constraint states
restore() Restore all constraint states

Attributes Documentation

dup_names

Return dictionary of constraints with duplicate names

This method is meant to be overridden by classes that need to traverse a list of constraints.

Returns
dups – Returns a mapping between the duplicated name and all the constraints that define
that name.

Return type
{str: [constraint[,. . .]][,. . .]}

190 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

id

Return identifyer for the constraint

Returns
id – The identifyer

Return type
str (https://docs.python.org/3/library/stdtypes.html#str)

Methods Documentation

static all(item, constraints)
Return positive only if all results are positive.

static any(item, constraints)
Return the first successful constraint.

append(constraint)
Append a new constraint

check_and_set(item, work_over=ListCategory.BOTH)

Check and set the constraint

Returns
success, reprocess –

Returns 2-tuple of

• success : True if check is successful.

• List of ProcessList.

Return type
bool (https://docs.python.org/3/library/functions.html#bool), [ProcessList[,. . .]]

copy()

Copy ourselves

get_all_attr(attribute: str (https://docs.python.org/3/library/stdtypes.html#str))
Return the specified attribute

This method is meant to be overridden by classes that need to traverse a list of constraints.

Parameters
attribute (str (https://docs.python.org/3/library/stdtypes.html#str)) – The attribute to re-
trieve

Returns
result – The list of values of the attribute in a tuple. If there is no attribute, an empty tuple is
returned.

Return type
[(SimpleConstraint or Constraint, object (https://docs.python.org/3/library/functions.html#object))[,. . .]]

Raises
AttributeError (https://docs.python.org/3/library/exceptions.html#AttributeError) – If the
attribute is not found.

static notall(item, constraints)
True if not all of the constraints match

15.1. Package Index 191

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#AttributeError

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

static notany(item, constraints)
True if none of the constraints match

preserve()

Preserve all constraint states

restore()

Restore all constraint states

ConstraintTrue

class jwst.associations.lib.constraint.ConstraintTrue(*args, **kwargs)
Bases: SimpleConstraintABC

Always return True

Force creation of the constraint attribute dict before anything else.

Methods Summary

check_and_set(item) Check and set the constraint

Methods Documentation

check_and_set(item)

Check and set the constraint

Returns
success, reprocess –

Returns 2-tuple of

• True if check is successful.

• List of ProcessList.

Return type
bool (https://docs.python.org/3/library/functions.html#bool), [ProcessList[,. . .]]

SimpleConstraint

class jwst.associations.lib.constraint.SimpleConstraint(*args, **kwargs)
Bases: SimpleConstraintABC

A basic constraint

Parameters
• init (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – dict where the

key:value pairs define the following parameters

• value (object (https://docs.python.org/3/library/functions.html#object) or None) –
Value that must be matched. If None, any retrieved value will match.

192 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• sources (func(item) or None) – Function taking item as argument used to retrieve a
value to check against. If None, the item itself is used as the value.

• force_unique (bool (https://docs.python.org/3/library/functions.html#bool)) – If the con-
straint is satisfied, reset value to the value of the source.

• test (function) – The test function for the constraint. Takes two arguments:

– constraint

– object to compare against.

Returns a boolean. Default is SimpleConstraint.eq

• name (str (https://docs.python.org/3/library/stdtypes.html#str) or None) – Option name
for constraint

• reprocess_on_match (bool (https://docs.python.org/3/library/functions.html#bool)) –
Reprocess the item if the constraint is satisfied.

• reprocess_on_fail (bool (https://docs.python.org/3/library/functions.html#bool)) – Re-
process the item if the constraint is not satisfied.

• work_over (ListCategory.[BOTH, EXISTING, RULES]) – The condition on which this
constraint should operate.

• reprocess_rules ([rule[,..]] or None) – List of rules to be applied to. If None,
calling function will determine the ruleset. If empty, [], all rules will be used.

All `Parameters` are also `Attributes`

Examples

Create a constraint where the attribute attr of an object matches the value my_value:

>>> c = SimpleConstraint(value='my_value')
>>> print(c)
SimpleConstraint({'name': None, 'value': 'my_value'})

To check a constraint, call check_and_set. A successful match will return a tuple of True
(https://docs.python.org/3/library/constants.html#True) and a reprocess list. >>> item = ‘my_value’ >>>
c.check_and_set(item) (True, [])

If it doesn’t match, False (https://docs.python.org/3/library/constants.html#False) will be returned. >>>
bad_item = ‘not_my_value’ >>> c.check_and_set(bad_item) (False, [])

A SimpleConstraint can also be initialized by a dict (https://docs.python.org/3/library/stdtypes.html#dict)
of the relevant parameters: >>> init = {‘value’: ‘my_value’} >>> c = SimpleConstraint(init) >>> print(c) Sim-
pleConstraint({‘name’: None, ‘value’: ‘my_value’})

If the value to check is None (https://docs.python.org/3/library/constants.html#None), the SimpleConstraint
will successfully match whatever object given. However, a new SimpleConstraint will be returned where
the value is now set to whatever the attribute was of the object. >>> c = SimpleConstraint(value=None)
>>> matched, reprocess = c.check_and_set(item) >>> print(c) SimpleConstraint({‘name’: None, ‘value’:
‘my_value’})

This behavior can be overridden by the force_unique parameter: >>> c = SimpleConstraint(value=None,
force_unique=False) >>> matched, reprocess = c.check_and_set(item) >>> print(c) SimpleConstraint({‘name’:
None, ‘value’: None})

Force creation of the constraint attribute dict before anything else.

15.1. Package Index 193

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

check_and_set(item) Check and set the constraint
eq(value1, value2) True if constraint.value and item are equal.

Methods Documentation

check_and_set(item)

Check and set the constraint

Returns
success, reprocess –

Returns 2-tuple of

• True if check is successful.

• List of ProcessList.

Return type
bool (https://docs.python.org/3/library/functions.html#bool), [ProcessList[,. . .]]

eq(value1, value2)
True if constraint.value and item are equal.

Class Inheritance Diagram

ABC SimpleConstraintABC

AttrConstraint

ConstraintTrue

SimpleConstraint

Constraint

194 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#bool

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

15.1.8 Background Step

Description

Class
jwst.background.BackgroundStep

Alias
background

The background subtraction step performs image-from-image subtraction in order to accomplish subtraction of back-
ground signal. The step takes as input one target exposure, to which the subtraction will be applied, and a list of one or
more background exposures. Two different approaches to background image subtraction are used, depending on the ob-
serving mode. Imaging and most spectroscopic modes use one method, while a special method is used for Wide-Field
Slitless Spectroscopy (WFSS).

This type of background subtraction is just one method available within the JWST pipeline. See Background Subtraction
for an overview of all the methods and to which observing modes they’re applicable.

Imaging and Non-WFSS Spectroscopic Modes

If more than one background exposure is provided, they will be averaged together before being sub-
tracted from the target exposure. Iterative sigma clipping is applied during the averaging process, to re-
ject sources or other outliers. The clipping is accomplished using the function astropy.stats.sigma_clip
(http://docs.astropy.org/en/stable/api/astropy.stats.sigma_clip.html). The background step allows users to supply values
for the sigma_clip parameters sigma and maxiters (see Step Arguments), in order to control the clipping operation.

For imaging mode observations, the calculation of the average background image depends on whether the background
exposures are “rate” (2D) or “rateint” (3D) exposures. In the case of “rate” exposures, the average background image
is produced as follows:

1. Clip the combined SCI arrays of all background exposures. For mixtures of full chip and subarray data, only
overlapping regions are used

2. Compute the mean of the unclipped SCI values

3. Sum in quadrature the ERR arrays of all background exposures, clipping the same input values as determined
for the SCI arrays, and convert the result to an uncertainty in the mean

4. Combine the DQ arrays of all background exposures using a bitwise OR operation

In the case of “rateint” exposures, each background exposure can have multiple integrations, so calculations are slightly
more involved. The “overall” average background image is produced as follows:

1. Clip the SCI arrays of each background exposure along its integrations

2. Compute the mean of the unclipped SCI values to yield an average image for each background exposure

3. Clip the means of all background exposure averages

4. Compute the mean of the unclipped background exposure averages to yield the “overall” average background
image

5. Sum in quadrature the ERR arrays of all background exposures, clipping the same input values as determined
for the SCI arrays, and convert the result to an uncertainty in the mean (This is not yet implemented)

6. Combine the DQ arrays of all background exposures, by first using a bitwise OR operation over all integrations
in each exposure, followed by doing by a bitwise OR operation over all exposures.

The average background exposure is then subtracted from the target exposure. The subtraction consists of the following
operations:

15.1. Package Index 195

http://docs.astropy.org/en/stable/api/astropy.stats.sigma_clip.html

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

1. The SCI array of the average background is subtracted from the SCI array of the target exposure

2. The ERR array of the target exposure is currently unchanged, until full error propagation is implemented in the
entire pipeline

3. The DQ arrays of the average background and the target exposure are combined using a bitwise OR operation

If the target exposure is a simple ImageModel, the background image is subtracted from it. If the target exposure is in
the form of a 3-D CubeModel (e.g. the result of a time series exposure), the average background image is subtracted
from each plane of the CubeModel.

The combined, averaged background image can be saved using the step parameter save_combined_background.

WFSS Mode

For Wide-Field Slitless Spectroscopy expsoures (NIS_WFSS and NRC_WFSS), a background reference image is sub-
tracted from the target exposure. Before being subtracted, the background reference image is scaled to match the signal
level of the WFSS image within background (source-free) regions of the image.

The locations of source spectra are determined from a source catalog (specified by the primary header keyword SCAT-
FILE), in conjunction with a reference file that gives the wavelength range (based on filter and grism) that is relevant to
the WFSS image. All regions of the image that are free of source spectra are used for scaling the background reference
image. The step argument wfss_mmag_extract can be used, if desired, to set the minimum (faintest) abmag of the
source catalog objects used to define the background regions. The default is to use all source catalog entries that result
in a spectrum falling within the WFSS image.

Robust mean values are obtained for the background regions in the WFSS image and for the same regions in the
background reference image, and the ratio of those two mean values is used to scale the background reference image.
The robust mean is computed by excluding the lowest 25% and highest 25% of the data (using the numpy.percentile
function), and taking a simple arithmetic mean of the remaining values. Note that NaN values (if any) in the background
reference image are currently set to zero. If there are a lot of NaNs, it may be that more than 25% of the lowest values
will need to be excluded.

For both background methods the output results are always returned in a new data model, leaving the original input
model unchanged.

Upon successful completion of the step, the S_BKDSUB keyword will be set to “COMPLETE” in the output product.

Step Arguments

The background image subtraction step has four optional arguments. The first two are used only when the step is applied
to non-WFSS exposures. They are used in the process of creating an average background image, to control the sigma
clipping, and are passed as arguments to the astropy sigma_clip function:

--sigma
When combining multiple background images, the number of standard deviations to use for the clipping limit.
Defaults to 3.

--maxiters
When combining multiple background images, the number of clipping iterations to perform, or None to clip until
convergence is achieved. Defaults to None.

--save_combined_background
Saves the combined background image used for background subtraction. Defaults to False.

--wfss_mmag_extract
Only applies to Wide Field Slitless Spectroscopy (WFSS) exposures. Sets the minimum (faintest) magnitude

196 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

limit to use when selecting sources from the WFSS source catalog, based on the value of isophotal_abmag in
the source catalog. Defaults to None.

Reference Files

The background image subtraction step uses reference files only when processing Wide-Field Slitless Spectroscopy
(WFSS) exposures. Two reference files are used for WFSS mode: WFSSBKG and WAVELENGTHRANGE. The
WAVELENGTHRANGE reference file is used in the process of determining the locations of source spectra in the
image, and conversely the image areas that contain only background signal.

WFSS Background reference file

REFTYPE
WFSSBKG

Data model
WfssBkgModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.WfssBkgModel.html#jwst.datamodels.WfssBkgModel)

The WFSS background reference file contains a “master” image of the dispersed background produced by a particular
filter+grism combination.

Reference Selection Keywords for WFSSBKG

CRDS selects appropriate WFSSBKG references based on the following keywords. WFSSBKG is not applicable for
instruments not in the table.

Instrument Keywords
NIRCam INSTRUME, EXP_TYPE, DETECTOR, FILTER, PUPIL, DATE-OBS, TIME-OBS
NIRISS INSTRUME, EXP_TYPE, DETECTOR, FILTER, PUPIL, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

15.1. Package Index 197

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.WfssBkgModel.html#jwst.datamodels.WfssBkgModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for WFSSBKG

In addition to the standard reference file keywords listed above, the following keywords are required in WFSSBKG
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for WFSSBKG):

Keyword Data Model Name
DETECTOR model.meta.instrument.detector
EXP_TYPE model.meta.exposure.type
FILTER model.meta.instrument.filter
PUPIL model.meta.instrument.pupil

Reference File Format

WFSSBKG reference files are FITS files with 3 IMAGE extensions and 1 BINTABLE extension. The FITS primary
HDU does not contain a data array. The characteristics of the FITS extensions are as follows:

EXTNAME XTENSION NAXIS Dimensions Data type
SCI IMAGE 2 ncols x nrows float
ERR IMAGE 2 ncols x nrows float
DQ IMAGE 2 ncols x nrows integer
DQ_DEF BINTABLE 2 TFIELDS = 4 N/A

The DQ_DEF extension contains the bit assignments used in the DQ array. It contains the following 4 columns:

TTYPE TFORM Description
BIT integer The bit number, starting at zero
VALUE integer The equivalent base-10 value of BIT
NAME string The mnemonic name of the data quality condition
DESCRIPTION string A description of the data quality condition

NOTE: For more information on standard bit definitions see: Data Quality Flags.

WAVELENGTHRANGE Reference File

REFTYPE
WAVELENGTHRANGE

Data model
WavelengthrangeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.WavelengthrangeModel.html#jwst.datamodels.WavelengthrangeModel)

The WAVELENGTHRANGE reference file contains information on the minimum and maximum wavelengths of var-
ious spectroscopic modes, which can be order-dependent. The reference data are used to construct bounding boxes
around the spectral traces produced by each object in the NIRCam and NIRISS WFSS modes. If a list of GrismObject
is supplied, then no reference file is necessary.

198 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.WavelengthrangeModel.html#jwst.datamodels.WavelengthrangeModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference Selection Keywords for WAVELENGTHRANGE

CRDS selects appropriate WAVELENGTHRANGE references based on the following keywords. WAVELENGTH-
RANGE is not applicable for instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
MIRI INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRCam INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRISS INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRSpec INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for WAVELENGTHRANGE

In addition to the standard reference file keywords listed above, the following keywords are required in WAVELENGTH-
RANGE reference files

Keyword Data Model Name
EXP_TYPE model.meta.exposure.type

These keywords are used as CRDS selectors

15.1. Package Index 199

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference Selection Keywords for WAVELENGTHRANGE

CRDS selects appropriate WAVELENGTHRANGE references based on the following keywords. WAVELENGTH-
RANGE is not applicable for instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
MIRI INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRCam INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRISS INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRSpec INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS

Reference File Format

WAVELENGTHRANGE reference files are in ASDF format, with the format and contents specified by the
WavelengthrangeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.WavelengthrangeModel.html#jwst.datamodels.WavelengthrangeModel)
data model schema. The exact content varies a bit depending on instrument mode, as explained in the following
sections.

MIRI MRS

For MIRI MRS, the WAVELENGTHRANGE file consists of two fields that define the wavelength range for each
combination of channel and band.

channels
An ordered list of all possible channel and band combinations for MIRI MRS, e.g. “1SHORT”.

wavelengthrange
An ordered list of (lambda_min, lambda_max) for each item in the list above

NIRSpec

For NIRSpec, the WAVELENGTHRANGE file is a dictionary storing information about default wavelength range and
spectral order for each combination of filter and grating.

filter_grating
order

Default spectral order

range
Default wavelength range

200 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.WavelengthrangeModel.html#jwst.datamodels.WavelengthrangeModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NIRCam WFSS, NIRCam TSGRISM, NIRISS WFSS

For NIRCam WFSS and TSGRIM modes, as well as NIRISS WFSS mode, the WAVELENGTHRANGE reference file
contains the wavelength limits to use when calculating the minimum and maximum dispersion extents on the detector.
It also contains the default list of orders that should be extracted for each filter. To be consistent with other modes, and
for convenience, it also lists the orders and filters that are valid with the file.

order
A list of orders this file covers

wavelengthrange
A list containing the list of [order, filter, wavelength min, wavelength max]

waverange_selector
The list of FILTER names available

extract_orders
A list containing the list of orders to extract for each filter

jwst.background Package

Classes

BackgroundStep([name, parent, config_file, ...]) BackgroundStep: Subtract background exposures from
target exposures.

BackgroundStep

class jwst.background.BackgroundStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

BackgroundStep: Subtract background exposures from target exposures.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

15.1. Package Index 201

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

bkg_suffix

class_alias

reference_file_types

spec

Methods Summary

process(input, bkg_list) Subtract the background signal from target exposures
by subtracting designated background images from
them.

Attributes Documentation

bkg_suffix = 'combinedbackground'

class_alias = 'background'

reference_file_types = ['wfssbkg', 'wavelengthrange']

spec

save_combined_background = boolean(default=False) # Save combined background␣
→˓image
sigma = float(default=3.0) # Clipping threshold
maxiters = integer(default=None) # Number of clipping iterations
wfss_mmag_extract = float(default=None) # WFSS minimum abmag to extract

Methods Documentation

process(input, bkg_list)
Subtract the background signal from target exposures by subtracting designated background images from
them.

Parameters
• input (JWST data model) – input target data model to which background subtraction is

applied

• bkg_list (filename list) – list of background exposure file names

Returns
result – the background-subtracted target data model

Return type
JWST data model

202 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Class Inheritance Diagram

BackgroundStepJwstStepStep

15.1.9 Background Subtraction

Introduction

Subtraction of background signal can take several different forms depending on the observing mode and the available
data. Here we give an overview of the different methods that are available, when they can be used, and where they
occur in the processing flow. Imaging and spectroscopic observations share one method for background subtraction,
while others are unique to spectroscopic data only. See the documentation for the individual steps mentioned here for
complete details on how each of them function.

Imaging Mode

Background subtraction for imaging data is currently available in several places within the calibration pipeline stages.

1. Image-from-image subtraction can be performed by the background step during calwebb_image2 processing.
The background images come from observations of a dedicated background target.

2. Background matching and subtraction can be performed within an ensemble of images by the skymatch step
during calwebb_image3 processing.

3. Local background subtraction for individual sources can be performed by the source_catalog step within the
calwebb_image3 pipeline.

Spectroscopic Modes

Spectroscopic observations allow for some additional ways of performing background subtraction. The list of options
includes:

1. Image-from-image subtraction can be performed by the background step during calwebb_spec2 processing. The
background images can come from:

a) Observations of a dedicated background target

b) Nodded observations of a point-like science target

2. Subtraction of a “master” background spectrum, where the master background spectrum can come from:

a) Observations of a dedicated background target

b) Nodded observations of a point-like science target

c) Dedicated background slitlets in a NIRSpec MOS exposure

d) A user-supplied spectrum

15.1. Package Index 203

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

3. Local background subtraction for individual spectral can be performed by the extract_1d step when doing 1D
spectral extraction.

The following table shows the list of image-from-image and master background subtraction methods available for
various spectroscopic observation modes, and indicates the pipeline and step in which the subtraction operation occurs.
The table also shows which method is applied by default in the operational pipeline when the available data support
multiple methods.

Note: Master background subtraction is applied in the calwebb_spec3 pipeline for most spectroscopic modes, but for
NIRSpec MOS mode it is applied during calwebb_spec2 processing.

Mode calwebb_spec2
background

calwebb_spec3
master_background

calwebb_spec2
master_background_nrs_slits

NIRSpec Fixed
Slit:
Dedicated back-
ground

Default Optional

Nodded point
source

Default Optional

User supplied Default
NIRSpec IFU:
Dedicated back-
ground

Default Optional

Nodded point
source

Default Optional

User supplied Default
NIRSpec MOS:
Background
slitlets

Default

Nodded point
source

Default

User supplied Default
MIRI LRS
Fixed Slit:
Dedicated back-
ground

Default Optional

Nodded point
source

Default Optional

User supplied Default
MIRI MRS:
Dedicated back-
ground

Default Optional

Nodded point
source

Default Optional

User supplied Default

These background subtraction methods are only available for the observing modes listed in the table. Other spectro-
scopic modes, including NIRCam and NIRISS Wide Field Slitless Spectroscopy (WFSS), NIRCam Time Series Grism,
NIRISS Single Object Slitless Spectroscopy (SOSS), and MIRI LRS slitless, use other ways of handling background.

204 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Image-from-Image Subtraction

As explained in the documentation for the background step, this process combines one or more exposures to be treated as
backgrounds into a sigma-clipped mean background image, which is then directly subtracted, in detector space, from
an exposure being processed in the calwebb_image2 or calwebb_spec2 pipelines for imaging or spectroscopic data,
respectively. For imaging mode observations this is only possible when observations of a designated background target
have been obtained. For spectroscopic modes this is possible either through observations of a designated background
target or when nodded exposures of a point-like target are obtained (e.g. using the MIRI LRS “ALONG-SLIT-NOD”
dither pattern for an LRS fixed slit observation). Exposures from one nod position can be used as background for
exposures at the other nod position, assuming the source is point-like.

In either instance, the exposures to be used as background are included in the image2 or spec2ASN file used to process
the science target exposures, where the background exposures are labeled with an ASN member type of “background”.

Spectroscopic observations that have designated background target exposures or nodded exposures can use either the
image-from-image or master background subtraction methods. In the operational pipeline the image-from-image sub-
traction method is applied by default and the master background subtraction is skipped. A user has the option to
reprocess the data and apply the other method, if desired.

Master Background Subtraction

In general, the master background subtraction method works by taking a 1D background spectrum, interpolating it
back into the 2D space of a science image, and then subtracting it. This allows for higher SNR background data to be
used than what might be obtainable by doing direct image-from-image subtraction using only one or a few background
images. The 1D master background spectrum can either be constructed on-the-fly by the calibration pipeline from
available background data or supplied by the user. See the documentation for the master background subtraction step
for full details.

As with image-from-image subtraction, there are different ways of obtaining the data necessary for constructing a
master background spectrum, depending on the observing mode:

1. Observations of a designated background target

2. Nodded observations of a point-like source

3. Dedicated background slitlets in a NIRSpec MOS exposure

4. User-supplied master background spectrum

All of these scenarios apply the master background subtraction during calwebb_spec3 processing, except for NIRSpec
MOS observations. Master background subtraction for NIRSpec MOS, using either data from background slitlets
contained in each MOS exposure or a user-supplied master background spectrum, is applied during calwebb_spec2,
due to unique methods that must be used for MOS exposures.

For scenarios that apply master background subtraction during calwebb_spec3 processing, the fully-calibrated 1D spec-
tra (“x1d” products) from either dedicated background target exposures or nodded science exposures are used by the
master_background step to construct the 1D master background spectrum. These are the x1d products created during
the last step of the preceding calwebb_spec2 pipeline when it is used to process each exposure. Again, see the doc-
umentation for the master background subtraction step for full details of the source of the background data for these
scenarios.

If the user supplies a 1D master background spectrum, the construction of the master background spectrum in the
pipeline is skipped and the user-supplied spectrum is used in its place. This applies to all modes, including NIRSpec
MOS.

As mentioned above, NIRSpec MOS observations require special handling to correctly apply master background sub-
traction. If a MOS observation uses an MSA configuration that includes one or more slitlets containing only background
signal, the background slitlets are fully calibrated and extracted to produce one or more 1D background spectra. The
background spectra are combined into a 1D master background spectrum, which is then interpolated back into the 2D

15.1. Package Index 205

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

space of all slitlets and subtracted. If the user supplies a master background spectrum for a MOS observation, that
spectrum is used to do the subtraction. Again note that for NIRSpec MOS mode these operations take place during
calwebb_spec2 pipeline processing, not calwebb_spec3 like all other modes.

15.1.10 Barshadow Correction

Description

Class
jwst.barshadow.BarShadowStep

Alias
barshadow

Overview

The barshadow step calculates the correction to be applied to NIRSpec MSA data for extended sources due to the bar
that separates adjacent microshutters. This correction is applied to MultiSlit data after the pathloss correction has been
applied in the calwebb_spec2 pipeline.

Input details

The input data must have been processed through the extract_2d step, so that cutouts have been created
for each of the slitlets used in the exposure. Hence the input must be in the form of a MultiSlitModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel).

It is also assumed that the input data have been processed through the srctype step, which for NIRSpec MSA exposures
sets the SRCTYPE keyword value for each slit to “POINT”, “EXTENDED”, or “UNKNOWN.” If the source type is
“EXTENDED” or “UNKNOWN”, or the SRCTYPE keyword is not present, the default action is to treat the source as
extended and apply the barshadow correction. If SRCTYPE=”POINT” for a given slit, the correction is not applied.

Algorithm

The step loops over all slit instances contained in the input exposure, computing and applying the barshadow correction
to each slit for which the source type has been determined to be extended.

The BARSHADOW Reference File contains the correction as a function of Y and wavelength for a single open shutter
(the DATA1X1 extension), and for 2 adjacent open shutters (DATA1X3). This allows on-the-fly construction of a
model for any combination of open and closed shutters. The shutter configuration of a slitlet is contained in the attribute
shutter_state, which shows whether the shutters of the slitlet are open, closed, or contain the source. Once the correction
as a function of Y and wavelength is calculated, the WCS transformation from the detector to the slit frame is used
to calculate Y and wavelength for each pixel in the cutout. The Y values are scaled from shutter heights to shutter
spacings, and then the Y and wavelength values are interpolated into the model to determine the correction for each
pixel.

Once the 2-D correction array for a slit has been computed, it is applied to the science (SCI), error (ERR), and variance
(VAR_POISSON, VAR_RNOISE, and VAR_FLAT) data arrays of the slit. The correction values are divided into the
SCI and ERR arrays, and the square of the correction values are divided into the variance arrays.

206 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Output product

The output is a new copy of the input MultiSlitModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel),
with the corrections applied to the slit data arrays. The 2-D correction array for each slit is also added to the datamodel
in the “BARSHADOW” extension.

Step Arguments

The barshadow step has the following optional arguments.

--inverse (boolean, default=False)
A flag to indicate whether the math operations used to apply the correction should be inverted (i.e. multiply the
correction into the science data, instead of the usual division).

--source_type (string, default=None)
Force the processing to use the given source type (POINT, EXTENDED), instead of using the information con-
tained in the input data.

Reference Files

The barshadow step uses a BARSHADOW reference file.

BARSHADOW Reference File

REFTYPE
BARSHADOW

Data model
BarshadowModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.BarshadowModel.html#jwst.datamodels.BarshadowModel)

Reference Selection Keywords for BARSHADOW

CRDS selects appropriate BARSHADOW references based on the following keywords. BARSHADOW is not appli-
cable for instruments not in the table.

Instrument Keywords
NIRSpec INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

15.1. Package Index 207

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.BarshadowModel.html#jwst.datamodels.BarshadowModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for BARSHADOW

In addition to the standard reference file keywords listed above, the following keywords are required in BARSHADOW
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for BARSHADOW):

Keyword Data Model Name
EXP_TYPE model.meta.exposure.type

Reference File Format

BARSHADOW reference files are FITS format, with 4 IMAGE extensions. The FITS primary data array is assumed
to be empty. The format and content of the file is as follows:

EXTNAME XTENSION NAXIS Dimensions Data type
DATA1X1 IMAGE 2 101x1001 float
VAR1X1 IMAGE 2 101x1001 float
DATA1X3 IMAGE 2 101x1001 float
VAR1X3 IMAGE 2 101x1001 float

The slow direction has 1001 rows and gives the dependence of the bar shadow correction on the Y location of a pixel
from the center of the shutter. The fast direction has 101 rows and gives the dependence of the bar shadow correction
of wavelength. The WCS keywords CRPIX1/2, CRVAL1/2 and CDELT1/2 tell how to convert the pixel location in the
reference file into a Y location and wavelength. The initial version of the reference file has Y varying from -1.0 for row
1 to +1.0 at row 1001, and the wavelength varying from 0.6x10-6 m to 5.3x10-6 m.

An example extension header is as follows:

208 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

XTENSION = ‘IMAGE ‘ / Image extension
BITPIX = -64 / array data type
NAXIS = 2 / number of array dimensions
NAXIS1 = 101
NAXIS2 = 1001
PCOUNT = 0 / number of parameters
GCOUNT = 1 / number of groups
EXTNAME = ‘DATA1x1 ‘ / extension name
BSCALE = 1.0
BZERO = 0.0
BUNIT = ‘UNITLESS’
CTYPE1 = ‘METER ‘
CTYPE2 = ‘UNITLESS’
CDELT1 = 4.7E-08
CDELT2 = 0.002
CRPIX1 = 1.0
CRPIX2 = 1.0
CRVAL1 = 6E-07
CRVAL2 = -1.0
APERTURE = ‘MOS1x1 ‘
HEIGHT = 0.00020161

jwst.barshadow Package

Classes

BarShadowStep([name, parent, config_file, ...]) BarShadowStep: Inserts the bar shadow and wavelength
arrays into the data.

BarShadowStep

class jwst.barshadow.BarShadowStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

BarShadowStep: Inserts the bar shadow and wavelength arrays into the data.

Bar shadow correction depends on the position of a pixel along the slit and the wavelength. It is only applied to
uniform sources and only for NRS MSA data.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

15.1. Package Index 209

https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) Perform the barshadow correction step

Attributes Documentation

class_alias = 'barshadow'

reference_file_types = ['barshadow']

spec

inverse = boolean(default=False) # Invert the operation
source_type = string(default=None) # Process as specified source type.

Methods Documentation

process(input)
Perform the barshadow correction step

Parameters
input (JWST datamodel) – input JWST datamodel object

Returns
result – JWST datamodel object with barshadow extension(s) added

Return type
jwst datamodel

210 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Class Inheritance Diagram

BarShadowStepJwstStepStep

15.1.11 Charge Migration

Description

Class
jwst.charge_migration.ChargeMigrationStep

Alias
charge_migration

Overview

This step corrects for an artifact seen in undersampled NIRISS images that may depress flux in resampled images. The
artifact is seen in dithered images where the star is centered in a pixel. When the peak pixels of such stars approach
the saturation level, they suffer from significant charge migration: the spilling of charge from a saturated pixel into its
neighboring pixels. This charge migration causes group-to-group differences to decrease significantly once the signal
level is greater than ~25,000 ADU. As a result, the last several groups of these ramps get flagged by the jump step.
The smaller number of groups used for these pixels in the ramp_fitting step results in them having larger read noise
variances, which in turn leads to lower weights used during resampling. This ultimately leads to a lower than normal
flux for the star in resampled images.

Once a group in a ramp has been flagged as affected by charge migration, all subsequent groups in the ramp are also
flagged. By flagging these groups, they are not used in the computation of slopes in the ramp_fitting step. However, as
described in the algorithm section below, they _are_ used in the calculation of the variance of the slope due to readnoise.

Input details

The input must be in the form of a RampModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel).

Algorithm

The first group, and all subsequent groups, exceeding the value of the signal_threshold parameter is flagged as
CHARGELOSS. signal_threshold is in units of ADUs. These groups will also be flagged as DO_NOT_USE, and
will not be included in the slope calculation during the ramp_fitting step. Despite being flagged as DO_NOT_USE,
these CHARGELOSS groups are still included in the calculation of the variance due to readnoise. This results in a
readnoise variance for undersampled pixels that is similar to that of pixels unaffected by charge migration. For the
Poisson noise variance calculation in ramp_fitting, the CHARGELOSS/DO_NOT_USE groups are not included.

For integrations having only 1 or 2 groups, no flagging will be performed.

15.1. Package Index 211

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Output product

The output is a new copy of the input RampModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel),
with the updated DQ flags added to the GROUPDQ array.

Arguments

The charge migration step has one optional argument that can be set by the user:

• --signal_threshold: A floating-point value in units of ADU for the science value above which a group’s DQ
will be flagged as CHARGELOSS and DO_NOT_USE.

Reference Files

This step does not use any reference files.

jwst.charge_migration Package

Classes

ChargeMigrationStep([name, parent, ...]) This Step sets the CHARGELOSS flag for groups ex-
hibiting significant charge migration.

ChargeMigrationStep

class jwst.charge_migration.ChargeMigrationStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

This Step sets the CHARGELOSS flag for groups exhibiting significant charge migration.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

212 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'charge_migration'

spec

signal_threshold = float(default=25000)
skip = boolean(default=True)

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

ChargeMigrationStepJwstStepStep

15.1. Package Index 213

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

15.1.12 Combine 1D Spectra

Description

Class
jwst.combine_1d.Combine1dStep

Alias
combine_1d

The combine_1d step computes a weighted average of 1-D spectra and writes the combined 1-D spectrum as output.

The combination of spectra proceeds as follows. For each pixel of each input spectrum, the corresponding pixel in the
output is identified (based on wavelength), and the input value multiplied by the weight is added to the output buffer.
Pixels that are flagged (via the DQ column) with “DO_NOT_USE” will not contribute to the output. After all input
spectra have been included, the output is normalized by dividing by the sum of the weights.

The weight will typically be the integration time or the exposure time, but uniform (unit) weighting can be specified
instead.

The only part of this step that is not completely straightforward is the determination of wavelengths for the output
spectrum. The output wavelengths will be increasing, regardless of the order of the input wavelengths. In the ideal
case, all input spectra would have wavelength arrays that were very nearly the same. In this case, each output wavelength
would be computed as the average of the wavelengths at the same pixel in all the input files. The combine_1d step is
intended to handle a more general case where the input wavelength arrays may be offset with respect to each other, or
they might not align well due to different distortions. All the input wavelength arrays will be concatenated and then
sorted. The code then looks for “clumps” in wavelength, based on the standard deviation of a slice of the concatenated
and sorted array of input wavelengths; a small standard deviation implies a clump. In regions of the spectrum where
the input wavelengths overlap with somewhat random offsets and don’t form any clumps, the output wavelengths are
computed as averages of the concatenated, sorted input wavelengths taken N at a time, where N is the number of
overlapping input spectra at that point.

Input

An association file specifies which file or files to read for the input data. Each input data file contains one or more 1-D
spectra in table format, e.g. as written by the extract_1d step. Each input data file will ordinarily be in MultiSpecModel
format (which can contain more than one spectrum).

The association file should have an object called “products”, which is a one-element list containing a dictionary. This
dictionary contains two entries (at least), one with key “name” and one with key “members”. The value for key “name”
is a string, the name that will be used as a basis for creating the output file name. “members” is a list of dictionaries,
each of which contains one input file name, identified by key “expname”.

Output

The output will be in CombinedSpecModel format, with a table extension having the name COMBINE1D. This exten-
sion will have eight columns, giving the wavelength, flux, error estimate for the flux, surface brightness, error estimate
for the surface brightness, the combined data quality flags, the sum of the weights that were used when combining the
input spectra, and the number of input spectra that contributed to each output pixel.

214 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Step Arguments

The combine_1d step has one step-specific argument:

--exptime_key
This is a case-insensitive string that identifies the metadata element (or FITS keyword) for the weight to apply
to the input data. The default is “integration_time”. If the string is “effinttm” or starts with “integration”, the
integration time (FITS keyword EFFINTTM) is used as the weight. If the string is “effexptm” or starts with
“exposure”, the exposure time (FITS keyword EFFEXPTM) is used as the weight. If the string is “unit_weight”
or “unit weight”, the same weight (1) will be used for all input spectra. If the string is anything else, a warning
will be logged and unit weight will be used.

Reference File

This step does not use any reference file.

jwst.combine_1d Package

Classes

Combine1dStep([name, parent, config_file, ...]) Combine1dStep: Combine 1-D spectra

Combine1dStep

class jwst.combine_1d.Combine1dStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

Combine1dStep: Combine 1-D spectra

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

15.1. Package Index 215

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

spec

Methods Summary

process(input_file) This is where real work happens.

Attributes Documentation

class_alias = 'combine_1d'

spec

exptime_key = string(default="exposure_time") # use for weight

Methods Documentation

process(input_file)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

Combine1dStepJwstStepStep

15.1.13 Cube Building

Description

Class
jwst.cube_build.CubeBuildStep

Alias
cube_build

216 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

The cube_build step takes MIRI or NIRSpec IFU calibrated 2-D images and produces 3-D spectral cubes. The 2-D
disjointed IFU slice spectra are corrected for distortion and assembled into a rectangular cube with three orthogonal
axes: two spatial and one spectral.

The cube_build step can accept several different forms of input data, including:

1. A single file containing a 2-D IFU image

2. A data model (IFUImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel))
containing a 2-D IFU image

3. An association table (in json format) containing a list of input files

4. A model container with several 2-D IFU data models

There are a number of arguments the user can provide either in a parameter file or on the command line that control
the sampling size of the cube, as well as the type of data that is combined to create the cube. See the Step Arguments
section for more details.

Assumptions

It is assumed that the assign_wcs step has been applied to the data, attaching the distortion and pointing information to
the image(s). It is also assumed that the photom step has been applied to convert the pixel values from units of count
rate to surface brightness. This step will only work with MIRI or NIRSpec IFU data. The cube_build algorithm is a
flux conserving method, requires the input data to be in units of surface brightness (MJy/sr), and produces 3-D cubes
also in units of surface brightness. 1-D spectral extraction from these cubes may then produce spectra either in surface
brightness units of MJy/sr or in flux units of Jy.

The NIRSpec calibration plan for point source data is designed to produce units of flux density from the calwebb_spec2
pipeline. For NIRSpec IFU point source data the calwebb_spec2 pipeline divides the flux values by a pixel area map to
produce pseudo surface brightness units (MJy/steradian). This allows the cube_build program to conserve flux when
it combines and resamples the data. True fluxes are produced only at the extract_1d_step, in which a 1D spectrum is
extracted from the cube using an appropriate extraction aperture, with resulting units of Jy.

Instrument Information

The JWST integral field unit (IFU) spectrographs obtain simultaneous spectral and spatial data on a relatively compact
region of the sky.

The MIRI Medium Resolution Spectrometer (MRS) consists of four IFUs providing simultaneous and overlapping
fields of view ranging from ~3.3” x 3.7” to ~7.2” x 7.7” and covering a wavelength range of 5-28 microns. The optics
system for the four IFUs is split into two paths. One path is dedicated to the two short wavelength IFUs and the other
one handles the two longer wavelength IFUs. There is one 1024 x 1024 detector for each path. Light entering the MRS
is spectrally separated into four channels by dichroic mirrors. Each of these channels has its own IFU that divides the
image into several slices. Each slice is then dispersed using a grating spectrograph and imaged on one half of a detector.
While four channels are observed simultaneously, each exposure only records the spectral coverage of approximately
one third of the full wavelength range of each channel. The full 5-28 micron spectrum is obtained by making three
exposures using three different gratings and three different dichroic sets. We refer to a sub-channel as one of the three
possible configurations (A/B/C) of the channel where each sub-channel covers ~1/3 of the full wavelength range for
the channel. Each of the four channels has a different sampling of the field, so the FOV, slice width, number of slices,
and plate scales are different for each channel.

The NIRSpec IFU has a 3 x 3 arcsecond field of view that is sliced into thirty 0.1 arcsecond regions. Each slice
is dispersed by a prism or one of six diffraction gratings. The NIRSpec IFU gratings provide high-resolution and
medium resolution spectroscopy while the prism yields lower-resolution spectroscopy. The NIRSpec detector focal
plane consists of two HgCdTe sensor chip assemblies (SCAs). Each SCA is a 2-D array of 2048 x 2048 pixels. For

15.1. Package Index 217

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

low or medium resolution IFU data the 30 slices are imaged on a single NIRSpec SCA. In high resolution mode the 30
slices are imaged on the two NIRSpec SCAs.

Terminology

General IFU Terminology

pixel
A pixel is a physical 2-D element of the detector focal plane arrays.

spaxel
A spaxel is a 2-D spatial element of an IFU rectified data cube. Each spaxel in a data cube has an associated
spectrum composed of many voxels.

voxel
A voxel is 3-D volume element within an IFU rectified data cube. Each voxel has two spatial dimensions and
one spectral dimension.

MIRI Spectral Range Divisions

We use the following terminology to define the spectral range divisions of MIRI:

Channel
The spectral range covered by each MIRI IFU. The channels are labeled as 1, 2, 3 and 4.

Sub-Channel
The 3 sub-ranges that a channel is divided into. These are designated as Short (A), Medium (B), and Long (C).

Band
For MIRI, band is one of the 12 contiguous wavelength intervals (four channels times three sub-channels each)
into which the spectral range of the MRS is divided. Each band has a unique channel/sub-channel combination.
For example, the shortest wavelength range on MIRI is covered by Band 1-SHORT (aka 1A) and the longest is
covered by Band 4-LONG (aka 4C).

For NIRSpec we define a band as a single grating-filter combination, e.g. G140M-F070LP. The possible grat-
ing/filter combinations for NIRSpec are given in the table below.

NIRSpec IFU Disperser and Filter Combinations

Grating Filter Wavelength (microns)*
Prism Clear 0.6 -5.3
G140M F070LP 0.90 - 1.27
G140M F100LP 0.97 - 1.89
G235M F170LP 1.66 - 3.17
G395M F290LP 2.87 - 5.27
G140H F070LP 0.95 - 1.27
G140H F100LP 0.97 - 1.89
G235H F170LP 1.66 - 3.17
G395H F290LP 2.87 - 5.27

218 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• Approximate wavelength ranges are given to aid in explaining how to build NIRSpec IFU cubes, see
NIRSpec Spectral configuration (https://jwst-docs.stsci.edu/jwst-near-infrared-spectrograph/nirspec-observing-
modes/nirspec-ifu-spectroscopy#NIRSpecIFUSpectroscopy-Spectralconfigurations).

Types of Output Cubes

The output 3-D spectral data consist of rectangular cube with three orthogonal axes: two spatial and one spectral.
Depending on how cube_build is run the spectral axes can be either linear or non-linear. Linear wavelength IFU cubes
are constructed from a single band of data, while non-linear wavelength IFU cubes are created from more than one
band of data. If the IFU cubes have a non-linear wavelength dimension there will be an added binary extension table to
the output fits IFU cube. This extension has the label WCS-TABLE and contains the wavelengths for each of the IFU
cube wavelength planes. This table follows the FITs standard described in, Representations of spectral coordinates in
FITS, Greisen, et al., A & A 446, 747-771, 2006.

The input data to cube_build can take a variety of forms, including a single file, a data model passed from another
pipeline step, a list of files in an association table, or a collection of exposures in a data model container (ModelCon-
tainer) passed in by the user or from a preceding pipeline step. Because the MIRI IFUs project data from two channels
onto a single detector, choices can or must be made as to which parts of the input data to use when constructing the
output cube even in the simplest case of a single input image. The default behavior varies according to the context in
which cube_build is being run.

In the case of the calwebb_spec2 pipeline, for example, where the input is a single MIRI or NIRSpec IFU exposure,
the default output cube will be built from all the data in that single exposure. For MIRI this means using the data from
both channels (e.g. 1A and 2A) that are recorded in a single exposure and the output IFU cube will have a non-linear
wavelength dimension. For NIRSpec the data is from the single grating and filter combination contained in the exposure
and will have a linear wavelength dimension. The calwebb_spec2 pipeline calls cube_build with output_type=multi.

In the calwebb_spec3 pipeline, on the other hand, where the input can be a collection of data from multiple exposures
covering multiple bands, the default behavior is to create a set of single-channel cubes. For MIRI, for example, this can
mean separate cubes for channel 1, 2, 3 and 4. depending on what’s included in the input. For NIRSpec this may mean
multiple cubes, one for each grating+filter combination contained in the input collection. The calwebb_spec3 pipeline
calls cube_build with output_type=band. These types of IFU cubes will have a linear-wavelength dimension. If the
user wants to combine all the data together covering several band they can using the option output_type=multi and
the resulting IFU cubes will have a non-linear wavelength dimension.

Several cube_build step arguments are available to allow the user to control exactly what combinations of input data
are used to construct the output cubes. The IFU cubes are constructed, by default, on the sky with north pointing up
and east to the left. There are also options to change the output coordinate system, see the Step Arguments section for
details.

Output Cube Format

The output spectral cubes are stored in FITS files that contain 4 IMAGE extensions. The primary data array is empty
and the primary header holds the basic parameters of the observations that went into making the cube. The 4 IMAGE
extensions have the following characteristics:

EXTNAME NAXIS Dimensions Data type
SCI 3 2 spatial and 1 spectral float
ERR 3 2 spatial and 1 spectral float
DQ 3 2 spatial and 1 spectral integer
WMAP 3 2 spatial and 1 spectral integer

15.1. Package Index 219

https://jwst-docs.stsci.edu/jwst-near-infrared-spectrograph/nirspec-observing-modes/nirspec-ifu-spectroscopy#NIRSpecIFUSpectroscopy-Spectralconfigurations

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

The SCI image contains the surface brightness of cube spaxels in units of MJy/steradian. The wavelength dimension
of the IFU cube can either be linear or non-linear. If the wavelength is non-linear, then the IFU cube contains data from
more than one band. A table containing the wavelength of each plane is provided and conforms to the ‘WAVE_TAB’
fits convention. The wavelengths in the table are read in from the cubepar reference file. The ERR image contains the
uncertainty on the SCI values, the DQ image contains the data quality flags for each spaxel, and the WMAP image
contains the number of detector pixels contributing to a given voxel. The data quality flag does not propagate the dq
flags from previous steps but is defined in the cube build step as: good data (value = 0), non_science (value = 512),
do_not_use(value =1), or a combination of non_science and do_not_use (value = 513).

The SCI and ERR cubes are populated with NaN values for voxels where there is no valid data (e.g., outside the IFU
cube footprint or for saturated pixels for which no slope could be measured).

Output Product Name

If the input data is passed in as an ImageModel, then the IFU cube will be passed back as an IFUCubeModel. The cube
model will be written to disk at the end of processing. The file name of the output cube is based on a rootname plus
a string defining the type of IFU cube, along with the suffix ‘s3d.fits’. If the input data is a single exposure, then the
rootname is taken from the input filename. If the input is an association table, the rootname is defined in the association
table. The string defining the type of IFU is created according to the following rules:

• For MIRI the output string name is determined from the channels and sub-channels used. The IFU string for
MIRI is ‘ch’+ channel numbers used plus a string for the subchannel. For example if the IFU cube contains
channel 1 and 2 data for the short subchannel, the output name would be, rootname_ch1-2_SHORT_s3d.fits. If
all the sub-channels were used then the output name would be rootname_ch-1-2_ALL_s3d.fits.

• For NIRSpec the output string is determined from the gratings and filters used. The gratings are grouped to-
gether in a dash (-) separated string and likewise for the filters. For example if the IFU cube contains data from
grating G140M and G235M and from filter F070LP and F100LP, the output name would be, rootname_G140M-
G225_F070LP-F100LP_s3d.fits

Algorithm

The type of output IFU cube created depends on which pipeline is being run, calwebb_spec2 or calwebb_spec3, and
if additional user provided options are being set (see the Step Arguments section.). Based on the pipeline setting and
any user provided arguments defining the type of cubes to create, the program selects the data from each exposure that
should be included in the spectral cube. The output cube is defined using the WCS information of all the input data.
The input data are mapped to the output frame based on the wcs information that is filled in by the assign_wcs step, this
mapping includes any dither offsets. Therefore, the default output cube WCS defines a field-of-view that encompasses
the undistorted footprints on the sky of all the input images. The output sampling scale in all three dimensions for
the cube is defined by a cubepar reference file as a function of wavelength, and can also be changed by the user. The
cubepar reference file contains a predefined scale to use for each dimension for each band. If the output IFU cube
contains more than one band, then for MIRI the output scale corresponds to the channel with the smallest scale. In the
case of NIRSpec only gratings of the same resolution are combined together in an IFU cube. The default output spatial
coordinate system is right ascension-declination. There is an option to create IFU cubes in the coordinate system of
the NIRSpec or MIRI MIRS local ifu slicer plane (see Step Arguments, coord_system=’internal_cal’).

The pixels on each exposure that are to be included in the output are mapped to the cube coordinate system. This pixel
mapping is determined via a series of chained mapping transformations derived from the WCS of each input image and
the WCS of output cube. The mapping process corrects for the optical distortions and uses the spacecraft telemetry
information to map each pixel to its projected location in the cube coordinate system.

220 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Weighting

The JWST pipeline includes two methods for building IFU data cubes: the 3D drizzle approach (default), and an
alternative based on an exponential modified-Shepard method (EMSM) weighting function. The core principle of both
algorithms is to resample the 2-D detector data into a 3D rectified data cube in a single step while conserving flux. The
differences in the the techniques are how the detector pixels are weighted in the final 3D data cube.

3-D drizzling

The default method of cube building uses a 3-D drizzling technique analogous to that used by 2-D imaging modes with
an additional spectral overlap computation. It is used when weighting=drizzle. In the 3D drizzling we project the
2D detector pixels to their corresponding 3D volume elements and allocate their intensities to the individual voxels of
the final data cube according to their volumetric overlap. The drizzling algorithm computes the overlap between the
irregular projected volumes of the detector pixels and the regular grid of cube voxels, which, for simplicity, we assume
corresponds to the world coordinates (R. A., decl.,).

The detector pixels illuminated by JWST slicer-type IFUs contain a mixture of degenerate spatial and spectral infor-
mation. The spatial extent in the along-slice direction () and the spectral extent in the dispersion direction () both
vary continuously within the dispersed image of a given slice in a manner akin to a traditional slit spectrograph and
are sampled by the detector pixels (x, y). In contrast, the spatial extent in the across-slice direction () is set by the
IFU image slicer width and changes discretely between slices. The four corners of a detector pixel thus define a tilted
hexahedron in (,) space with the front and back faces of the polyhedron defined by the lines of constant created by the
IFU slicer. (,) is itself rotated (and incorporates some degree of optical distortion) with respect to world coordinates
(R.A., Decl.) and thus the volume element defined by a detector pixel is rotated in a complex manner with respect to
the cube voxels, see Figure 1. The iso- and iso- directions are not perfectly orthogonal to each other, and are similarly
tilted with respect to the detector pixel grid. However, since iso- is nearly aligned with the detector y-axis for MIRI (or
x- axis for NIRSpec) and iso- is nearly aligned with the detector x-axis for MIRI (or y-axis for NIRSpec), we make the
additional simplifying assumption to ignore this small tilt when computing the projected volume of the detector pixels.
Effectively, this means that the surfaces of the volume element are flat in the , , and planes, and the spatial and spectral
overlaps can be computed independently (see Figure 2).

With these simplifications, detector pixels project as rectilinear volumes into cube space. The detector pixel flux is re-
distributed onto a regular output grid according to the relative overlap between the detector pixels and cube voxels. The
weighting applied to the detector pixel flux is the product of the fractional spatial and spectral overlap between detector
pixels and cube voxels as a function of wavelength. The spatial extent of each detector pixel volume is determined from
the combination of the along-slice pixel size and the IFU slice width, both of which will be rotated at some angle with
respect to the output voxel grid of the final data cube. The spectral extent of each detector pixel volume is determined
by the wavelength range across the pixel in the dimension most closely matched to the dispersion axis (i.e., neglecting
small tilts of the dispersion direction with respect to the detector pixel grid). For more details on this method, see ‘A
3D Drizzle Algorithm for JWST and Practical Application to the MIRI Medium Resolution Spectrometer’, David R.
Law et al. 2023 AJ 166 45 (https://iopscience.iop.org/article/10.3847/1538-3881/acdddc).

Figure 1: Left: general case detector diagram in which the dispersion axis is tilted with respect to the detector
columns/rows, and the four corners of a given pixel (bold red outline) each have different wavelengths and along-
slice coordinates . Right: projection of this generalized detector pixel into the volumetric space of the final data cube.
The red hexahedron represents the detector pixel, where the three dimensions are set by the along-slice, across-slice,
and wavelength coordinates. The regular gray hexahedra represent voxels in a single wavelength plane of the data
cube. For clarity, the cube voxels are shown aligned with the (R.A., Decl.) celestial coordinate frame, but this choice
is arbitrary.

Figure 2: Same as Figure 1 but representing the simplified case in which the spectral dispersion is assumed to be aligned
with detector columns and the spatial distortion constant for all wavelengths covered by a given pixel. This assumption
reduces the computation of volumetric overlap between red and gray hexahedra to separable 1D and 2D computations.

15.1. Package Index 221

https://iopscience.iop.org/article/10.3847/1538-3881/acdddc

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

222 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Shepard’s method of weighting

The second approach to cube building is to use a flux-conserving variant of Shepard’s method. In this technique we
ignore the overlap between the detector pixel and cube voxel and instead treat each pixel as a single point when mapping
the detector to the sky. The mapping process results in an irregularly spaced “cloud of points” that sample the specific
intensity distribution at a series of locations on the sky. A schematic of this process is shown in Figure 3.

Figure 3: Schematic of two dithered exposures mapped to the IFU output coordinate system (black regular grid). The
plus symbols represent the point cloud mapping of detector pixels to effective sampling locations relative to the output
coordinate system at a given wavelength. The black points are from exposure one and the red points are from exposure
two.

Each point in the cloud represents a measurement of the specific intensity (with corresponding uncertainty) of the
astronomical scene at a particular location. The final data cube is constructed by combining each of the irregularly-
distributed samples of the scene into a regularly-sampled voxel grid in three dimensions for which each spaxel (i.e., a
spatial pixel in the cube) has a spectrum composed of many spectral elements. The final value of value of a given voxel
of the cube is a distance-weighted average of all point-cloud members within a given region of influence.

In order to explain this method we introduce the follow definitions:

• xdistance = distance between point in the cloud and voxel center in units of arc seconds along the x axis

• ydistance = distance between point in the cloud and voxel center in units of arc seconds along the y axis

• zdistance = distance between point in the cloud and voxel center in the lambda dimension in units of microns
along the wavelength axis

These distances are then normalized by the IFU cube voxel size for the appropriate axis:

• xnormalized = xdistance/(cube voxel size in x dimension [cdelt1])

• ynormalized = ydistance/(cube voxel size in y dimension [cdelt2])

• znormalized = zdistance/(cube voxel size in z dimension [cdelt3])

The final voxel value at a given wavelength is determined as the weighted sum of the point cloud members with a
spatial and spectral region of influence centered on the voxel. The default size of the region of influence is defined in
the cubepar reference file, but can be changed by the user with the options: rois and roiw.

15.1. Package Index 223

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

If n point cloud members are located within the ROI of a voxel, the voxel flux K =
∑︀𝑛

𝑖=1 𝐹𝑙𝑢𝑥𝑖𝑤𝑖∑︀𝑛
𝑖=1 𝑤𝑖

where the weighting weighting=emsm is:

𝑤𝑖 = 𝑒
−(𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑2

𝑖+𝑦𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑2
𝑖+𝑧𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑2

𝑖)
𝑠𝑐𝑎𝑙𝑒𝑓𝑎𝑐𝑡𝑜𝑟

The scale factor = scale rad/cdelt1, where scale rad is read in from the reference file and varies with wavelength.

If the alternative weighting function (set by weighting = msm) is selected then:

𝑤𝑖 =
1.0√

(𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑2
𝑖+𝑦𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑2

𝑖+𝑧𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑2
𝑖)

𝑝

In this weighting function the default value for p is read in from the cubepar reference file. It can also be set by the
argument weight_power=value.

Step Arguments

The default values for the step arguments are found in the CubeBuildStep.spec attribute. The user can override the
default values for a parameter if a step argument exist for the parameter.

The step arguments can be used to control the properties of the output IFU cube or to select subsets of data are used to
produce the output cubes. Note that some options will result in multiple cubes being created. For example, if the input
data span several bands, but output_type = band then a cube for each band will be created.

channel [string]
This is a MIRI only option and the valid values are 1, 2, 3, 4, and ALL. If the channel argument is given, then
only data corresponding to that channel will be used in constructing the cube. A comma-separated list can be
used to designate multiple channels. For example, to create a cube with data from channels 1 and 2, specify
the list as --channel='1,2'. All the sub-channels (bands) for the chosen channel(s) will be used to create the
IFU cube, unless the band argument is used to select specific bands. This parameter can be combined with the
output_type parameter to fully control the type of IFU cubes to make.

band [string]
This is a MIRI only option and the valid values are SHORT, MEDIUM, LONG, and ALL. If the band argument is
given, then only data corresponding to that sub-channel will be used in constructing the cube. Only one value can
be specified. Note we use the name band for this argument instead of subchannel, because the keyword band
in the input images is used to indicate which MIRI subchannel the data cover. This parameter can be combined
with the output_type parameter to fully control the type of IFU cubes to make.

grating [string]
This is a NIRSpec only option with valid values PRISM, G140M, G140H, G235M, G235H, G395M, G395H,
and ALL. If the option “ALL” is used, then all the gratings in the association are used. Because association
tables only contain exposures of the same resolution, the use of “ALL” will at most combine data from gratings
G140M, G235M, and G395M or G140H, G235H, and G395H. The user can supply a comma-separated string
containing the names of multiple gratings to use.

filter [string]
This is a NIRSpec only option with values of Clear, F100LP, F070LP, F170LP, F290LP, and ALL. To cover the
full wavelength range of NIRSpec, the option “ALL” can be used (provided the exposures in the association table
contain all the filters). The user can supply a comma-separated string containing the names of multiple filters to
use.

output_type [string]
This parameter has four valid options of Band, Channel, Grating, and Multi. This parameter can be combined
with the options above [band, channel, grating, filter] to fully control the type of IFU cubes to make.

• output_type = band creates IFU cubes containing only one band (channel/sub-channel for MIRI or
grating/filter combination for NIRSpec).

224 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• output_type = channel creates a single IFU cube from each unique channel of MIRI data (or just those
channels set by the ‘channel’ option). This is the default mode for the calwebb_spec3 pipeline for MIRI
data.

• output_type = grating combines all the gratings in the NIRSpec data or set by the grating option into
a single IFU cube. The is the default mode for the calwebb_spec3 pipeline for NIRSpec data.

• output_type = multi combines data into a single “uber” IFU cube, this the default mode for cal-
webb_spec2 pipeline. If in addition, channel, band, grating, or filter are also set, then only the data set
by those parameters will be combined into an “uber” cube.

The following arguments control the size and sampling characteristics of the output IFU cube.

scalexy
The output cube’s spaxel size for axis 1 and 2 (spatial).

scalew
The output cube’s spaxel size in axis 3 (wavelength).

wavemin
The minimum wavelength, in microns, to use in constructing the IFU cube.

wavemax
The maximum wavelength, in microns, to use in constructing the IFU cube.

ra_center
Right ascension center, in decimal degrees, of the IFU cube that defines the location of xi/eta tangent plane
projection origin.

dec_center
Declination center, in decimal degrees, of the IFU cube that defines the location of xi/eta tangent plane projection
origin.

cube_pa
The position angle of the IFU cube in decimal degrees (E from N).

nspax_x
The odd integer number of spaxels to use in the x dimension of the tangent plane.

nspax_y
The odd integer number of spaxels to use in the y dimension of the tangent plane.

coord_system [string]
The default IFU cubes are built on the ra-dec coordinate system (coord_system=skyalign). In these cubes
north is up and east is left. There are two other coordinate systems an IFU cube can be built on:

• coord_system=ifualign is also on the ra-dec system but the IFU cube is aligned with the instrument
IFU plane.

• coord_system=internal_cal is built on the local internal IFU slicer plane. These types of cubes will
be useful during commissioning. For both MIRI ad NIRSpec only a single band from a single exposure
can be used to create these type of cubes. The spatial dimensions for these cubes are two orthogonal axes,
one parallel and the perpendicular to the slices in the FOV.

There are a number of arguments that control how the point cloud values are combined together to produce the final
flux associated with each output spaxel flux. The first set defines the the region of interest, which defines the boundary
centered on the spaxel center of point cloud members that are used to find the final spaxel flux. The arguments related
to region of interest and how the fluxes are combined together are:

rois [float]
The radius of the region of interest in the spatial dimensions.

15.1. Package Index 225

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

roiw [float]
The size of the region of interest in the spectral dimension.

weighting [string]
The type of weighting to use when combining detector pixel fluxes to represent the spaxel flux. Allowed values
are emsm, msm and drizzle.

For more details on how the weighting of the detector pixel fluxes are used in determining the final spaxel flux
see the Weighting section.

A parameter only used for investigating which detector pixels contributed to a cube spaxel is debug_spaxel. This
option is only valid if the weighting parameter is set to drizzle (default).

debug_spaxel [string]

The string is the x,y,z value of the cube spaxel that is being investigated. The numbering starts counting
at 0. To print information to the screeen about the x = 10, y = 20, z = 35 spaxel the parameter string value
is ‘10 20 35’.

Examples of How to Run Cube_Build ================================= It is assumed that the input data
have been processed through the calwebb_detector1 pipeline and up through the photom step of the calwebb_spec2
pipeline.

Cube Building for MIRI data

To run cube_build on a single MIRI exposure (containing channel 1 and 2), but only creating an IFU cube for channel
1:

strun jwst.cube_build.CubeBuildStep MIRM103-Q0-SHORT_495_cal.fits --ch=1

The output 3D spectral cube will be saved in a file called MIRM103-Q0-SHORT_495_ch1-short_s3d.fits

To run cube_build using an association table containing 4 dithered images:

strun jwst.cube_build.CubeBuildStep cube_build_4dither_asn.json

where the ASN file cube_build_4dither_asn.json contains:

{"asn_rule": "Asn_MIRIFU_Dither",
"target": "MYTarget",
"asn_id": "c3001",
"asn_pool": "jw00024_001_01_pool",
"program": "00024","asn_type":"dither",
"products": [

{"name": "MIRM103-Q0-Q3",
"members":
[{"exptype": "SCIENCE", "expname": "MIRM103-Q0-SHORT_495_cal.fits"},
{"exptype": "SCIENCE", "expname": "MIRM103-Q1-SHORT_495_cal.fits"},
{"exptype": "SCIENCE", "expname": "MIRM103-Q2-SHORT_495_cal.fits"},
{"exptype": "SCIENCE", "expname": "MIRM103-Q3-SHORT_495_cal.fits"}]}

]
}

The default output will be two IFU cubes. The first will contain the combined dithered images for channel 1, sub-channel
SHORT and the second will contain the channel 2, sub-channel SHORT data. The output root file names are defined
by the product “name” attribute in the association table and results in files MIRM103-Q0-Q3_ch1-short_s3d.fits and
MIRM103-Q0-Q3_ch2-short_s3d.fits.

226 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

To use the same association table, but combine all the data, use the output_type=multi option:

strun jwst.cube_build.CubeBuildStep cube_build_4dither_asn.json --output_type=multi

The output IFU cube file will be MIRM103-Q0-Q3_ch1-2-short_s3d.fits

Cube building for NIRSpec data

To run cube_build on a single NIRSpec exposure that uses grating G140H and filter F100LP:

strun jwst.cube_build.CubeBuildStep jwtest1004001_01101_00001_nrs2_cal.fits

The output file will be jwtest1004001_01101_00001_nrs2_g140h-f100lp_s3d.fits

To run cube_build using an association table containing data from exposures using G140H+F100LP and
G140H+F070LP:

strun jwst.cube_build.CubeBuildStep nirspec_multi_asn.json

where the association file contains:

{"asn_rule": "Asn_NIRSPECFU_Dither",
"target": "MYTarget",
"asn_pool": "jw00024_001_01_pool",
"program": "00024","asn_type":"NRSIFU",
"asn_id":"a3001",
"products": [
{"name": "JW3-6-NIRSPEC",
"members":
[{"exptype": "SCIENCE", "expname": "jwtest1003001_01101_00001_nrs1_cal.fits"},
{"exptype": "SCIENCE", "expname": "jwtest1004001_01101_00001_nrs2_cal.fits"},
{"exptype": "SCIENCE", "expname": "jwtest1005001_01101_00001_nrs1_cal.fits"},
{"exptype": "SCIENCE", "expname": "jwtest1006001_01101_00001_nrs2_cal.fits"}]}
]
}

The output will be two IFU cubes, one for each grating+filter combination: JW3-6-NIRSPEC_g140h-f070lp_s3d.fits
and JW3-6-NIRSPEC_g140h-f100lp_s3d.fits.

Reference Files

The cube_build step uses CUBEPAR reference file.

CUBEPAR reference file

REFTYPE
CUBEPAR

Data models
MiriIFUCubeParsModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MiriIFUCubeParsModel.html#jwst.datamodels.MiriIFUCubeParsModel),
NirspecIFUCubeParsModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecIFUCubeParsModel.html#jwst.datamodels.NirspecIFUCubeParsModel)

The CUBEPAR reference file contains parameter values used to construct the output IFU cubes.

15.1. Package Index 227

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MiriIFUCubeParsModel.html#jwst.datamodels.MiriIFUCubeParsModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecIFUCubeParsModel.html#jwst.datamodels.NirspecIFUCubeParsModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference Selection Keywords for CUBEPAR

CRDS selects appropriate CUBEPAR references based on the following keywords. CUBEPAR is not applicable for
instruments not in the table.

Instrument Keywords
MIRI INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRSPEC INSTRUME, EXP_TYPE, OPMODE, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for CUBEPAR

In addition to the standard reference file keywords listed above, the following keywords are required in CUBEPAR
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for CUBEPAR):

Keyword Data Model Name
EXP_TYPE model.meta.exposure.type

228 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

MIRI Reference File Format

The MIRI CUBEPAR reference files are FITS format, with 5 BINTABLE extensions. The FITS primary data array is
assumed to be empty. The format and content of the MIRI CUBEPAR reference file

EXTNAME XTENSION Dimensions
CUBEPAR BINTABLE TFIELDS = 6
CUBEPAR_MSM BINTABLE TFIELDS = 6
MULTICHANNEL_MSM BINTABLE TFIELDS = 5
CUBEPAR_EMSM BINTABLE TFIELDS = 5
MULTICHANNEL_EMSM BINTABLE TFIELDS = 4
MULTICHANNEL_DRIZ BINTABLE TFIELDS = 1

NIRSPec Reference File Format

The NIRSpec CUBEPAR reference files are FITS format, with 9 BINTABLE extensions.

EXTNAME XTENSION Dimensions
CUBEPAR BINTABLE TFIELDS = 6
CUBEPAR_MSM BINTABLE TFIELDS = 6
MULTICHAN_PRISM_MSM BINTABLE TFIELDS = 5
MULTICHAN_MED_MSM BINTABLE TFIELDS = 5
MULTICHAN_HIGH_MSM BINTABLE TFIELDS = 5
CUBEPAR_EMSM BINTABLE TFIELDS = 5
MULTICHAN_PRISM_EMSM BINTABLE TFIELDS = 4
MULTICHAN_MED_EMSM BINTABLE TFIELDS = 4
MULTICHAN_HIGH_EMSM BINTABLE TFIELDS = 4

The formats of the individual table extensions are listed below, first for the MIRI reference file and then for NIRSpec.

15.1. Package Index 229

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Table Column Data type Units
CUBEPAR CHANNEL shortint N/A

BAND ch*6 N/A
WAVEMIN float microns
WAVEMAX float microns
SPAXELSIZE float arcseconds
SPECTRALSTEP double microns

CUBEPAR_MSM CHANNEL shortint N/A
BAND ch*6 N/A
ROISPATIAL float arcseconds
ROISPECTRAL double microns
POWER double unitless
SOFTRAD double unitless

MULTICHANNEL_MSM WAVELENGTH double microns
ROISPATIAL double arcseconds
ROISPECTRAL double microns
POWER double unitless
SOFTRAD double unitless

CUBEPAR_EMSM CHANNEL shortint N/A
BAND ch*6 N/A
ROISPATIAL float arcseconds
ROISPECTRAL double microns
SCALERAD double unitless

MULTICHANNEL_EMSM WAVELENGTH double microns
ROISPATIAL double arcseconds
ROISPECTRAL double microns
SCALERAD double unitless

MULTICHANNEL_DRIZ WAVELENGTH double microns

Table Column Data type Units
CUBEPAR DISPERSER ch*5 N/A

FILTER ch*6 N/A
WAVEMIN double microns
WAVEMAX double microns
SPAXELSIZE double arcseconds
SPECTRALSTEP double microns

CUBEPAR_MSM DISPERSER ch*5 N/A
FILTER ch*6 N/A
ROISPATIAL double arcseconds
ROISPECTRAL double microns
POWER double unitless
SOFTRAD double unitless

MULTI-
CHAN_PRISM_MSM

WAVELENGTH double microns
ROISPATIAL double arcseconds
ROISPECTRAL double microns
POWER double unitless
SOFTRAD double unitless

MULTI-
CHAN_MED_MSM

WAVELENGTH float microns
ROISPATIAL double arcseconds
ROISPECTRAL double microns

continues on next page

230 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Table 2 – continued from previous page
Table Column Data type Units

POWER double unitless
SOFTRAD double unitless

MULTI-
CHAN_HIGH_MSM

WAVELENGTH float microns
ROISPATIAL double arcseconds
ROISPECTRAL double microns
POWER double unitless
SOFTRAD double unitless

CUBEPAR_EMSM DISPERSER ch*5 N/A
FILTER ch*6 N/A
ROISPATIAL double arcseconds
ROISPECTRAL double microns
SCALERAD double unitless

MULTI-
CHAN_PRISM_EMSM

WAVELENGTH double microns
ROISPATIAL double arcseconds
ROISPECTRAL double microns
SCALERAD double unitless

MULTI-
CHAN_MED_EMSM

WAVELENGTH float microns
ROISPATIAL double arcseconds
ROISPECTRAL double microns
SCALERAD double unitless

MULTI-
CHAN_HIGH_EMSM

WAVELENGTH float microns
ROISPATIAL double arcseconds
ROISPECTRAL double microns
SCALERAD double unitless

These reference files contain tables for each wavelength band giving the spatial and spectral size, and the size of the
region of interest (ROI) to use to construct an IFU cube. If only one band is used to construct the IFU cube then the
CUBEPAR and CUBEPAR_MSM or CUBE_EMSM tables are used. These types of cubes will have a linear - wavelength
dimension. If more than one wavelength band is used to build the IFU cube then the MULTICHANNEL (MIRI)
or MULTICHAN (NIRSPEC) tables are used o set the spectral and spatial roi size, and the wavelength dependent
weighting function parameters. For multi-band IFU cubes then the final spatial size will be the smallest one from the
list of input bands and these cubes will have a non-linear wavelength dimension.

The MIRI reference table descriptions:

• CUBEPAR table contains the spatial and spectral cube sample size for each band.

• CUBEPAR_MSM table contains the Modified Shepard Method (MSM) weighting values to use for each band.

• MULTICHANNEL_MSM table is used for the MSM weighting and contains the wavelengths and associated
region of interest size to use when IFU cubes are created from several bands and the final output is to have an
IFU cube of varying spectral scale.

• CUBEPAR_EMSM table contains the Exponential Modified Shepard Method (EMSM) weighting values to use
for each band.

• MULTICHANNEL_EMSM table is used for the EMSM weighting and contains the wavelengths and associated
region of interest size to use when IFU cubes are created from several bands and the final output is to have an
IFU cube of varying spectral scale.

• MULTICHANNEL_DRIZ table is used for the DRIZZLE weighting and contains the wavelengths to use when
IFU cubes are created from several bands and the final output is to have an IFU cube of varying spectral scale.

The NIRSPEC reference table descriptions:

15.1. Package Index 231

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• CUBEPAR table contains the spatial and spectral cube sample size for each band.

• CUBEPAR_MSM table contains the Modified Shepard Method (MSM) weighting values to use for each band.

• MULTICHAN_PRISM_MSM table is used for the MSM weighting and contains the wavelengths and associ-
ated region of interest size to use when IFU cubes are created from the grating prism and the final IFU Cube
output has a varying spectral scale.

• MULTICHAN_MED_MSM table is used for the MSM weighting and contains the wavelengths and associated
region of interest size to use when IFU cubes are created from the medium resolution grating and the final IFU
Cube output has a varying spectral scale.

• MULTICHAN_HIGH_MSM table is used for the MSM weighting and contains the wavelengths and associated
region of interest size to use when IFU cubes are created from the high resolution gratings and the final IFU Cube
output has a varying spectral scale.

• CUBEPAR_EMSM table contains the Exponential Modified Shepard Method (EMSM) weighting values to use
for each band.

• MULTICHAN_PRISM_EMSM table is used for the EMSM weighting and contains the wavelengths and as-
sociated region of interest size to use when IFU cubes are created from the grating prism and the final IFU Cube
output has a varying spectral scale.

• MULTICHAN_MED_EMSM table is used for the EMSM weighting and contains the wavelengths and associ-
ated region of interest size to use when IFU cubes are created from the medium resolution grating and the final
IFU Cube output has a varying spectral scale.

• MULTICHAN_HIGH_EMSM table is used for the EMSM weighting and contains the wavelengths and asso-
ciated region of interest size to use when IFU cubes are created from the high resolution gratings and the final
IFU Cube output has a varying spectral scale.

jwst.cube_build.cube_build_step Module

This is the main ifu spectral cube building routine.

Classes

CubeBuildStep([name, parent, config_file, ...]) CubeBuildStep: Creates a 3-D spectral cube

CubeBuildStep

class jwst.cube_build.cube_build_step.CubeBuildStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

CubeBuildStep: Creates a 3-D spectral cube

232 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Notes

This is the controlling routine for building IFU Spectral Cubes. It loads and sets the various input data and
parameters need by the cube_build_step.

This routine does the following operations:

1. Extracts the input parameters from the cubepars reference file and merges them with any user-
provided values. 2. Creates the output WCS from the input images and defines the mapping between
all the input arrays and the output array 3. Passes the input data to the function to map all thei input
data to the output array. 4. Updates the output data model with correct meta data

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) This is the main routine for IFU spectral cube build-
ing.

read_user_input() Read user input options for channel, subchannel, fil-
ter, or grating

15.1. Package Index 233

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Documentation

class_alias = 'cube_build'

reference_file_types = ['cubepar']

spec

channel = option('1','2','3','4','all',default='all') # Channel
band = option('short','medium','long','short-medium','short-long','medium-short
→˓', 'medium-long', 'long-short', 'long-medium','all',default=
→˓'all') # Band
grating = option('prism','g140m','g140h','g235m','g235h','g395m','g395h','all
→˓',default='all') # Grating
filter = option('clear','f100lp','f070lp','f170lp','f290lp','all',default='all
→˓') # Filter
output_type = option('band','channel','grating','multi',default=None) # Type␣
→˓IFUcube to create.
scalexy = float(default=0.0) # cube sample size to use for axis 1 and axis2,␣
→˓arc seconds
scalew = float(default=0.0) # cube sample size to use for axis 3, microns
weighting = option('emsm','msm','drizzle',default = 'drizzle') # Type of␣
→˓weighting function
coord_system = option('skyalign','world','internal_cal','ifualign',default=
→˓'skyalign') # Output Coordinate system.
ra_center = float(default=None) # RA center of the IFU cube
dec_center = float(default=None) # Declination center of the IFU cube
cube_pa = float(default=None) # The position angle of the desired cube in␣
→˓decimal degrees E from N
nspax_x = integer(default=None) # The odd integer number of spaxels to use in␣
→˓the x dimension of cube tangent plane.
nspax_y = integer(default=None) # The odd integer number of spaxels to use in␣
→˓the y dimension of cube tangent plane.
rois = float(default=0.0) # region of interest spatial size, arc seconds
roiw = float(default=0.0) # region of interest wavelength size, microns
weight_power = float(default=2.0) # Weighting option to use for Modified␣
→˓Shepard Method
wavemin = float(default=None) # Minimum wavelength to be used in the IFUCube
wavemax = float(default=None) # Maximum wavelength to be used in the IFUCube
single = boolean(default=false) # Internal pipeline option used by mrs_imatch &␣
→˓outlier detection
skip_dqflagging = boolean(default=false) # skip setting the DQ plane of the IFU
search_output_file = boolean(default=false)
output_use_model = boolean(default=true) # Use filenames in the output models
suffix = string(default='s3d')
debug_spaxel = string(default='-1 -1 -1') # Default not used

234 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

process(input)
This is the main routine for IFU spectral cube building.

Parameters
input (list (https://docs.python.org/3/library/stdtypes.html#list) of objects or str
(https://docs.python.org/3/library/stdtypes.html#str)) – list of datamodels or string name of
input fits file or association.

read_user_input()

Read user input options for channel, subchannel, filter, or grating

Class Inheritance Diagram

CubeBuildStepJwstStepStep

15.1.14 Dark Current Subtraction

Description

Class
jwst.dark_current.DarkCurrentStep

Alias
dark_current

Assumptions

It is assumed that the input science data have NOT had the zero group (or bias) subtracted. We also do not want the dark
subtraction process to remove the bias signal from the science exposure, therefore the dark reference data should have
their own group zero subtracted from all groups. This means that group zero of the dark reference data will effectively
be zero-valued.

15.1. Package Index 235

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Algorithm

The algorithm for this step is called from the external package stcal, an STScI effort to unify common calibration
processing algorithms for use by multiple observatories.

The dark current step removes dark current from an exposure by subtracting dark current data stored in a dark reference
file in CRDS.

The current implementation uses dark reference files that have been constructed from exposures using NFRAMES=1
and GROUPGAP=0 (i.e. one frame per group and no dropped frames) and the maximum number of frames allowed
for an integration. If the science exposure that’s being processed also used NFRAMES=1 and GROUPGAP=0, then
the dark reference file data are directly subtracted group-by-group from the science exposure.

If the science exposure used NFRAMES>1 or GROUPGAP>0, the dark reference file data are reconstructed on-the-fly
by the step to match the frame averaging and groupgap settings of the science exposure. The reconstructed dark data
are created by averaging NFRAMES adjacent dark frames and skipping GROUPGAP intervening frames.

The frame-averaged dark is constructed using the following scheme:

1. SCI arrays are computed as the mean of the original dark SCI arrays

2. ERR arrays are computed as the uncertainty in the mean, using
√∑︀

ERR2

𝑛𝑓𝑟𝑎𝑚𝑒𝑠

The dark reference data are not integration-dependent for most instruments, hence the same group-by-group dark cur-
rent data are subtracted from every integration of the science exposure. An exception to this rule is the JWST MIRI
instrument, for which the dark signal is integration-dependent, at least to a certain extent. MIRI dark reference file data
is therefore 4-dimensional (ncols x nrows x ngroups x nintegrations). Typical MIRI dark reference files contain data
for only 2 or 3 integrations, which are directly subtracted from the corresponding first few integrations of the science
exposure. The data in the last integration of the dark reference file is applied to all remaining science integrations.

The ERR arrays of the science data are currently not modified by this step.

The DQ flags from the dark reference file are propagated into the science exposure PIXELDQ array using a bitwise
OR operation.

Upon successful completion of the dark subtraction the S_DARK keyword is set to “COMPLETE”.

Special Handling

Any pixel values in the dark reference data that are set to NaN will have their values reset to zero before being subtracted
from the science data, which will effectively skip the dark subtraction operation for those pixels.

Note: If the input science exposure contains more groups than the available dark reference file, no dark subtraction
will be applied and the input data will be returned unchanged.

Subarrays

It is assumed that dark current will be subarray-dependent, therefore this step makes no attempt to extract subarrays
from the dark reference file to match input subarrays. It instead relies on the presence of matching subarray dark
reference files in CRDS.

236 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

JWST/NIRCam Target Acq Subarrays

Due to the very large number of available NIRCam target acquisition (TA) subarrays, the instrument team has chosen to
not provide dark reference files for any of the TA subarrays in CRDS. Requests from the calibration pipeline to CRDS
for matching dark reference files to use when processing a NIRCam TA will result in a reference file name of “N/A”
being returned, which causes the dark subtraction step to skip processing. Hence dark current will not be subtracted
from NIRCam TA subarray exposures.

Step Arguments

The dark current step has one step-specific argument:

• --dark_output

If the dark_output argument is given with a filename for its value, the frame-averaged dark data that are created
within the step will be saved to that file.

Reference File

The dark step uses a DARK reference file.

DARK Reference File

REFTYPE
DARK

Data models
DarkModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.DarkModel.html#jwst.datamodels.DarkModel),
DarkMIRIModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.DarkMIRIModel.html#jwst.datamodels.DarkMIRIModel)

The DARK reference file contains pixel-by-pixel and frame-by-frame dark current values for a given detector readout
mode.

Reference Selection Keywords for DARK

CRDS selects appropriate DARK references based on the following keywords. DARK is not applicable for instruments
not in the table.

Instru-
ment

Keywords

FGS INSTRUME, DETECTOR, READPATT, SUBARRAY, DATE-OBS, TIME-OBS
MIRI INSTRUME, DETECTOR, READPATT, SUBARRAY, DATE-OBS, TIME-OBS
NIRCam INSTRUME, DETECTOR, EXP_TYPE, NOUTPUTS, SUBARRAY, DATE-OBS, TIME-OBS
NIRISS INSTRUME, DETECTOR, READPATT, SUBARRAY, DATE-OBS, TIME-OBS
NIR-
Spec

INSTRUME, DETECTOR, READPATT, SUBARRAY, SUBSTRT1, SUBSTRT2, SUBSIZE1, SUB-
SIZE2, DATE-OBS, TIME-OBS

15.1. Package Index 237

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.DarkModel.html#jwst.datamodels.DarkModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.DarkMIRIModel.html#jwst.datamodels.DarkMIRIModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for DARK

In addition to the standard reference file keywords listed above, the following keywords are required in DARK reference
files, because they are used as CRDS selectors (see Reference Selection Keywords for DARK):

Keyword Data Model Name Instruments
DETECTOR model.meta.instrument.detector All
EXP_TYPE model.meta.exposure.type NIRCam
NOUTPUTS model.meta.exposure.noutputs NIRCam
READPATT model.meta.exposure.readpatt FGS, MIRI, NIRISS, NIRSpec
SUBARRAY model.meta.subarray.name All
SUBSTRT1 model.meta.subarray.xstart NIRSpec
SUBSTRT2 model.meta.subarray.ystart NIRSpec
SUBSIZE1 model.meta.subarray.xsize NIRSpec
SUBSIZE2 model.meta.subarray.ysize NIRSpec

Reference File Format

DARK reference files are FITS format, with 3 IMAGE extensions and 1 BINTABLE extension. The FITS primary data
array is assumed to be empty. The format and content of the files is different for MIRI than the near-IR instruments, as
shown below.

238 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Near-IR Detectors

Characteristics of the three IMAGE extensions for DARK files used with the Near-IR instruments are as follows (see
DarkModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.DarkModel.html#jwst.datamodels.DarkModel)):

EXTNAME NAXIS Dimensions Data type
SCI 3 ncols x nrows x ngroups float
ERR 3 ncols x nrows x ngroups float
DQ 2 ncols x nrows integer
DQ_DEF 2 TFIELDS = 4 N/A

MIRI Detectors

The DARK reference files for the MIRI detectors depend on the integration number, because the first integration of
MIRI exposures contains effects from the detector reset and are slightly different from subsequent integrations. Cur-
rently the MIRI DARK reference files contain a correction for only two integrations: the first integration of the DARK
is subtracted from the first integration of the science data, while the second DARK integration is subtracted from all
subsequent science integrations. The format of the MIRI DARK reference files is as follows (see DarkMIRIModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.DarkMIRIModel.html#jwst.datamodels.DarkMIRIModel)):

EXTNAME NAXIS Dimensions Data type
SCI 4 ncols x nrows x ngroups x nints float
ERR 4 ncols x nrows x ngroups x nints float
DQ 4 ncols x nrows x 1 x nints integer
DQ_DEF 2 TFIELDS = 4 N/A

The DQ_DEF extension contains the bit assignments used in the DQ array. It contains the following 4 columns:

TTYPE TFORM Description
BIT integer The bit number, starting at zero
VALUE integer The equivalent base-10 value of BIT
NAME string The mnemonic name of the data quality condition
DESCRIPTION string A description of the data quality condition

NOTE: For more information on standard bit definitions see: Data Quality Flags.

jwst.dark_current Package

Classes

DarkCurrentStep([name, parent, config_file, ...]) DarkCurrentStep: Performs dark current correction by
subtracting dark current reference data from the input
science data model.

15.1. Package Index 239

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.DarkModel.html#jwst.datamodels.DarkModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.DarkMIRIModel.html#jwst.datamodels.DarkMIRIModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

DarkCurrentStep

class jwst.dark_current.DarkCurrentStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

DarkCurrentStep: Performs dark current correction by subtracting dark current reference data from the input
science data model.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'dark_current'

reference_file_types = ['dark']

spec

dark_output = output_file(default = None) # Dark model or averaged dark␣
→˓subtracted

240 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

DarkCurrentStepJwstStepStep

15.1.15 Data Quality (DQ) Initialization

Description

Class
jwst.dq_init.DQInitStep

Alias
dq_init

The Data Quality (DQ) initialization step in the calibration pipeline populates the DQ mask for the input dataset. Flag
values from the appropriate static mask (“MASK”) reference file in CRDS are copied into the “PIXELDQ” array of
the input dataset, because it is assumed that flags in the mask reference file pertain to problem conditions that affect all
groups and integrations for a given pixel.

The actual process consists of the following steps:

1. Determine what MASK reference file to use via the interface to the bestref utility in CRDS.

2. If the “PIXELDQ” or “GROUPDQ” arrays of the input dataset do not already exist, which is sometimes the case
for raw input products, create these arrays in the input data model and initialize them to zero. The “PIXELDQ”
array will be 2D, with the same number of rows and columns as the input science data. The “GROUPDQ” array
will be 4D with the same dimensions (nints, ngroups, nrows, ncols) as the input science data array.

3. Check to see if the input science data is in subarray mode. If so, extract a matching subarray from the full-frame
MASK reference file.

4. Propagate the DQ flags from the reference file DQ array to the science data “PIXELDQ” array using numpy’s
bitwise_or function.

Note that when applying the dq_init step to FGS guide star data, as is done in the calwebb_guider pipeline, the
flags from the MASK reference file are propagated into the guide star dataset “DQ” array, instead of the “PIXELDQ”
array. The step identifies guide star data based on the following exposure type (EXP_TYPE keyword) values: FGS_ID-
IMAGE, FGS_ID-STACK, FGS_ACQ1, FGS_ACQ2, FGS_TRACK, and FGS_FINEGUIDE.

15.1. Package Index 241

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NIRSpec IRS2

No special handling is required for NIRSpec exposures taken using the IRS2 readout pattern, because matching IRS2
MASK reference files are supplied in CRDS.

Step Arguments

The Data Quality Initialization step has no step-specific arguments.

Reference Files

The dq_init step uses a MASK reference file.

MASK Reference File

REFTYPE
MASK

Data model
MaskModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MaskModel.html#jwst.datamodels.MaskModel)

The MASK reference file contains pixel-by-pixel DQ flag values that indicate problem conditions.

Reference Selection Keywords for MASK

CRDS selects appropriate MASK references based on the following keywords. MASK is not applicable for instruments
not in the table.

Instrument Keywords
FGS INSTRUME, DETECTOR, SUBARRAY, EXP_TYPE, DATE-OBS, TIME-OBS
MIRI INSTRUME, DETECTOR, SUBARRAY, DATE-OBS, TIME-OBS
NIRCam INSTRUME, DETECTOR, SUBARRAY, DATE-OBS, TIME-OBS
NIRISS INSTRUME, DETECTOR, SUBARRAY, DATE-OBS, TIME-OBS
NIRSpec INSTRUME, DETECTOR, SUBARRAY, READPATT, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

242 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MaskModel.html#jwst.datamodels.MaskModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for MASK

In addition to the standard reference file keywords listed above, the following keywords are required in MASK reference
files, because they are used as CRDS selectors (see Reference Selection Keywords for MASK):

Keyword Data Model Name Instruments
DETECTOR model.meta.instrument.detector All
SUBARRAY model.meta.subarray.name All
EXP_TYPE model.meta.exposure.type FGS only
READPATT model.meta.exposure.readpatt NIRSpec only

Reference File Format

MASK reference files are FITS format, with one IMAGE extension and 1 BINTABLE extension. The FITS primary
HDU does not contain a data array. The format and content of the file is as follows:

EXTNAME XTENSION NAXIS Dimensions Data type
DQ IMAGE 2 ncols x nrows integer
DQ_DEF BINTABLE 2 TFIELDS = 4 N/A

The values in the DQ array give the per-pixel flag conditions that are to be propagated into the science exposure’s
PIXELDQ array. The dimensions of the DQ array should be equal to the number of columns and rows in a full-frame
readout of a given detector, including reference pixels. Note that this does not include the reference output for MIRI
detectors.

The DQ_DEF extension contains the bit assignments used in the DQ array. It contains the following 4 columns:

TTYPE TFORM Description
BIT integer The bit number, starting at zero
VALUE integer The equivalent base-10 value of BIT
NAME string The mnemonic name of the data quality condition
DESCRIPTION string A description of the data quality condition

15.1. Package Index 243

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NOTE: For more information on standard bit definitions see: Data Quality Flags.

jwst.dq_init Package

Classes

DQInitStep([name, parent, config_file, ...]) Initialize the Data Quality extension from the mask ref-
erence file.

DQInitStep

class jwst.dq_init.DQInitStep(name=None, parent=None, config_file=None, _validate_kwds=True, **kws)
Bases: JwstStep

Initialize the Data Quality extension from the mask reference file.

The dq_init step initializes the pixeldq attribute of the input datamodel using the MASK reference file. For some
FGS exp_types, initialize the dq attribute of the input model instead. The dq attribute of the MASK model is
bitwise OR’d with the pixeldq (or dq) attribute of the input model.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

244 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

process(input) Perform the dq_init calibration step

Attributes Documentation

class_alias = 'dq_init'

reference_file_types = ['mask']

Methods Documentation

process(input)
Perform the dq_init calibration step

Parameters
input (JWST datamodel) – input jwst datamodel

Returns
output_model – result JWST datamodel

Return type
JWST datamodel

Class Inheritance Diagram

DQInitStepJwstStepStep

15.1.16 MIRI EMI Correction

Description

Class
jwst.emicorr.EmiCorrStep

Alias
emicorr

15.1. Package Index 245

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Overview

The emicorr step corrects for known noise patterns in the raw MIRI data. The majority of the MIRI subarrays have
an 390 Hz or other electromagnetic interference (EMI) noise pattern in the raw data. The known frequencies to correct
for are in the EMI reference file, under the key frequencies. The effect of these EMI frequencies is to imprint each
into the rate images. For short integrations in LRSSLITLESS the correlated noise from this is quite apparent in the rate
images. For longer integrations the net effect is to increase the read noise by about 20%.

The process to do the correction is the following (repeated recursively for each discrete EMI frequency desired):

1. Read image data.

2. Make very crude slope image and fixed pattern “super” bias for each integration, ignoring everything (nonlin,
saturation, badpix, etc).

3. Subtract scaled slope image and bias from each frame of each integration.

4. Calculate phase of every pixel in the image at the desired EMI frequency (e.g. 390 Hz) relative to the first pixel
in the image.

5. Make a binned, phased amplitude (pa) wave from the cleaned data (plot cleaned vs phase, then bin by phase).

6. Measure the phase shift between the binned pa wave and the input reference wave.1

7. Use look-up table to get the aligned reference wave value for each pixel (the noise array corresponding to the
input image).Page 246, 1

8. Subtract the noise array from the input image and return the cleaned result.

The long term plan is a change to the sizes and locations of the subarrays to get the frame times to be in phase with
the known noise frequencies like the full frame images. For the previous and near term observations this can be fixed
through application of the emicorr step.

An EMICORR reference file can be used to correct for all known noise patterns. The reference file is expected to be
in ASDF format, containing the exact frequency numbers, the corresponding 1D array for the phase amplitudes, and
a subarray_cases dictionary that contains the frequencies to correct for according to subarray, read pattern, and
detector. If there is no reference file found in CRDS, the step has a set of default frequencies and subarray cases for
which the correction is applied.

Input

The input file is the _uncal file after the dq_init_step step has been applied, in the in the calwebb_detector1 pipeline.

Output

The output will be a partially-processed RampModel with the corrected data in the SCI extension, meaning, the effect
of the EMI frequencies (either the default values or the ones in the reference file) removed. All other extensions will
remain the same.

1 Alternately, use the binned pa wave instead of the reference wave to “self-correct”.

246 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Step Arguments

The emicorr step has the following step-specific arguments.

--nints_to_phase (integer, default=None)
Number of integrations to phase.

--nbins (integer, default=None)
Number of bins in one phased wave.

--scale_reference (boolean, default=True)
If True, the reference wavelength will be scaled to the data’s phase amplitude.

--user_supplied_reffile (boolean, default=None)
This is to specify an ASDF-format user-created reference file.

--save_intermediate_results (string, default=False)
This is a boolean flag to specify whether to write a step output file with the EMI correction. Additionaly, if the
flag user_supplied_reffile is None and no CRDS reference file was found, all the on-the-fly frequencies
phase amplitudes will be saved to an ASDF output with the same format as an EMI reference file.

Reference Files

The emicorr step can use an EMI reference file.

EMICORR Reference File

REFTYPE
EMICORR

Data model
EmiModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.EmiModel.html#jwst.datamodels.EmiModel)

The EMICORR reference file contains data necessary for removing contaminating MIRI EMI frequencies.

Reference Selection Keywords for EMICORR

CRDS selects appropriate EMICORR references based on the following keywords. EMICORR is not applicable for
instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
MIRI INSTRUME, DATE-OBS

15.1. Package Index 247

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.EmiModel.html#jwst.datamodels.EmiModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

EMICORR Reference File Format

MIRI EMICORR reference files are in ASDF format. The EMICORR reference file contains the frequencies for which
the image will be corrected. Example file contents:

root (AsdfObject)
frequencies (dict)

Hz10 (dict)
frequency (float): 10.039216
phase_amplitudes (NDArrayType): shape=(500,), dtype=float32

Hz10_slow_MIRIFULONG (dict)
frequency (float): 10.039216
phase_amplitudes (NDArrayType): shape=(250,), dtype=float32

subarray_cases (dict)
BRIGHTSKY (dict)
frameclocks (int): 23968
freqs (dict)
FAST (list)
[0] (str): Hz10

SLOW (dict)
MIRIFULONG (list)
[0] (str): Hz10_slow_MIRIFULONG

MIRIFUSHORT (list)
[0] (str): Hz10_slow_MIRIFUSHORT

MIRIMAGE (list)
[0] (str): Hz10_slow_MIRIMAGE

rowclocks (int): 82
MASK1140 (dict)
frameclocks (int): 23968
freqs (dict)

(continues on next page)

248 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

FAST (list)
[0] (str): Hz390
[1] (str): Hz10

SLOW (dict)
MIRIFULONG (list)
[0] (str): Hz390
[1] (str): Hz10_slow_MIRIFULONG

MIRIFUSHORT (list)
[0] (str): Hz390
[1] (str): Hz10_slow_MIRIFUSHORT

MIRIMAGE (list)
[0] (str): Hz390

rowclocks (int): 82

Frequency Selection

The frequency to be corrected for will be selected according to the dictionary contained in the key subarray_cases
in the reference file. This contains the subarray names and the names of the corresponding frequencies to be used in
the correction.

jwst.emicorr Package

Classes

EmiCorrStep([name, parent, config_file, ...]) EmiCorrStep: Apply MIRI EMI correction to a science
image.

EmiCorrStep

class jwst.emicorr.EmiCorrStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

EmiCorrStep: Apply MIRI EMI correction to a science image.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

15.1. Package Index 249

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'emicorr'

reference_file_types = ['emicorr']

spec

save_intermediate_results = boolean(default=False)
user_supplied_reffile = string(default=None) # ASDF user-supplied reference␣
→˓file
nints_to_phase = integer(default=None) # Number of integrations to phase
nbins = integer(default=None) # Number of bins in one phased wave
scale_reference = boolean(default=True) # If True, the reference wavelength␣
→˓will be scaled to the data's phase amplitude
skip = boolean(default=True)

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

EmiCorrStepJwstStepStep

250 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

15.1.17 Exposure to Source Conversion

Description

exp_to_source is a data reorganization tool that is used to convert Stage 2 exposure-based data products to Stage 3
source-based data products. It is only used when there is a known source list for the exposure data, which is required
in order to reorganize the data by source. Hence it is only useable for NIRSpec MOS, NIRSpec fixed-slit, NIRCam
WFSS, and NIRISS WFSS data. Details on the operation for each mode are given below.

The tool is run near the beginning of the calwebb_spec3 pipeline, immediately after the master background step.

In general, the tool takes as input multiple exposure-based “cal” products created during Stage 2 spectroscopic (cal-
webb_spec2) processing and reorganizes the data in them to create a set of output source-based “cal” products, which
are then processed through the remaining steps of the calwebb_spec3 pipeline. For example, if the input consists of a
set of 3 exposure-based “cal” files (from a 3-point nod dither pattern, for example), each one of which contains data
for 5 defined sources, then the output consists of a set of 5 source-based “cal” products (one per source), each of which
contains the data from the 3 exposures for each source. This is done as a convenience, in order to have all the data
for a given source contained in a single product. All data arrays associated with a given source, e.g. SCI, ERR, DQ,
WAVELENGTH, VAR_POISSON, etc., are copied from each input product into the corresponding output product.

NIRSpec MOS

NIRSpec MOS observations are created at the APT level by defining a configuration of MSA slitlets with a source
assigned to each slitlet. The source-to-slitlet linkage is carried along in the information contained in the MSA metadata
file used during calwebb_spec2 processing. Each slitlet instance created by the extract_2d step stores the source ID (a
simple integer number) in the SOURCEID keyword of the SCI extension header for the slitlet. The exp_to_source
tool uses the SOURCEID values to sort the data from each input product into an appropriate source-based output
product.

NIRSpec Fixed-Slit

NIRSpec fixed-slit observations do not have sources identified with each slit, so the slit names, e.g. S200A1, S1600A1,
etc., are mapped to predefined source ID values, as follows:

Slit Name Source ID
S200A1 1
S200A2 2
S400A1 3
S1600A1 4
S200B1 5

The assigned source ID values are used by exp_to_source to sort the data from each slit into the appropriate source-
based output product.

15.1. Package Index 251

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NIRCam and NIRISS WFSS

Wide-Field Slitless Spectroscopy (WFSS) modes do not have a predefined source list, but a source list is created by the
calwebb_image3 pipeline when it processes the direct image exposures that are included in a WFSS observation. That
source catalog is then used during calwebb_spec2 processing of the grism exposures to define and create cutouts for
each identified source. Like NIRSpec MOS mode, each “slit” instance is identified by the source ID number from the
catalog and is used by the exp_to_source tool to reorganize exposures into source-based products.

File Name Syntax

The input exposure-based “cal” products have file names that follow the standard Stage 2 exposure syntax, such as:

jw93065002001_02101_00001_nrs1_cal.fits

See exposure-based file names for more details on the meaning of each field in the file names.

The FITS file naming scheme for the source-based “cal” products follows the standard Stage 3 syntax, such as:

jw10006-o010_s00061_nirspec_f170lp-g235m_cal.fits

where “s00061” in this example is the source ID. See source-based file names for more details on the meaning of each
field in this type of file name.

jwst.exp_to_source Package

Functions

exp_to_source(inputs) Reformat exposure-based MSA data to source-based.
multislit_to_container(inputs) Reformat exposure-based MSA data to source-based

containers.

exp_to_source

jwst.exp_to_source.exp_to_source(inputs)
Reformat exposure-based MSA data to source-based.

Parameters
inputs ([MultiSlitModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel),
...]) – List of MultiSlitModel instances to reformat.

Returns
multiexposures – Returns a dict of MultiExposureModel instances wherein each instance con-
tains slits belonging to the same source. The key is the ID of each source, i.e. source_id.

Return type
dict (https://docs.python.org/3/library/stdtypes.html#dict)

252 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

multislit_to_container

jwst.exp_to_source.multislit_to_container(inputs)
Reformat exposure-based MSA data to source-based containers.

Parameters
inputs ([MultiSlitModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel),
...]) – List of MultiSlitModel instances to reformat, or just a ModelContainer full of
MultiSlitModels.

Returns
containers – Returns a dict of ModelContainer instances wherein each instance contains Image-
Models of slits belonging to the same source. The key is the ID of each slit, i.e. source_id.

Return type
dict (https://docs.python.org/3/library/stdtypes.html#dict)

15.1.18 Extract 1D Spectra

Description

Class
jwst.extract_1d.Extract1dStep

Alias
extract_1d

Overview

The extract_1d step extracts a 1D signal from a 2D or 3D dataset and writes spectral data to an “x1d” product.
This works on all JWST spectroscopic modes, including MIRI LRS (slit and slitless) and MRS, NIRCam WFSS and
TSGRISM, NIRISS WFSS and SOSS, and NIRSpec fixed-slit, IFU, and MOS.

An EXTRACT1D reference file is used for most modes to specify the location and size of the target and background ex-
traction apertures. The EXTRACT1D reference file is not used for Wide-Field Slitless Spectroscopy data (NIS_WFSS
or NRC_WFSS). For these modes the extraction region is instead taken to be the full size of the input 2D subarray or
cutout for each source, or restricted to the region within which the world coordinate system (WCS) is defined in each
cutout.

For slit-like 2D input data, source and background extractions are done using a rectangular aperture that covers one
pixel in the dispersion direction and uses a height in the cross-dispersion direction that is defined by parameters in the
EXTRACT1D reference file. For 3D IFU data, on the other hand, the extraction options differ depending on whether the
target is a point or extended source. For a point source, the spectrum is extracted using circular aperture photometry,
optionally including background subtraction using a circular annulus. For an extended source, rectangular aperture
photometry is used, with the entire image being extracted, and no background subtraction, regardless of what was
specified in the reference file or step arguments. For both point or extended sources, photometric measurements make
use of the Astropy affiliated package photutils (https://photutils.readthedocs.io/en/latest/) to define an aperture object
and perform extraction. For 3D NIRSpec fixed slit rateints data, the extract_1d step will be skipped as 3D input for
the mode is not supported.

For most spectral modes an aperture correction will be applied to the extracted 1D spectral data (unless otherwise
selected by the user), in order to put the results onto an infinite aperture scale. This is done by creating interpolation
functions based on the APCORR reference file data and applying the interpolated aperture correction (a multiplicative
factor between 0 and 1) to the extracted, 1D spectral data (corrected data include the “flux”, “surf_bright”, “flux_error”,
“sb_error”, and all flux and surface brightness variance columns in the output table).

15.1. Package Index 253

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel
https://docs.python.org/3/library/stdtypes.html#dict
https://photutils.readthedocs.io/en/latest/

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Input

Calibrated and potentially resampled 2D images or 3D cubes. The format should be a CubeModel, SlitModel, IFU-
CubeModel, ImageModel, MultiSlitModel, or a ModelContainer. For some JWST modes this is usually a resampled
product, such as the “s2d” products for MIRI LRS fixed-slit, NIRSpec fixed-slit, and NIRSpec MOS, or the “s3d” prod-
ucts for MIRI MRS and NIRSpec IFU. For other modes that are not resampled (e.g. MIRI LRS slitless, NIRISS SOSS,
NIRSpec BrightObj, and NIRCam and NIRISS WFSS), this will be a “cal” product. For modes that have multiple slit
instances (NIRSpec fixed-slit and MOS, WFSS), the SCI extensions should have the keyword SLTNAME to specify
which slit was extracted, though if there is only one slit (e.g. MIRI LRS and NIRISS SOSS), the slit name can be taken
from the EXTRACT1D reference file instead.

Normally the photom step should be applied before running extract_1d. If photom has not been run, a warning will
be logged and the output of extract_1d will be in units of count rate. The photom step converts data to units of either
surface brightness (MegaJanskys per steradian) or, for point sources observed with NIRSpec and NIRISS SOSS, units
of flux density (MegaJanskys).

Output

The output will be in MultiSpecModel format. For each input slit there will be an output table
extension with the name EXTRACT1D. This extension will have columns WAVELENGTH, FLUX,
FLUX_ERROR, FLUX_VAR_POISSON, FLUX_VAR_RNOISE, FLUX_VAR_FLAT, SURF_BRIGHT,
SB_ERROR, SB_VAR_POISSON, SB_VAR_RNOISE, SB_VAR_FLAT, DQ, BACKGROUND, BKGD_ERROR,
BKGD_VAR_POISSON, BKGD_VAR_RNOISE, BKGD_VAR_FLAT and NPIXELS. Some meta data will be
written to the table header, mostly copied from the input header.

The output WAVELENGTH data is copied from the wavelength array of the input 2D data, if that attribute exists and
was populated, otherwise it is calculated from the WCS. FLUX is the flux density in Janskys; see keyword TUNIT2 if
the data are in a FITS BINTABLE. FLUX_ERROR is the error estimate for FLUX, and it has the same units as FLUX.
The error is calculated as the square root of the sum of the three variance arrays: Poisson, read noise (RNOISE), and
flat field (FLAT). SURF_BRIGHT is the surface brightness in MJy / sr, except that for point sources observed with
NIRSpec and NIRISS SOSS, SURF_BRIGHT will be set to zero, because there’s no way to express the extracted results
from those modes as a surface brightness. SB_ERROR is the error estimate for SURF_BRIGHT, calculated in the same
fashion as FLUX_ERROR but using the SB_VAR arrays. While it’s expected that a user will make use of the FLUX
column for point-source data and the SURF_BRIGHT column for an extended source, both columns are populated
(except for NIRSpec and NIRISS SOSS point sources, as mentioned above). The extract_1d step collapses the input
data from 2-D to 1-D by summing one or more rows (or columns, depending on the dispersion direction). A background
may optionally be subtracted, but there are also other options for background subtraction prior to extract_1d. For the
case of input data in units of MJy / sr, the SURF_BRIGHT and BACKGROUND columns are populated by dividing the
sum by the number of pixels (see the NPIXELS column, described below) that were added together. The FLUX column
is populated by multiplying the sum by the solid angle of a pixel, and also multiplying by 10^6 to convert from MJy
to Jy. For the case of input data in units of MJy (i.e. point sources, NIRSpec or NIRISS SOSS), the SURF_BRIGHT
column is set to zero, the FLUX column is just multiplied by 10^6, and the BACKGROUND column is divided by
NPIXELS and by the solid angle of a pixel to convert to surface brightness (MJy / sr).

NPIXELS is the number of pixels that were added together for the source extraction region. Note that this is not
necessarily a constant, and the value is not necessarily an integer (the data type is float). BACKGROUND is the
measured background, scaled to the extraction width used for FLUX and SURF_BRIGHT. BACKGROUND will be
zero if background subtraction is not requested. BKGD_ERROR is calculated as the square root of the sum of the
BKGD_VAR arrays. DQ is not populated with useful values yet.

254 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Extraction for 2D Slit Data

The operational details of the 1D extraction depend heavily on the parameter values given in the EXTRACT1D reference
file. Here we describe their use within the extract_1d step.

Source Extraction Region

As described in the documentation for the EXTRACT1D reference file, the characteristics of the source extraction
region can be specified in one of two different ways. The simplest approach is to use the xstart, xstop, ystart,
ystop, and extract_width parameters. Note that all of these values are zero-indexed integers, the start and stop
limits are inclusive, and the values are in the frame of the image being operated on (which could be a cutout of a larger
original image). If dispaxis=1, the limits in the dispersion direction are xstart and xstop and the limits in the
cross-dispersion direction are ystart and ystop. If dispaxis=2, the rolls are reversed.

If extract_width is also given, that takes priority over ystart and ystop (for dispaxis=1) for the extraction width,
but ystart and ystopwill still be used to define the centering of the extraction region in the cross-dispersion direction.
For point source data, then the xstart and xstop values (dispaxis = 2) are shifted to account for the expected location
of the source. If dispaxis=1, then the ystart and ystop values are modified. The offset amount is calculated internally.
If it is not desired to apply this offset, then set use_source_posn = False. If the use_source_posn parameter is None
(default), the values of xstart/xstop or ystart/ystop in the extract_1d reference file will be used to determine
the center position of the extraction aperture. If these values are not set in the reference file, the use_source_posn
will be set internally to True for point source data according to the table given in srctype. Any of the extraction location
parameters will be modified internally by the step code if the extraction region would extend outside the limits of the
input image or outside the domain specified by the WCS.

A more flexible way to specify the source extraction region is via the src_coeff parameter. src_coeff is specified
as a list of lists of floating-point polynomial coefficients that define the lower and upper limits of the source extraction
region as a function of dispersion. This allows, for example, following a tilted or curved spectral trace or simply
following the variation in cross-dispersion FWHM as a function of wavelength. If both src_coeff and ystart/ystop
values are given, src_coeff takes precedence. The xstart and xstop values can still be used to limit the range of
the extraction in the dispersion direction. More details on the specification and use of polynomial coefficients is given
below.

Background Extraction Regions

One or more background extraction regions for a given aperture instance can be specified using the bkg_coeff pa-
rameter in the EXTRACT1D reference file. This is directly analogous to the use of src_coeff for specifying source
extraction regions and functions in exactly the same way. More details on the use of polynomial coefficients is given in
the next section. Background subtraction will be done if and only if bkg_coeff is given in the EXTRACT1D reference
file. The background is determined independently for each column (or row, if dispersion is vertical), using pixel values
from all background regions within each column (or row).

Parameters related to background subtraction are smoothing_length, bkg_fit, and bkg_order:

1. If smoothing_length is specified, the 2D image data used to perform background extraction will be smoothed
along the dispersion direction using a boxcar of width smoothing_length (in pixels). If not specified, no
smoothing of the input 2D image data is performed.

2. bkg_fit specifies the type of background computation to be performed within each column (or row). The
default value is None; if not set by the user, the step will search the reference file for a value. If no value is found,
bkg_fit will be set to “poly”. The “poly” mode fits a polynomial of order bkg_order to the background values
within the column (or row). Alternatively, values of “mean” or “median” can be specified in order to compute
the simple mean or median of the background values in each column (or row). Note that using “bkg_fit=mean” is
mathematically equivalent to “bkg_fit=poly” with “bkg_order=0”. If bkg_fit is provided both by a reference file

15.1. Package Index 255

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

and by the user, e.g. steps.extract_1d.bkg_fit='poly', the user-supplied value will override the reference
file value.

3. If bkg_fit=poly is specified, bkg_order is used to indicate the polynomial order to be used. The default value
is zero, i.e. a constant.

During source extraction, the background fit is evaluated at each pixel within the source extraction region for that
column (row), and the fitted values will be subtracted (pixel by pixel) from the source count rate.

Source and Background Coefficient Lists

The interpretation and use of polynomial coefficients to specify source and background extraction regions via
src_coeff and bkg_coeff is the same. The coefficients are specified as a list of an even number of lists (an even
number because both the lower and upper limits of each extraction region must be specified). The source extraction
coefficients will normally be a list of just two lists, the coefficients for the lower limit function and the coefficients
for the upper limit function of one extraction region. The limits could just be constant values, e.g. [[324.5], [335.5]].
Straight but tilted lines are linear functions:

[[324.5, 0.0137], [335.5, 0.0137]]

Multiple regions may be specified for either the source or background, or both. It will be common to specify more than
one background region. Here is an example for specifying two background regions:

[[315.2, 0.0135], [320.7, 0.0135], [341.1, 0.0139], [346.8, 0.0139]]

This is interpreted as follows:

• [315.2, 0.0135]: lower limit for first background region

• [320.7, 0.0135]: upper limit for first background region

• [341.1, 0.0139]: lower limit for second background region

• [346.8, 0.0139]: upper limit for second background region

Note: If the dispersion direction is vertical, replace “lower” with “left” and “upper” with “right” in the above descrip-
tion.

Notice especially that src_coeff and bkg_coeff contain floating-point values. For interpreting fractions of a pixel,
the convention used here is that the pixel number at the center of a pixel is a whole number. Thus, if a lower or upper
limit is a whole number, that limit splits the pixel in two, so the weight for that pixel will be 0.5. To include all the pixels
between 325 and 335 inclusive, for example, the lower and upper limits would be given as 324.5 and 335.5 respectively.

The order of a polynomial is specified implicitly to be one less than the number of coefficients. The number of coef-
ficients for a lower or upper extraction region limit must be at least one (i.e. zeroth-order polynomial). There is no
predefined upper limit on the number of coefficients (and hence polynomial order). The various polynomials (lower
limits, upper limits, possibly multiple regions) do not need to have the same number of coefficients; each of the inner
lists specifies a separate polynomial. However, the independent variable (wavelength or pixel) does need to be the same
for all polynomials for a given slit.

Polynomials specified via src_coeff and bkg_coeff are functions of either wavelength (in microns) or pixel num-
ber (pixels in the dispersion direction, with respect to the input 2D slit image), which is specified by the parameter
independent_var. The default is “pixel”. The values of these polynomial functions are pixel numbers in the direc-
tion perpendicular to dispersion.

256 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Extraction for 3D IFU Data

In IFU cube data, 1D extraction is controlled by a different set of EXTRACT1D reference file parameters. For point
source data the extraction aperture is centered at the RA/DEC target location indicated by the header. If the target
location is undefined in the header, then the extraction region is the center of the IFU cube. For extended source data,
anything specified in the reference file or step arguments will be ignored; the entire image will be extracted, and no
background subtraction will be done.

For point sources a circular extraction aperture is used, along with an optional circular annulus for background extraction
and subtraction. The size of the extraction region and the background annulus size varies with wavelength. The
extraction related vectors are found in the asdf extract1d reference file. For each element in the wavelength vector
there are three size components: radius, inner_bkg, and outer_bkg. The radius vector sets the extraction size;
while inner_bkg and outer_bkg specify the limits of an annular background aperture. There are two additional
vectors in the reference file, axis_ratio and axis_pa, which are placeholders for possible future functionality. The
extraction size parameters are given in units of arcseconds and converted to units of pixels in the extraction process.

The region of overlap between an aperture and a pixel can be calculated by one of three different methods, specified by
the method parameter: “exact” (default), limited only by finite precision arithmetic; “center”, the full value in a pixel
will be included if its center is within the aperture; or “subsample”, which means pixels will be subsampled N x N and
the “center” option will be used for each sub-pixel. When method is “subsample”, the parameter subpixels is used
to set the resampling value. The default value is 10.

For IFU cubes the error information is contained entirely in the ERR array, and is not broken out into the
VAR_POISSON, VAR_RNOISE, and VAR_FLAT arrays. As such, extract_1d only propagates this non-
differentiated error term. Note that while covariance is also extremely important for IFU data cubes (as the IFUs them-
selves are significantly undersampled) this term is not presently computed or taken into account in the extract_1d
step. As such, the error estimates should be taken as a rough approximation that will be characterized and improved as
flight data become available.

Step Arguments

The extract_1d step has the following step-specific arguments.

--smoothing_length
If smoothing_length is greater than 1 (and is an odd integer), the image data used to perform background
extraction will be smoothed in the dispersion direction with a boxcar of this width. If smoothing_length is
None (the default), the step will attempt to read the value from the EXTRACT1D reference file. If a value is
specified in the reference file, that value will be used. Note that by specifying this parameter in the EXTRACT1D
reference file, a different value can be designated for each slit, if desired. If no value is specified either by the
user or in the EXTRACT1D reference file, no background smoothing is done.

--bkg_fit
The type of fit to perform to the background data in each image column (or row, if the dispersion is vertical).
There are four allowed values: “poly”, “mean”, and “median”, and None (the default value). If left as None, the
step will search the reference file for a value - if none is found, bkg_fit will be set to “poly”. If set to “poly”,
the background values for each pixel within all background regions in a given column (or row) will be fit with
a polynomial of order “bkg_order” (see below). Values of “mean” and “median” compute the simple average
and median, respectively, of the background region values in each column (or row). This parameter can also be
specified in the EXTRACT1D reference file. If specified in the reference file and given as an argument to the step
by the user, the user-supplied value takes precedence.

--bkg_order
The order of a polynomial function to be fit to the background regions. The fit is done independently for each
column (or row, if the dispersion is vertical) of the input image, and the fitted curve will be subtracted from the
target data. bkg_order = 0 (the minimum allowed value) means to fit a constant. The user-supplied value (if
any) overrides the value in the EXTRACT1D reference file. If neither is specified, a value of 0 will be used. If a

15.1. Package Index 257

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

sufficient number of valid data points is unavailable to construct the polynomial fit, the fit will be forced to 0 for
that particular column (or row). If “bkg_fit” is not “poly”, this parameter will be ignored.

--bkg_sigma_clip
The background values will be sigma-clipped to remove outlier values from the determination of the background.
The default value is a 3.0 sigma clip.

--log_increment
Most log messages are suppressed while looping over integrations, i.e. when the input is a CubeModel or a 3-D
SlitModel. Messages will be logged while processing the first integration, but since they would be the same for
every integration, most messages will only be written once. However, since there can be hundreds or thousands
of integrations, which can take a long time to process, it would be useful to log a message every now and then to
let the user know that the step is still running.

log_increment is an integer, with default value 50. If it is greater than 0, an INFO message will be printed
every log_increment integrations, e.g. “. . . 150 integrations done”.

--subtract_background
This is a boolean flag to specify whether the background should be subtracted. If None, the value in the EX-
TRACT1D reference file (if any) will be used. If not None, this parameter overrides the value in the reference
file.

--use_source_posn
This is a boolean flag to specify whether the target and background extraction region locations specified in the
EXTRACT1D reference file should be shifted to account for the expected position of the source. If None (the
default), the step will make the decision of whether to use the source position based on the observing mode and
the source type. The source position will only be used for point sources and for modes where the source could
be located off-center due to things like nodding or dithering. If turned on, the position of the source is used in
conjunction with the World Coordinate System (WCS) to compute the x/y source location. For NIRSpec non-
IFU modes, the source position is determined from the source_xpos/source_ypos parameters. For MIRI
LRS fixed slit, the dither offset is applied to the sky pointing location to determine source position. All other
modes use targ_ra/targ_dec. If this parameter is specified in the EXTRACT1D reference file, the reference
file value will override any automatic settings based on exposure and source type. As always, a value given by
the user as an argument to the step overrides all settings in the reference file or within the step code.

--center_xy
A list of two integer values giving the desired x/y location for the center of the circular extraction aperture used
for extracting spectra from 3-D IFU cubes. Ignored for non-IFU modes and non-point sources. Must be given in
x,y order and in units of pixels along the x,y axes of the 3-D IFU cube, e.g. --center_xy="27,28". If given,
the values override any position derived from the use of the use_source_posn argument. Default is None.

--apply_apcorr
Switch to select whether or not to apply an APERTURE correction during the Extract1dStep processing. Default
is True

--ifu_autocen
Switch to select whether or not to enable auto-centroiding of the extraction aperture for IFU point sources. Auto-
centroiding works by median collapsing the IFU cube across all wavelengths (shortward of 26 microns where the
MRS throughput becomes extremely low) and using DAOStarFinder to locate the brightest source in the field.
Default is False.

--ifu_rfcorr
Switch to select whether or not to run 1d residual fringe correction on the extracted 1d spectrum (MIRI MRS
only). Default is False.

--ifu_set_srctype
A string that can be used to override the extraction method for the source_type given by the SRCTYPE keyword.
The allowed values are POINT and EXTENDED. The SRCTYPE keyword is not changed, instead the extraction
method used is based on this parameter setting. This is only allowed for MIRI MRS IFU data.

258 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

--ifu_rscale
A float designating the number of PSF FWHMs to use for the extraction radius. This is a MIRI MRS only
paramenter. Values accepted are between 0.5 to 3.0. The default extraction size is set to 2 * FWHM. Values
below 2 will result in a smaller radius, a value of 2 results in no change to radius and a value above 2 results in a
larger extraction radius.

--soss_atoca
This is a NIRISS-SOSS algorithm-specific parameter; if True, use the ATOCA algorithm to treat order contam-
ination. Default is True.

--soss_threshold
This is a NIRISS-SOSS algorithm-specific parameter; this sets the threshold value for a pixel to be included
when modelling the spectral trace. The default value is 0.01.

--soss_n_os
This is a NIRISS-SOSS algorithm-specific parameter; this is an integer that sets the oversampling factor of the
underlying wavelength grid used when modeling the trace. The default value is 2.

--soss_estimate
This is a NIRISS-SOSS algorithm-specific parameter; filename or SpecModel of the estimate of the target flux.
The estimate must be a SpecModel with wavelength and flux values.

--soss_wave_grid_in
This is a NIRISS-SOSS algorithm-specific parameter; filename or SossWaveGridModel containing the wave-
length grid used by ATOCA to model each valid pixel of the detector. If not given, the grid is determined based
on an estimate of the flux (soss_estimate), the relative tolerance (soss_rtol) required on each pixel model and the
maximum grid size (soss_max_grid_size).

--soss_wave_grid_out
This is a NIRISS-SOSS algorithm-specific parameter; filename to hold the wavelength grid calculated by
ATOCA, stored in a SossWaveGridModel.

--soss_rtol
This is a NIRISS-SOSS algorithm-specific parameter; the relative tolerance needed on a pixel model. It is used
to determine the sampling of the soss_wave_grid when not directly given. Default value is 1.e-4.

--soss_max_grid_size
This is a NIRISS-SOSS algorithm-specific parameter; the maximum grid size allowed. It is used when
soss_wave_grid is not provided to make sure the computation time or the memory used stays reasonable. Default
value is 20000.

--soss_transform
This is a NIRISS-SOSS algorithm-specific parameter; this defines a rotation to apply to the reference files to
match the observation. It should be specified as a list of three floats, with default values of None.

--soss_tikfac
This is a NIRISS-SOSS algorithm-specific parameter; this is the regularization factor used in the SOSS extrac-
tion. If not specified, ATOCA will calculate a best-fit value for the Tikhonov factor.

--soss_width
This is a NIRISS-SOSS algorithm-specific parameter; this specifies the aperture width used to extract the 1D
spectrum from the decontaminated trace. The default value is 40.0 pixels.

--soss_bad_pix
This is a NIRISS-SOSS algorithm-specific parameter; this parameter sets the method used to handle bad pixels.
There are currently two options: “model” will replace the bad pixel values with a modeled value, while “masking”
will omit those pixels from the spectrum. The default value is “model”.

--soss_modelname
This is a NIRISS-SOSS algorithm-specific parameter; if set, this will provide the optional ATOCA model output

15.1. Package Index 259

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

of traces and pixel weights, with the filename set by this parameter. By default this is set to None and this output
is not provided.

Reference File

The extract_1d step uses an EXTRACT1D reference file and an APCORR reference file.

EXTRACT1D Reference File

The EXTRACT1D reference file contains information needed to guide the 1D extraction process. It is a text file, with
the information in JSON format for Non-IFU data and in ASDF format for IFU data.

Reference Selection Keywords for EXTRACT1D

CRDS selects appropriate EXTRACT1D references based on the following keywords. EXTRACT1D is not applicable
for instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
MIRI INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRISS INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRSpec INSTRUME, EXP_TYPE, LAMP, OPMODE, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

260 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Type Specific Keywords for EXTRACT1D

In addition to the standard reference file keywords listed above, the following keywords are required in EXTRACT1D
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for EXTRACT1D):

Keyword Data Model Name
EXP_TYPE model.meta.exposure.type

Reference File Format for non-IFU data

EXTRACT1D reference files for non-IFU data are text files, with the information stored in JSON format. All the
information is specified in a list with key apertures. Each element of this list is a dictionary, one for each aperture
(e.g. a slit) that is supported by the given reference file. The particular dictionary used by the step is found by matching
the slit name in the science data with the value of key id. Key spectral_order is optional, but if it is present, it must
match the expected spectral order number.

The following keys are supported for non-IFU data (see below for IFU keys). Key id is the primary criterion for
selecting which element of the apertures list to use. The slit name (except for a full-frame input image) is compared
with the values of id in the apertures list to select the appropriate aperture. In order to allow the possibility of
multiple spectral orders for the same slit name, there may be more than one element of apertures with the same
value for key id. These should then be distinguished by using the secondary selection criterion spectral_order.
In this case, the various spectral orders would likely have different extraction locations within the image, so different
elements of apertures are needed in order to specify those locations. If key dispaxis is specified, its value will
be used to set the dispersion direction within the image. If dispaxis is not specified, the dispersion direction will
be taken to be the axis along which the wavelengths change more rapidly. Key region_type can be omitted, but if it
is specified, its value must be “target”. The remaining keys specify the characteristics of the source and background
extraction regions.

• id: the slit name, e.g. “S200A1” (string)

• spectral_order: the spectral order number (optional); this can be either positive or negative, but it should not be
zero (int)

• dispaxis: dispersion direction, 1 for X, 2 for Y (int)

• xstart: first pixel in the horizontal direction, X (int) (0-indexed)

• xstop: last pixel in the horizontal direction, X (int) (0-indexed)

• ystart: first pixel in the vertical direction, Y (int) (0-indexed)

• ystop: last pixel in the vertical direction, Y (int) (0-indexed)

• src_coeff: this takes priority for specifying the source extraction region (list of lists of float)

• bkg_coeff: for specifying background subtraction regions (list of lists of float)

• independent_var: “wavelength” or “pixel” (string)

• smoothing_length: width of boxcar for smoothing background regions along the dispersion direction (odd int)

• bkg_fit: the type of background fit or computation (string)

• bkg_order: order of polynomial fit to background regions (int)

• extract_width: number of pixels in cross-dispersion direction (int)

• use_source_posn: adjust the extraction limits based on source RA/Dec (bool)

15.1. Package Index 261

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Note: All parameter values that represent pixel indexes, such as xstart, xstop, and the src_coeff and bkg_coeff
coefficients, are always in the frame of the image being operated on, which could be a small cutout from a larger original
image. They are also ZERO-indexed and the limits are inclusive (e.g. 11-15 includes 5 pixels).

See Extraction for 2D Slit Data for more details on how these parameters are used in the extraction process.

Editing JSON Reference File Format for non-IFU data

The default EXTRACT1D reference file is found in CRDS. The user can download this file, modify the contents, and
use this modified file in extract_1d by specifying this modified reference file with the override option (override
in python or override in strun). The format for JSON files has to be exact, for example, the format of a floating-point
value with a fractional portion must include at least one decimal digit, so “1.” is invalid, while “1.0” is valid. The best
practice after editing a JSON reference file is to run a JSON validator off-line, such as https://jsonlint.com/, and
correct any format errors before using the JSON reference file in the pipeline.

Reference File Format IFU data

For IFU data the reference files are stored as ASDF files. The extraction size varies with wavelength. The reference
file contains a set of vectors defining the extraction size based on wavelength. These vectors are all the same size and
are defined as follows:

• wavelength: wavelength in microns.

• radius: the radius of the circular extraction aperture (arcseconds, float)

• inner_bkg: of the inner edge of the background annulus (arcseconds, float)

• outer_bkg: of the outer edge of the background annulus (arcseconds, float)

In addition following general keys are also in the ASDF reference file:

• subtract_background: if true, subtract a background determined from an annulus with inner and outer radii given
by inner_bkg and outer_bkg (boolean)

• method: one of “exact”, “subpixel”, or “center”, the method used by photutils for computing the overlap between
apertures and pixels (string, default is “exact”)

• subpixels: if method is “subpixel”, pixels will be resampled by this factor in each dimension (int, the default is
10)

See Extraction for 3D IFU Data for more details on how these parameters are used in the extraction process.

Example EXTRACT1D Reference File

The following JSON was taken as an example from reference file jwst_niriss_extract1d_0003.json:

{
"REFTYPE": "EXTRACT1D",
"INSTRUME": "NIRISS",
"TELESCOP": "JWST",
"DETECTOR": "NIS",
"EXP_TYPE": "NIS_SOSS",
"PEDIGREE": "GROUND",

(continues on next page)

262 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

"DESCRIP": "NIRISS SOSS extraction params for ground testing",
"AUTHOR": "M.Wolfe, H.Bushouse",
"HISTORY": "Build 7.1 of the JWST Calibration pipeline. The regions are rectangular␣

→˓and do not follow the trace.",
"USEAFTER": "2015-11-01T00:00:00",
"apertures": [
{
"id": "FULL",
"region_type": "target",
"bkg_coeff": [[2014.5],[2043.5]],
"xstart": 4,
"xstop": 2044,
"ystart": 1792,
"ystop": 1972,
"dispaxis": 1,
"extract_width": 181
},

{
"id": "SUBSTRIP256",
"region_type": "target",
"bkg_coeff": [[221.5],[251.5]],
"xstart": 4,
"xstop": 2044,
"ystart": 20,
"ystop": 220,
"dispaxis": 1,
"extract_width": 201
},

{
"id": "SUBSTRIP96",
"region_type": "target",
"bkg_coeff": [[1.5],[8.5],[92.5],[94.5]],
"xstart": 4,
"xstop": 2044,
"ystart": 10,
"ystop": 92,
"dispaxis": 1,
"extract_width": 83
}]

}

15.1. Package Index 263

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

APCORR Reference File

REFTYPE
APCORR

The APCORR reference file contains data necessary for correcting extracted imaging and spectroscopic photometry to
the equivalent of an infinite aperture. It is used within the source_catalog step for imaging and within the extract_1d
step for spectroscopic data.

Reference Selection Keywords for APCORR

CRDS selects appropriate APCORR references based on the following keywords. APCORR is not applicable for
instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
FGS INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
MIRI INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRCam INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRISS INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRSpec INSTRUME, EXP_TYPE, FILTER, GRATING, LAMP, OPMODE, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

264 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Type Specific Keywords for APCORR

In addition to the standard reference file keywords listed above, the following keywords are required in APCORR
reference files, because they are used as CRDS selectors (see apcorr_selectors):

Keyword Data Model Name Instruments
EXP_TYPE model.meta.exposure.type All

NON-IFU APCORR Reference File Format

APCORR reference files for non-IFU data are in FITS format. The FITS APCORR reference file contains tabular data
in a BINTABLE extension with EXTNAME = ‘APCORR’. The FITS primary HDU does not contain a data array. The
contents of the table extension varies for different instrument modes, as shown in the tables below.

Data model
FgsImgApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.FgsImgApcorrModel.html#jwst.datamodels.FgsImgApcorrModel)

Instrument Mode Column name Data type Dimensions Units
FGS Image eefraction float scalar unitless

radius float scalar pixels
apcorr float scalar unitless
skyin float scalar pixels
skyout float scalar pixels

Data model
MirImgApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirImgApcorrModel.html#jwst.datamodels.MirImgApcorrModel)

Instrument Mode Column name Data type Dimensions Units
MIRI Image filter string 12 N/A

subarray string 15 N/A
eefraction float scalar unitless
radius float scalar pixels
apcorr float scalar unitless
skyin float scalar pixels
skyout float scalar pixels

Data model
MirLrsApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirLrsApcorrModel.html#jwst.datamodels.MirLrsApcorrModel)

Instrument Mode Column name Data type Dimensions Units
MIRI LRS subarray string 15 N/A

wavelength float 1D array micron
nelem_wl integer scalar N/A
size integer 1D array pixels
nelem_size integer scalar N/A
apcorr float 2D array unitless
apcorr_err float 2D array unitless

15.1. Package Index 265

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.FgsImgApcorrModel.html#jwst.datamodels.FgsImgApcorrModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirImgApcorrModel.html#jwst.datamodels.MirImgApcorrModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirLrsApcorrModel.html#jwst.datamodels.MirLrsApcorrModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Data model
NrcImgApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrcImgApcorrModel.html#jwst.datamodels.NrcImgApcorrModel)

Instrument Mode Column name Data type Dimensions Units
NIRCam Image filter string 12 N/A

pupil string 15 N/A
eefraction float scalar unitless
radius float scalar pixels
apcorr float scalar unitless
skyin float scalar pixels
skyout float scalar pixels

Data model
NrcWfssApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrcWfssApcorrModel.html#jwst.datamodels.NrcWfssApcorrModel)

Instrument Mode Column name Data type Dimensions Units
NIRCam WFSS filter string 12 N/A

pupil string 15 N/A
wavelength float 1D array micron
nelem_wl integer scalar N/A
size integer 1D array pixels
nelem_size integer scalar N/A
apcorr float 2D array unitless
apcorr_err float 2D array unitless

Data model
NisImgApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NisImgApcorrModel.html#jwst.datamodels.NisImgApcorrModel)

Instrument Mode Column name Data type Dimensions Units
NIRISS Image filter string 12 N/A

pupil string 15 N/A
eefraction float scalar unitless
radius float scalar pixels
apcorr float scalar unitless
skyin float scalar pixels
skyout float scalar pixels

Data model
NisWfssApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NisWfssApcorrModel.html#jwst.datamodels.NisWfssApcorrModel)

Instrument Mode Column name Data type Dimensions Units
NIRISS WFSS filter string 12 N/A

pupil string 15 N/A
wavelength float 1D array micron
nelem_wl integer scalar N/A
size integer 1D array pixels
nelem_size integer scalar N/A
apcorr float 2D array unitless
apcorr_err float 2D array unitless

266 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrcImgApcorrModel.html#jwst.datamodels.NrcImgApcorrModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrcWfssApcorrModel.html#jwst.datamodels.NrcWfssApcorrModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NisImgApcorrModel.html#jwst.datamodels.NisImgApcorrModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NisWfssApcorrModel.html#jwst.datamodels.NisWfssApcorrModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Data model
NrsFsApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrsFsApcorrModel.html#jwst.datamodels.NrsFsApcorrModel)

Instrument Mode Column name Data type Dimensions Units
NIRSpec FS filter string 12 N/A

grating string 15 N/A
slit string 15 N/A
wavelength float 1D array micron
nelem_wl integer scalar N/A
size integer 2D array arcsec
nelem_size integer scalar N/A
pixphase float 1D array N/A
apcorr float 3D array unitless
apcorr_err float 3D array unitless

Data model
NrsMosApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrsMosApcorrModel.html#jwst.datamodels.NrsMosApcorrModel)

Instrument Mode Column name Data type Dimensions Units
NIRSpec MOS filter string 12 N/A

grating string 15 N/A
wavelength float 1D array micron
nelem_wl integer scalar N/A
size integer 2D array arcsec
nelem_size integer scalar N/A
pixphase float 1D array N/A
apcorr float 3D array unitless
apcorr_err float 3D array unitless

Row Selection

A row of data within the reference table is selected by the pipeline step based on the optical elements in use for the
exposure. The selection attributes are always contained in the first few columns of the table. The remaining columns
contain the data needed for the aperture correction. The row selection criteria for each instrument+mode are:

•FGS Image:
– None (table contains a single row)

•MIRI:
– Image: Filter and Subarray

– LRS: Subarray

•NIRCam:
– Image: Filter and Pupil

– WFSS: Filter and Pupil

•NIRISS:
– Image: Filter and Pupil

– WFSS: Filter and Pupil

15.1. Package Index 267

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrsFsApcorrModel.html#jwst.datamodels.NrsFsApcorrModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrsMosApcorrModel.html#jwst.datamodels.NrsMosApcorrModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

•NIRSpec:
– MOS: Filter and Grating

– Fixed Slits: Filter, Grating, and Slit name

Note: Spectroscopic mode reference files contain the “nelem_wl” and “nelem_size” entries, which indicate to the
pipeline step how many valid elements are contained in the “wavelength” and “size” arrays, respectively. Only the first
“nelem_wl” and “nelem_size” entries are read from each array.

IFU APCORR Reference File ASDF Format

For IFU data the APCORR reference files are in ASDF format. The aperture correction varies with wavelength and
the contents of the files are shown below. The radius, aperture correction and error are all 2D arrays. Currently the
2nd dimension does not add information, but in the future it could be used to provide different aperture corrections for
different radii.

Data model
MirMrsApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirMrsApcorrModel.html#jwst.datamodels.MirMrsApcorrModel)

Instrument Mode Column name Data type Dimensions Units
MIRI MRS wavelength float 1D array micron

radius float 2D array arcsec
apcorr float 2D array unitless
apcorr_err float 2D array unitless

Data model
NRSIFUApcorrModel

Instrument Mode Column name Data type Dimensions Units
NIRSpec MOS filter string 12 N/A

grating string 15 N/A
wavelength float 1D array micron
radius float 2D array arcsec
apcorr float 2D array unitless
apcorr_err float 2D array unitless

Reference Image Format

An alternative EXTRACT1D reference format, an image, is also supported. There are currently no files of this type
in CRDS (there would be a conflict with the current JSON-format reference files), but a user can create a file in this
format and specify that it be used as an override for the default EXTRACT1D reference file.

This format is a MultiExtract1dImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiExtract1dImageModel.html#jwst.datamodels.MultiExtract1dImageModel),
which is loosely based on MultiSlitModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel).
The file should contain keyword DATAMODL, with value ‘MultiExtract1dImageModel’; this is
not required, but it makes it possible to open the file simply with datamodels.open. The
reference image file contains one or more images, which are of type Extract1dImageModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.Extract1dImageModel.html#jwst.datamodels.Extract1dImageModel),
and one can iterate over the list of these images to find one that matches the observing configuration. This iterable is
the images attribute of the model (ref_model, for purposes of discussion). Each element of ref_model.images can
contain a name attribute (FITS keyword SLTNAME) and a spectral_order attribute (FITS keyword SPORDER),

268 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirMrsApcorrModel.html#jwst.datamodels.MirMrsApcorrModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiExtract1dImageModel.html#jwst.datamodels.MultiExtract1dImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.Extract1dImageModel.html#jwst.datamodels.Extract1dImageModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

which can be compared with the slit name and spectral order respectively in the science data model in order to select
the matching reference image. The wildcard for SLTNAME is “ANY”, and any integer value for SPORDER greater
than or equal to 1000 is a wildcard for spectral order (SPORDER is an integer, and an integer keyword may not be
assigned a string value such as “ANY”). For IFU data, the image to use is selected only on name.

For non-IFU data, the shape of the reference image should match the shape of the science data, although the step can
either trim the reference image or pad it with zeros to match the size of the science data, pinned at pixel [0, 0]. For
IFU data, the shape of the reference image can be 3-D, exactly matching the shape of the IFU data, or it can be 2-D,
matching the shape of one plane of the IFU data. If the reference image is 2-D, it will be applied equally to each plane
of the IFU data, i.e. it will be broadcast over the dispersion direction.

The data type of each image is float32, but the data values may only be +1, 0, or -1. A value of +1 means that the
matching pixel in the science data will be included when accumulating data for the source (target) region. A value of
0 means the pixel will not be used for anything. A value of -1 means the pixel will be included for the background; if
there are no pixels with value -1, no background will be subtracted. A pixel will either be included or not; there is no
option to include only a fraction of a pixel.

For non-IFU data, values will be extracted column by column (if the dispersion direction is horizontal, else row by
row). The gross count rate will be the sum of the source pixels in a column (or row). If background region(s) were
specified, the sum of those pixels will be scaled by the ratio of the number of source pixels to the number of background
pixels (with possibly a different ratio for each column (row)) before being subtracted from the gross count rate. The
scaled background is what will be saved in the output table.

For IFU data, the values will be summed over each plane in the dispersion direction, giving one value of flux and
optionally one value of background per plane. The background value will be scaled by the ratio of source pixels to
background pixels before being subtracted from the flux.

jwst.extract_1d Package

Classes

Extract1dStep([name, parent, config_file, ...]) Extract a 1-d spectrum from 2-d data

Extract1dStep

class jwst.extract_1d.Extract1dStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

Extract a 1-d spectrum from 2-d data

smoothing_length

If not None, the background regions (if any) will be smoothed with a boxcar function of this width along
the dispersion direction. This should be an odd integer.

Type
int (https://docs.python.org/3/library/functions.html#int) or None

bkg_fit

A string indicating the type of fitting to be applied to background values in each column (or row,
if the dispersion is vertical). Allowed values are poly, mean, and median. Default is None
(https://docs.python.org/3/library/constants.html#None).

15.1. Package Index 269

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Type
str (https://docs.python.org/3/library/stdtypes.html#str)

bkg_order

If not None, a polynomial with order bkg_order will be fit to each column (or row, if the dispersion
direction is vertical) of the background region or regions. For a given column (row), one polynomial will
be fit to all background regions. The polynomial will be evaluated at each pixel of the source extraction
region(s) along the column (row), and the fitted value will be subtracted from the data value at that pixel.
If both smoothing_length and bkg_order are not None, the boxcar smoothing will be done first.

Type
int (https://docs.python.org/3/library/functions.html#int) or None

bkg_sigma_clip

Background sigma clipping value to use on background to remove outliers and maximize the quality of the
1d spectrum

Type
float (https://docs.python.org/3/library/functions.html#float)

log_increment

if log_increment is greater than 0 (the default is 50) and the input data are multi-integration (which can be
CubeModel or SlitModel), a message will be written to the log with log level INFO every log_increment
integrations. This is intended to provide progress information when invoking the step interactively.

Type
int (https://docs.python.org/3/library/functions.html#int)

subtract_background

A flag which indicates whether the background should be subtracted. If None, the value in the extract_1d
reference file will be used. If not None, this parameter overrides the value in the extract_1d reference file.

Type
bool (https://docs.python.org/3/library/functions.html#bool) or None

use_source_posn

If True, the source and background extraction positions specified in the extract1d reference file (or the
default position, if there is no reference file) will be shifted to account for the computed position of the
source in the data. If None (the default), the values in the reference file will be used. Aperture offset is
determined by computing the pixel location of the source based on its RA and Dec. It does not make sense
to apply aperture offsets for extended sources, so this parameter can be overridden (set to False) internally
by the step.

Type
bool (https://docs.python.org/3/library/functions.html#bool) or None

center_xy

A list of 2 pixel coordinate values at which to place the center of the IFU extraction aperture, overriding
any centering done by the step. Two values, in x,y order, are used for extraction from IFU cubes. Default
is None.

Type
int (https://docs.python.org/3/library/functions.html#int) or None

apply_apcorr

Switch to select whether or not to apply an APERTURE correction during the Extract1dStep. Default is
True

Type
bool (https://docs.python.org/3/library/functions.html#bool)

270 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

ifu_autocen

Switch to turn on auto-centering for point source spectral extraction in IFU mode. Default is False.

Type
bool (https://docs.python.org/3/library/functions.html#bool)

ifu_rfcorr

Switch to select whether or not to apply a 1d residual fringe correction for MIRI MRS IFU spectra. Default
is False.

Type
bool (https://docs.python.org/3/library/functions.html#bool)

ifu_set_srctype

For MIRI MRS IFU data override srctype and set it to either POINT or EXTENDED.

Type
str (https://docs.python.org/3/library/stdtypes.html#str)

ifu_rscale

For MRS IFU data a value for changing the extraction radius. The value provided is the number of PSF
FWHMs to use for the extraction radius. Values accepted are between 0.5 to 3.0. The default extraction
size is set to 2 * FWHM. Values below 2 will result in a smaller radius, a value of 2 results in no change to
the radius and a value above 2 results in a larger extraction radius.

Type
float (https://docs.python.org/3/library/functions.html#float)

soss_atoca

Switch to toggle extraction of SOSS data with the ATOCA algorithm. WARNING: ATOCA results not
fully validated, and require the photom step be turned off. Default is False, meaning SOSS data use box
extraction.

Type
bool (https://docs.python.org/3/library/functions.html#bool), default=False

soss_threshold

Threshold value above which a pixel will be included when modeling the SOSS trace in ATOCA. Default
is 0.01.

Type
float (https://docs.python.org/3/library/functions.html#float)

soss_n_os

Oversampling factor of the underlying wavelength grid when modeling the SOSS trace in ATOCA. Default
is 2.

Type
int (https://docs.python.org/3/library/functions.html#int)

soss_transform

Rotation applied to the reference files to match the observation orientation. Default is None.

Type
list (https://docs.python.org/3/library/stdtypes.html#list)[float
(https://docs.python.org/3/library/functions.html#float)]

soss_tikfac

The regularization factor used for extraction in ATOCA. If left to default value of None, ATOCA will find
an optimized value.

15.1. Package Index 271

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Type
float (https://docs.python.org/3/library/functions.html#float)

soss_width

Aperture width used to extract the SOSS spectrum from the decontaminated trace in ATOCA. Default is
40.

Type
float (https://docs.python.org/3/library/functions.html#float)

soss_bad_pix

Method used to handle bad pixels, accepts either “model” or “masking”. Default method is “model”.

Type
str (https://docs.python.org/3/library/stdtypes.html#str)

soss_modelname

Filename for optional model output of ATOCA traces and pixel weights.

Type
str (https://docs.python.org/3/library/stdtypes.html#str)

soss_estimate

Filename or SpecModel of the estimate of the target flux. The estimate must be a SpecModel with wave-
length and flux values.

Type
str (https://docs.python.org/3/library/stdtypes.html#str) or SpecModel or None

soss_wave_grid_in

Filename or SossWaveGrid containing the wavelength grid used by ATOCA to model each pixel valid pixel
of the detector. If not given, the grid is determined based on an estimate of the flux (soss_estimate), the rel-
ative tolerance (soss_rtol) required on each pixel model and the maximum grid size (soss_max_grid_size).

Type
str (https://docs.python.org/3/library/stdtypes.html#str) or SossWaveGrid or None

soss_wave_grid_out

Filename to hold the wavelength grid calculated by ATOCA.

Type
str (https://docs.python.org/3/library/stdtypes.html#str) or None

soss_rtol

The relative tolerance needed on a pixel model. It is used to determine the sampling of the soss_wave_grid
when not directly given.

Type
float (https://docs.python.org/3/library/functions.html#float)

soss_max_grid_size

Maximum grid size allowed. It is used when soss_wave_grid is not provided to make sure the computation
time or the memory used stays reasonable.

Type
int (https://docs.python.org/3/library/functions.html#int)

Create a Step instance.

Parameters

272 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of
the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) Execute the step.

Attributes Documentation

class_alias = 'extract_1d'

reference_file_types = ['extract1d', 'apcorr', 'wavemap', 'spectrace',
'specprofile', 'speckernel']

spec

smoothing_length = integer(default=None) # background smoothing size
bkg_fit = option("poly", "mean", "median", None, default=None) # background␣
→˓fitting type
bkg_order = integer(default=None, min=0) # order of background polynomial fit
bkg_sigma_clip = float(default=3.0) # background sigma clipping threshold
log_increment = integer(default=50) # increment for multi-integration log␣
→˓messages
subtract_background = boolean(default=None) # subtract background?
use_source_posn = boolean(default=None) # use source coords to center␣
→˓extractions?
center_xy = float_list(min=2, max=2, default=None) # IFU extraction x/y center
apply_apcorr = boolean(default=True) # apply aperture corrections?
ifu_autocen = boolean(default=False) # Auto source centering for IFU point␣
→˓source data.
ifu_rfcorr = boolean(default=False) # Apply 1d residual fringe correction

(continues on next page)

15.1. Package Index 273

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

ifu_set_srctype = option("POINT", "EXTENDED", None, default=None) # user-
→˓supplied source type
ifu_rscale = float(default=None, min=0.5, max=3) # Radius in terms of PSF FWHM␣
→˓to scale extraction radii
soss_atoca = boolean(default=True) # use ATOCA algorithm
soss_threshold = float(default=1e-2) # TODO: threshold could be removed from␣
→˓inputs. Its use is too specific now.
soss_n_os = integer(default=2) # minimum oversampling factor of the underlying␣
→˓wavelength grid used when modeling trace.
soss_wave_grid_in = input_file(default = None) # Input wavelength grid used to␣
→˓model the detector
soss_wave_grid_out = string(default = None) # Output wavelength grid solution␣
→˓filename
soss_estimate = input_file(default = None) # Estimate used to generate the␣
→˓wavelength grid
soss_rtol = float(default=1.0e-4) # Relative tolerance needed on a pixel model
soss_max_grid_size = integer(default=20000) # Maximum grid size, if wave_grid␣
→˓not specified
soss_transform = list(default=None, min=3, max=3) # rotation applied to the␣
→˓ref files to match observation.
soss_tikfac = float(default=None) # regularization factor for NIRISS SOSS␣
→˓extraction
soss_width = float(default=40.) # aperture width used to extract the 1D␣
→˓spectrum from the de-contaminated trace.
soss_bad_pix = option("model", "masking", default="masking") # method used to␣
→˓handle bad pixels
soss_modelname = output_file(default = None) # Filename for optional model␣
→˓output of traces and pixel weights

Methods Documentation

process(input)
Execute the step.

Parameters
input (JWST data model) –

Returns
This will be input_model if the step was skipped; otherwise, it will be a model containing
1-D extracted spectra.

Return type
JWST data model

274 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Class Inheritance Diagram

Extract1dStepJwstStepStep

15.1.19 Extract 2D Spectra

Description

Class
jwst.extract_2d.Extract2dStep

Alias
extract_2d

Overview

The extract_2d step extracts 2D arrays from spectral images. The extractions are performed within all of the SCI,
ERR, and DQ arrays of the input image model, as well as any variance arrays that may be present. It also computes an
array of wavelengths to attach to the extracted data. The extracted arrays are stored as one or more slit objects in an
output MultiSlitModel and saved as separate tuples of extensions in the output FITS file.

Assumptions

This step uses the bounding_box attribute of the WCS stored in the data model, which is populated by the assign_wcs
step. Hence the assign_wcs step must be applied to the science exposure before running this step.

For NIRCam and NIRISS WFSS modes, no bounding_box is attached to the data model by the assign_wcs step.
This is to keep the WCS flexible enough to be used with any source catalog or similar list of objects that may be
associated with the dispersed image. Instead, there is a helper method that is used to calculate the bounding boxes that
contain the spectral trace for each object. One box is made for each spectral order of each object. In regular, automated
processing, the extract_2d step uses the source catalog specified in the input model’s meta information to create the
list of objects and their corresponding bounding box. This list is used to make the 2D cutouts from the dispersed image.

NIRCam TSGRISM exposures do not use a source catalog, so the step instead relies on the assumption that the source
of interest is located at the aperture reference point and centers the extraction there. More details are given below.

15.1. Package Index 275

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Algorithm

This step is currently applied only to NIRSpec Fixed-Slit, NIRSpec MOS, NIRSpec TSO (BrightObj), NIRCam and
NIRISS WFSS, and NIRCam TSGRISM observations.

NIRSpec Fixed Slit and MOS

If the step parameter slit_name is left unspecified, the default behavior is to extract all slits that project onto the
detector. A single slit may be extracted by specifying the slit name with the slit_name argument. In the case of a
NIRSpec fixed-slit exposure the allowed slit names are: “S1600A1”, “S200A1”, “S200A2”, “S200B1” and “S400A1”.
For NIRSpec MOS exposures, the slit name is the slitlet number from the MSA metadata file, corresponding to the
value of the “SLTNAME” keyword in FITS products, and it has to be provided as a string, e.g. slit_name=’60’.

To find out what slits are available for extraction:

>>> from jwst.assign_wcs import nirspec
>>> nirspec.get_open_slits(input_model)

The corner locations of the regions to be extracted are determined from the bounding_box contained in the exposure’s
WCS, which defines the range of valid inputs along each axis. The input coordinates are in the image frame, i.e.
subarray shifts are accounted for.

The output MultiSlitModel data model will have the meta data associated with each slit region populated with
the name and region characteristic for the slits, corresponding to the FITS keywords “SLTNAME”, “SLTSTRT1”,
“SLTSIZE1”, “SLTSTRT2”, and “SLTSIZE2.” Keyword “DISPAXIS” (dispersion direction) will be copied from the
input file to each of the output cutout images.

NIRCam and NIRISS WFSS

During normal, automated processing of WFSS grism images, the step parameter grism_objects is left unspeci-
fied, in which case the extract_2d step uses the source catalog that is specified in the input model’s meta infor-
mation, input_model.meta.source_catalog.filename (“SCATFILE” keyword) to define the list of objects to
be extracted. Otherwise, a user can submit a list of GrismObjects that contains information about the objects that
they want extracted. The GrismObject list can be created automatically by using the method in jwst.assign_wcs.
utils.create_grism_bbox. This method also uses the name of the source catalog saved in the input model’s meta
information. If it’s better to construct a list of GrismObjects outside of these, the GrismObject itself can be imported
from jwst.transforms.models.

The dispersion direction will be documented by copying keyword “DISPAXIS” (1 = horizontal, 2 = vertical) from the
input file to the output cutout.

The wfss_mmag_extract and wfss_nbright parameters both affect which objects from a source catalog will be
retained for extraction. The rejection or retention of objects proceeds as follows:

1. As each object is read from the source catalog, they are immediately rejected if their isophotal_abmag >
wfss_mmag_extract, meaning that only objects brighter than wfss_mmag_extract will be retained. The
default wfss_mmag_extract value of None retains all objects.

2. If the computed footprint (bounding box) of the spectral trace of an object lies completely outside the field of
view of the grism image, it is rejected.

3. The list of objects retained after the above two filtering steps have been applied is sorted based on
isophotal_abmag (listed for each source in the source catalog) and only the brightest wfss_nbright objects
are retained. The default value of wfss_nbright is currently 1000.

All remaining objects are then extracted from the grism image.

276 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

WFSS Examples

The extraction of sources from WFSS grism images is a multi-step process, as outlined above. Here we show detailed
examples of how to customize the list of WFSS grism objects to be extracted, in order to better explain the various
steps. First, the input file (or data model) must aleady have a WCS object assigned to it by running the assign_wcs step.
The default values for the wavelength range of each spectral order to be extracted are also required; they are stored in
the wavelengthrange reference file, which can be retrieved from CRDS.

Load the grism image, which is assumed to have already been processed through assign_wcs, into an ImageModel
data model (used for all 2-D “images”, regardless of whether they actually contain imaging data or dispersed spectra):

>>> from stdatamodels.jwst.datamodels import ImageModel
>>> input_model = ImageModel("jw12345001001_03101_00001_nis_assign_wcs.fits")

Load the extract_2d step and retrieve the wavelengthrange reference file specific for this mode:

>>> from jwst.extract_2d import Extract2dStep
>>> step = Extract2dStep()
>>> refs = {}
>>> reftype = 'wavelengthrange'
>>> refs[reftype] = step.get_reference_file(input_model, reftype)
>>> print(refs)
{'wavelengthrange': '/crds/jwst/references/jwst_niriss_wavelengthrange_0002.asdf'}

Create a list of grism objects for a specified spectral order with a limited minimum magnitude and a specified half-
height of the extraction box in the cross-dispersion direction via the wfss_extract_half_height parameter. Note
that the half-height parameter only applies to point sources.

>>> from jwst.assign_wcs.util import create_grism_bbox
>>> grism_objects = create_grism_bbox(input_model, refs, mmag_extract=17,
... extract_orders=[1], wfss_extract_half_height=10)
>>> print(len(grism_objects))
6
>>> print(grism_objects[0])
id: 432
order_bounding {1: ((array(1113), array(1471)), (array(1389), array(1609)))}
sky_centroid: <SkyCoord (ICRS): (ra, dec) in deg

(3.59204081, -30.40553435)>
sky_bbox_ll: <SkyCoord (ICRS): (ra, dec) in deg

(3.59375611, -30.40286617)>
sky_bbox_lr: <SkyCoord (ICRS): (ra, dec) in deg

(3.59520565, -30.40665425)>
sky_bbox_ur: <SkyCoord (ICRS): (ra, dec) in deg

(3.58950974, -30.4082754)>
sky_bbox_ul:<SkyCoord (ICRS): (ra, dec) in deg

(3.5880604, -30.40448726)>
xcentroid: 1503.6541213285695
ycentroid: 1298.2882813663837
partial_order: {1: False}
waverange: {1: (0.97, 1.32)}
is_extended: True
isophotal_abmag: 16.185488680084294

Create a list of grism objects for a specified spectral order and wavelength range. In this case we don’t use the de-
fault wavelength range limits from the wavelengthrange reference file, but instead designate custom limits via

15.1. Package Index 277

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

the wavelength_range parameter passed to the create_grism_bbox function, which is a dictionary of the form
{spectral_order: (wave_min, wave_max)}. Use the source ID, sid, to identify the object(s) to be modified.
The computed extraction limits are stored in the order_bounding attribute, which is ordered (y, x).

>>> from jwst.assign_wcs.util import create_grism_bbox
>>> grism_objects = create_grism_bbox(input_model, mmag_extract=18,
... wavelength_range={1: (3.01, 4.26)})
>>> print([obj.sid for obj in grism_objects])
[12, 26, 31, 37, 104]
>>> print(grism_objects[-1])
id: 104
order_bounding {1: ((array(1165), array(1566)), (array(1458), array(1577)))}
sky_centroid: <SkyCoord (ICRS): (ra, dec) in deg

(3.57958792, -30.40926139)>
sky_bbox_ll: <SkyCoord (ICRS): (ra, dec) in deg

(3.58060118, -30.40800999)>
sky_bbox_lr: <SkyCoord (ICRS): (ra, dec) in deg

(3.58136873, -30.41001654)>
sky_bbox_ur: <SkyCoord (ICRS): (ra, dec) in deg

(3.57866098, -30.4107869)>
sky_bbox_ul:<SkyCoord (ICRS): (ra, dec) in deg

(3.57789348, -30.40878033)>
xcentroid: 1513.4964315117466
ycentroid: 1920.6251490007467
partial_order: {1: False}
waverange: {1: (3.01, 4.26)}
is_extended: True
isophotal_abmag: 17.88278103874113
>>> grism_object[-1].order_bounding[1] = ((1200, 1500), (1480, 1520))
>>> print(grism_object[-1].order_bounding
{1: ((1200, 1500), (1480,1520))}

The grism_objects list created in the above examples can now be used as input to the extract_2d step in order to
extract the particular objects defined in that list:

>>> result = step.call(input_model, grism_objects=grism_objects)

result is a MultiSlitModel data model, containing one SlitModel instance for each extracted object, which in-
cludes meta data that identify each object and the actual extracted data arrays, e.g.:

>>> print(len(result.slits))
8
>>> result.slits[0].source_id
104
>>> result.slits[0].data
array([[..., ..., ...]])

278 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NIRCam TSGRISM

There is no source catalog created for TSO grism observations, because no associated direct images are obtained from
which to derive such a catalog. So the extract_2d step relies on the fact that the source of interest is placed at the
aperture reference point to determine the source location. The aperture reference location, in units of image x and
y pixels, is read from the keywords “XREF_SCI” and “YREF_SCI” in the SCI extension header of the input image.
These values are used to set the source location for all computations involving the extent of the spectral trace and pixel
wavelength assignments.

NIRCam subarrays used for TSGRISM observations always have their “bottom” edge located at the physical bottom
edge of the detector and vary in size vertically. The source spectrum trace will always be centered somewhere near row
34 in the vertical direction (dispersion running parallel to rows) of the dispersed image. So the larger subarrays just
result in a larger region of sky above the spectrum.

For TSGRISM, extract_2d always produces a cutout that is 64 pixels in height (cross-dispersion direction), regardless
of whether the original image is full-frame or subarray. This cutout height is equal to the height of the smallest available
subarray (2048 x 64). This is to allow area within the cutout for sampling the background in later steps, such as
extract_1d. The slit height is a parameter that a user can set (during reprocessing) to tailor their results, but the
entire extent of the image in the dispersion direction (along the image x-axis) is always included in the cutout.

The dispersion direction is horizontal for this mode, and it will be documented by copying the keyword “DISPAXIS”
(with value 1) from the input file to the output cutout.

Step Arguments

The extract_2d step has various optional arguments that apply to certain observation modes. For NIRSpec observa-
tions there is one applicable argument:

--slit_name
name [string value] of a specific slit region to extract. The default value of None will cause all known slits for
the instrument mode to be extracted.

There are several arguments available for Wide-Field Slitless Spectroscopy (WFSS) and Time-Series (TSO) grism
spectroscopy:

--tsgrism_extract_height
int. The cross-dispersion extraction size, in units of pixels. Only applies to TSO mode.

--wfss_extract_half_height
int. The cross-dispersion half size of the extraction region, in pixels, applied to point sources. Only applies to
WFSS mode.

--wfss_mmag_extract
float (default is None). The minimum (faintest) magnitude object to extract, based on the value of
isophotal_abmag in the source catalog. Only applies to WFSS mode.

--wfss_nbright
int (default is 1000). The number of brightest source catalog objects to extract. Can be used in conjunction with
wfss_mmag_extract. Only applies to WFSS mode.

--extract_orders
list. The list of spectral orders to extract. The default is taken from the wavelengthrange reference file. Applies
to both WFSS and TSO modes.

--grism_objects
list (default is empty). A list of jwst.transforms.models.GrismObject.

15.1. Package Index 279

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference Files

The extract_2d step uses the WAVELENGTHRANGE reference file. The WAVELENGTHRANGE reference file is
only used for NIRCam and NIRISS Wide-Field Slitless Spectroscopy (WFSS) exposures.

WAVELENGTHRANGE Reference File

REFTYPE
WAVELENGTHRANGE

Data model
WavelengthrangeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.WavelengthrangeModel.html#jwst.datamodels.WavelengthrangeModel)

The WAVELENGTHRANGE reference file contains information on the minimum and maximum wavelengths of var-
ious spectroscopic modes, which can be order-dependent. The reference data are used to construct bounding boxes
around the spectral traces produced by each object in the NIRCam and NIRISS WFSS modes. If a list of GrismObject
is supplied, then no reference file is necessary.

Reference Selection Keywords for WAVELENGTHRANGE

CRDS selects appropriate WAVELENGTHRANGE references based on the following keywords. WAVELENGTH-
RANGE is not applicable for instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
MIRI INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRCam INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRISS INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRSpec INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

280 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.WavelengthrangeModel.html#jwst.datamodels.WavelengthrangeModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Type Specific Keywords for WAVELENGTHRANGE

In addition to the standard reference file keywords listed above, the following keywords are required in WAVELENGTH-
RANGE reference files

Keyword Data Model Name
EXP_TYPE model.meta.exposure.type

These keywords are used as CRDS selectors

Reference Selection Keywords for WAVELENGTHRANGE

CRDS selects appropriate WAVELENGTHRANGE references based on the following keywords. WAVELENGTH-
RANGE is not applicable for instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
MIRI INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRCam INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRISS INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRSpec INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS

Reference File Format

WAVELENGTHRANGE reference files are in ASDF format, with the format and contents specified by the
WavelengthrangeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.WavelengthrangeModel.html#jwst.datamodels.WavelengthrangeModel)
data model schema. The exact content varies a bit depending on instrument mode, as explained in the following
sections.

MIRI MRS

For MIRI MRS, the WAVELENGTHRANGE file consists of two fields that define the wavelength range for each
combination of channel and band.

channels
An ordered list of all possible channel and band combinations for MIRI MRS, e.g. “1SHORT”.

wavelengthrange
An ordered list of (lambda_min, lambda_max) for each item in the list above

15.1. Package Index 281

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.WavelengthrangeModel.html#jwst.datamodels.WavelengthrangeModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NIRSpec

For NIRSpec, the WAVELENGTHRANGE file is a dictionary storing information about default wavelength range and
spectral order for each combination of filter and grating.

filter_grating
order

Default spectral order

range
Default wavelength range

NIRCam WFSS, NIRCam TSGRISM, NIRISS WFSS

For NIRCam WFSS and TSGRIM modes, as well as NIRISS WFSS mode, the WAVELENGTHRANGE reference file
contains the wavelength limits to use when calculating the minimum and maximum dispersion extents on the detector.
It also contains the default list of orders that should be extracted for each filter. To be consistent with other modes, and
for convenience, it also lists the orders and filters that are valid with the file.

order
A list of orders this file covers

wavelengthrange
A list containing the list of [order, filter, wavelength min, wavelength max]

waverange_selector
The list of FILTER names available

extract_orders
A list containing the list of orders to extract for each filter

jwst.extract_2d Package

Classes

Extract2dStep([name, parent, config_file, ...]) This Step performs a 2D extraction of spectra.

Extract2dStep

class jwst.extract_2d.Extract2dStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

This Step performs a 2D extraction of spectra.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

282 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input_model, *args, **kwargs) This is where real work happens.

Attributes Documentation

class_alias = 'extract_2d'

reference_file_types = ['wavelengthrange']

spec

slit_name = string(default=None)
extract_orders = int_list(default=None) # list of orders to extract
grism_objects = list(default=None) # list of grism objects to use
tsgrism_extract_height = integer(default=None) # extraction height in pixels,␣
→˓TSGRISM mode
wfss_extract_half_height = integer(default=5) # extraction half height in␣
→˓pixels, WFSS mode
wfss_mmag_extract = float(default=None) # minimum abmag to extract, WFSS mode
wfss_nbright = integer(default=1000) # number of brightest objects to extract,␣
→˓WFSS mode

15.1. Package Index 283

https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

process(input_model, *args, **kwargs)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

Extract2dStepJwstStepStep

15.1.20 FITS Generator

Description

Overview

The FITS generator is used to convert data from several different types of ground test data to DMS Level1b format data.
This format is described in the document DMS Level 1 and 2 Data Product Design - JWST-STScI-002111
by Daryl Swade. The code uses a collection of templates that govern the population of Level 1b header keyword values
from the data in the input file headers, with different templates for different file types. The FITS generator will transform
the input data (in detector coordinates) to the DMS coordinate system, where all of the imaging data has the same parity
as the sky and very similar orientations.

Input details

To run the FITS generator, a ‘proposal’ file is required. There should be only one proposal file per directory, and it
should have a name like

ddddd.prop

where d stands for a decimal digit. This file gives the names of each input FITS datafile, whether a subarray needs to be
extracted from it and the exposure type (EXP_TYPE), as well as the relationship between the files from an operational
viewpoint (i.e. Observation, Visit, ParallelSequenceID, Activity, Exposure, Detector). The file has a structure similar
to XML with nested groups:

<Proposal title="MIRI FM IMG_OPT_01_FOV">
<Observation>
<Visit>
<VisitGroup>
<ParallelSequenceID>
<Activity>
<Exposure>
<Detector>

(continues on next page)

284 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

<base>MIRFM1T00012942_1_493_SE_2011-07-13T10h45m00.fits</base>
<subarray></subarray>
<exp_type>MIR_IMAGE</exp_type>

</Detector>
</Exposure>

</Activity>
</ParallelSequenceID>

</VisitGroup>
</Visit>

</Observation>
</Proposal>

Each nest can be repeated as needed. The <Detector></Detector> tags contain the information for each input/output
file, with the input file name inside the <base> tags, the name of the subarray to be extracted within the <subarray>
tag, and the exposure type within the <exp_type> tag.

The files within the <base> tag should be in the same directory as the proposal file.

The input FITS files can be from any of several different sources:

1. MIRI VM2 testing

2. MIRI FM testing

3. NIRSPEC FM testing

4. NIRSPEC IPS Simulator

5. NIRCAM NCONT testing (detector only)

6. NIRCAM FM testing

7. NIRISS CV testing

8. FGS CV testing

Most data that has been taken using the FITSWriter tool can be successfully converted to Level 1b format.

Command-line scripts

create_data directory

create_data followed by a directory will process the proposal file (generally a 5-digit string followed by ‘.prop’) in
that directory. The proposal file contains the names of the FITS files to be processed and the relationship between the
exposures, allowing a unique numbering scheme.

Each FITS file referred to in the exposure will be processed to make a Level1b format JWST dataset with the pixel data
flipped and/or rotated to make it conform to the DMS coordinate system, in which all imaging data has roughly the
same orientation and parity on the sky.

The 5-digit string is used in the name of the Level 1b product, in that file 12345.prop will make data of the form

jw12345aaabbb_cccdd_eeeee_DATATYPE_uncal.fits.

The numbers that fill in the other letter spaces come from the structure of the proposal file, which is a sequence of
nested levels. As each level is repeated, the number assigned to represent that level increments by 1.

15.1. Package Index 285

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Create_data Proposal File Format

The proposal file has an XML-like format that lays out the relationship between a set of exposures. The layout looks
like this:

<Proposal title="Test">
<Observation>
<Visit>
<VisitGroup>
<ParallelSequenceID>
<Activity>
<Exposure>
<Detector>
<base></base>
<subarray></subarray>
<exp_type></exp_type>

</Detector>
</Exposure>

</Activity>
</ParallelSequenceID>

</VisitGroup>
</Visit>

</Observation>
</Proposal>

The file to be converted is put between the <base></base> tags, and if a subarray is needed to be extracted from a
full-frame exposure, the name of the subarray can be put between the <subarray></subarray> tags. Finally, the type of
exposure can be placed between the <exp_type> </exp_type> tags. The values of EXP_TYPE are:

MIRI NIRCAM NIRSPEC NIRISS FGS
MIR_IMAGE NRC_IMAGE NRS_TASLIT NIS_IMAGE FGS_IMAGE
MIR_TACQ NRC_TACQ NRS_TACQ NIS_FOCUS FGS_FOCUS
MIR_LYOT NRC_CORON NRS_TACONFIRM NIS_DARK FGS_SKYFLAT
MIR_4QPM NRC_FOCUS NRS_CONFIRM NIS_WFSS FGS_INTFLAT
MIR_LRS-FIXEDSLIT NRC_DARK NRS_FIXEDSLIT
MIR_LRS-SLITLESS NRC_FLAT NRS_AUTOWAVECAL
MIR_MRS NRS_IFU
MIR_DARK NRS_MSA
MIR_FLAT NRS_AUTOFLAT

NRS_DARK
NRS_LAMP

Sections of this file can be replicated to represent, for example, all of the NIRCAM exposures from each of the 10
detectors at a single pointing by just replicating the <detector></detector> blocks.

286 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Template file format

File types are described using a simple file format that vaguely resembles FITS headers.

Since it is necessary to create templates for several different flavors of data (FITSWriter, NIRSpec simulations, NIRCam
homebrew etc) as well as different EXP_TYPEs that share many sections of data header but differ in other sections,
the templates are divided into sections that are included. So a typical template for a particular flavor of data might look
like this:

<<file nirspec_ifu_level1b>>
<<header primary>>
#include "level1b.gen.inc"
#include 'observation_identifiers.gen.inc'
#include 'exposure_parameters.gen.inc'
#include 'program_information.gen.inc'
#include 'observation_information.gen.inc'
#include 'visit_information.gen.inc'
#include 'exposure_information.gen.inc'
#include 'target_information.gen.inc'
#include 'exposure_times.gen.inc'
#include 'exposure_time_parameters.gen.inc'
#include 'subarray_parameters.gen.inc'
#include 'nirspec_configuration.gen.inc'
#include 'lamp_configuration.gen.inc'
#include 'guide_star_information.gen.inc'
#include 'jwst_ephemeris_information.gen.inc'
#include 'spacecraft_pointing_information.gen.inc'
#include 'aperture_pointing_information.gen.inc'
#include 'wcs_parameters.gen.inc'
#include 'velocity_aberration_correction.gen.inc'
#include 'nirspec_ifu_dither_pattern.gen.inc'
#include 'time_related.gen.inc'

<<data>>

<<header science>>
#include 'level1b_sci_extension_basic.gen.inc'

<<data>>
input[0].data.reshape((input[0].header['NINT'], \

input[0].header['NGROUP'], \
input[0].header['NAXIS2'], \
input[0].header['NAXIS1'])). \
astype('uint16')

<<header error>>
EXTNAME = 'ERR'

<<data>>
np.ones((input[0].header['NINT'], \

input[0].header['NGROUP'], \
input[0].header['NAXIS2'], \
input[0].header['NAXIS1'])). \
astype('float32')

(continues on next page)

15.1. Package Index 287

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

<<header data_quality>>
EXTNAME = "DQ"

<<data>>
np.zeros((input[0].header['NINT'], \

input[0].header['NGROUP'], \
input[0].header['NAXIS2'], \
input[0].header['NAXIS1']), dtype='int16')

This has some regular generator syntax, but the bulk of the content comes from the #include directives.

By convention, templates have the extension gen.txt, while include files have the extension inc.

Basic syntax

Template files are in a line-based format.

Sections of the file are delimited with lines surrounded by << and >>. For example:

<<header primary>>

indicates the beginning of the primary header section.

Comments are lines beginning with #.

Lines can be continued by putting a backslash character (\) at the end of the line:

DETECTOR = { 0x1e1: 'NIR', \
0x1e2: 'NIR', \
0x1ee: 'MIR', \

}[input('SCA_ID')] / Detector type

Other files can be included using the include directive:

#include "other.file.txt"

Generator template

The generator template follows this basic structure:

• file line

• Zero or more HDUs, each of which has

– a header section defining how keywords are generated

– an optional data section defining how the data is converted

288 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

file line

The template must begin with a file line to give the file type a name. The name must be a valid Python identifier. For
example:

<<file level1b>>

HDUs

Each HDU is defined in two sections, the header and data.

Header

The header begins with a header section line, giving the header a name, which must be a valid Python identifier. For
example:

<<header primary>>

Following that is a list of keyword definitions. Each line is of the form:

KEYWORD = expression / comment

KEYWORD is a FITS keyword, may be up to 8 characters, and must contain only A through Z, _ and -.

The expression section is a Python expression that defines how the keyword value is generated. Within the namespace
of the expression are the following:

• Source functions: Functions to retrieve keyword values from the input files. input gets values from the input
FITS file, and there are any number of additional functions which get values from the input data files. For
example, if the input data files include a file for program data, the function program is available to the expression
that retrieves values from the program data file. If the function is provided with no arguments, it retrieves the
value with the same key as the output keyword. If the function is provided with one argument, it is the name of
the source keyword. For example:

OBS_ID = input()

copies the OBS_ID value from the corresponding HDU in the source FITS file to the OBS_ID keyword in the
output FITS file. It is also possible to copy from a keyword value of a different name:

CMPLTCND = input('CMPLTCON')

To grab a value from the program data file, use the program function instead:

TARGET = program()

• Generator functions: There are a number of helper functions in the generators module that help convert and
generate values of different kinds. For example:

END_TIME = date_and_time_to_cds(input('DATE-END'), input('TIME-END'))

creates a CDS value from an input date and time.

• Python expression syntax: It’s possible to do a lot of useful things just by using regular Python expression
syntax. For example, to make the result a substring of a source keyword:

15.1. Package Index 289

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

PARASEQN = input('OBS_ID')[13:14] / Parallel Sequence ID

or to calculate the difference of two values:

DURATION = input('END_TIME') - input('START_TIME')

The optional comment section following a / character will be attached to the keyword in the output FITS file. There is
an important distinction between these comments which end up in the output FITS file, and comments beginning with
which are included in the template for informational purposes only and are ignored by the template parser.

It is also possible to include comments on their own lines to create section headings in the output FITS file. For example:

/ MIRI-specific keywords
FILTER = '' / Filter element used
FLTSUITE = '' / Flat field element used
WAVLNGTH = '' / Wavelength requested in the exposure specification
GRATING = '' / Grating/dichroic wheel position
LAMPON = '' / Internal calibration lamp
CCCSTATE = '' / Contamination control cover state

/ Exposure parameters
READPATT = '' / Readout pattern
NFRAME = 1 / Number of frames per read group
NSKIP = 0 / Number of frames dropped
FRAME0 = 0 / zero-frame read
INTTIME = 0 / Integration time
EXPTIME = 0 / Exposure time
DURATION = 0 / Total duration of exposure
OBJ_TYPE = 'FAINT' / Object type

#include files will typically be just lines defining keyword definitions as above, for example, the file
target_information.gen.inc looks like this:

/ Target information

TARGPROP = input('TARGNAME') / proposer's name for the target
TARGNAME = 'NGC 104' / standard astronomical catalog name for target
TARGTYPE = 'FIXED' / fixed target, moving target, or generic target
TARG_RA = 0.0 / target RA computed at time of exposure
TARGURA = 0.0 / target RA uncertainty
TARG_DEC = 0.0 / target DEC computed at time of exposure
TARRUDEC = 0.0 / target Dec uncertainty
PROP_RA = 0.0 / proposer specified RA for the target
PROP_DEC = 0.0 / proposer specified Dec for the target
PROPEPOC = 2000.0 / proposer specified epoch for RA and Dec

and is used in many of the top-level level1b templates.

290 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Data

The data section consists of a single expression that returns a Numpy array containing the output data.

The following are available in the namespace:

• np: import numpy as np

• input: A fits HDUList object containing the content of the input FITS file.

• output: A fits HDUList object containing the content of the output FITS file. Note that the output FITS file
may only be partially constructed. Importantly, higher-number HDUs will not yet exist.

A complete example

This file defines the structure of a MIRI level 1b file
<<file miri_level1b>>
<<header primary>>
SIMPLE = T
BITPIX = 32
NAXIS = 0
EXTEND = T
ORIGIN = 'STScI'
TELESCOP = 'JWST'
FILENAME = '' / The filename
DATE = now() / Date this file was generated

#include "level1a.gen.inc"

#include "level1b.gen.inc"

/ MIRI-specific keywords
FILTER = '' / Filter element used
FLTSUITE = '' / Flat field element used
WAVLNGTH = '' / Wavelength requested in the exposure specification
GRATING = '' / Grating/dichroic wheel position
LAMPON = '' / Internal calibration lamp
CCCSTATE = '' / Contamination control cover state

/ Exposure parameters
READPATT = '' / Readout pattern
NFRAME = 1 / Number of frames per read group
NSKIP = 0 / Number of frames dropped
FRAME0 = 0 / zero-frame read
INTTIME = 0 / Integration time
EXPTIME = 0 / Exposure time
DURATION = 0 / Total duration of exposure
OBJ_TYPE = 'FAINT' / Object type

/ Subarray parameters
SUBARRAY = '' / Name of subarray used
SUBXSTRT = 0 / x-axis pixel number of subarray origin
SUBXSIZE = 0 / length of subarray along x-axis
SUBTSTRT = 0 / y-axis pixel number of subarray origin

(continues on next page)

15.1. Package Index 291

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

SUBYSIZE = 0 / length of subarray along y-axis
LIGHTCOL = 0 / Number of light-sensitive columns

<<data>>

<<header science>>
XTENSION = 'IMAGE' / FITS extension type
BITPIX = / bits per data value
NAXIS = / number of data array dimensions
NAXIS1 = / length of first data axis (#columns)
NAXIS2 = / length of second data axis (#rows)
NAXIS3 = / length of third data axis (#groups/integration)
NAXIS4 = / length of fourth data axis (#integrations)
PCOUNT = 0 / number of parameter bytes following data table
GCOUNT = 1 / number of groups
EXTNAME = 'SCI' / extension name
BSCALE = 1.0 / scale factor for array value to physical value
BZERO = 32768 / physical value for an array value of zero
BUNIT = 'DN' / physical units of the data array values

<<data>>
input[0].data.reshape((input[0].header['NINT'], \

input[0].header['NGROUP'], \
input[0].header['NAXIS2'], \
input[0].header['NAXIS1'])). \
astype('uint16')

jwst.fits_generator Package

15.1.21 First Frame Correction

Description

Class
jwst.firstframe.FirstFrameStep

Alias
firstframe

The MIRI first frame correction step flags the first group in every integration as bad (the “DO_NOT_USE” data quality
flag is added to the GROUPDQ array), but only if the total number of groups per integration is greater than 3. This
results in the data contained in the first group being excluded from subsequent steps, such as jump detection and ramp
fitting. No flags are added if NGROUPS <= 3, because doing so would leave too few good groups to work with in later
steps.

Only the GROUPDQ array is modified. The SCI, ERR, and PIXELDQ arrays are unchanged.

292 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Step Arguments

The first frame correction has no step-specific arguments.

Reference File

This step does not use any reference file.

jwst.firstframe Package

Classes

FirstFrameStep([name, parent, config_file, ...]) FirstFrameStep: This is a MIRI specific task.

FirstFrameStep

class jwst.firstframe.FirstFrameStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

FirstFrameStep: This is a MIRI specific task. If the number of groups is greater than 3, the DO_NOT_USE
group data quality flag is added to first group.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

15.1. Package Index 293

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'firstframe'

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

FirstFrameStepJwstStepStep

15.1.22 Flatfield Correction

Description

Class
jwst.flatfield.FlatFieldStep

Alias
flat_field

At its basic level this step flat-fields an input science dataset by dividing by a flat-field reference image. In particular,
the SCI array from the flat-field reference file is divided into the SCI array of the science dataset, the flat-field DQ
array is combined with the science DQ array using a bitwise OR operation, and variance and error arrays in the science
dataset are updated to include the flat-field uncertainty. Details for particular modes are given in the sections below.

Upon completion of the step, the step status keyword “S_FLAT” gets set to “COMPLETE” in the output science data.

294 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Imaging and Non-NIRSpec Spectroscopic Data

Simple imaging data, usually in the form of an ImageModel, and some spectroscopic modes, use a straight-forward
approach that involves applying a single flat-field reference file to the science image. The spectroscopic modes included
in this category are NIRCam WFSS and Time-Series Grism, NIRISS WFSS and SOSS, and MIRI MRS and LRS. All
of these modes are processed as follows:

1. If the science data have been taken using a subarray and the FLAT reference file is a full-frame image, extract
the corresponding subarray region from the flat-field data.

2. Find pixels that have a value of NaN or zero in the FLAT reference file SCI array and set their DQ values to
“NO_FLAT_FIELD” and “DO_NOT_USE.”

3. Reset the values of pixels in the flat that have DQ=”NO_FLAT_FIELD” to 1.0, so that they have no effect when
applied to the science data.

4. Propagate the FLAT reference file DQ values into the science exposure DQ array using a bitwise OR operation.

5. Apply the flat according to:

𝑆𝐶𝐼𝑠𝑐𝑖𝑒𝑛𝑐𝑒 = 𝑆𝐶𝐼𝑠𝑐𝑖𝑒𝑛𝑐𝑒/𝑆𝐶𝐼𝑓𝑙𝑎𝑡

𝑉 𝐴𝑅_𝑃𝑂𝐼𝑆𝑆𝑂𝑁𝑠𝑐𝑖𝑒𝑛𝑐𝑒 = 𝑉 𝐴𝑅_𝑃𝑂𝐼𝑆𝑆𝑂𝑁𝑠𝑐𝑖𝑒𝑛𝑐𝑒/𝑆𝐶𝐼2𝑓𝑙𝑎𝑡

𝑉 𝐴𝑅_𝑅𝑁𝑂𝐼𝑆𝐸𝑠𝑐𝑖𝑒𝑛𝑐𝑒 = 𝑉 𝐴𝑅_𝑅𝑁𝑂𝐼𝑆𝐸𝑠𝑐𝑖𝑒𝑛𝑐𝑒/𝑆𝐶𝐼2𝑓𝑙𝑎𝑡

𝑉 𝐴𝑅_𝐹𝐿𝐴𝑇𝑠𝑐𝑖𝑒𝑛𝑐𝑒 = (𝑆𝐶𝐼2𝑠𝑐𝑖𝑒𝑛𝑐𝑒/𝑆𝐶𝐼2𝑓𝑙𝑎𝑡) * 𝐸𝑅𝑅2
𝑓𝑙𝑎𝑡

𝐸𝑅𝑅𝑠𝑐𝑖𝑒𝑛𝑐𝑒 =
√
𝑉 𝐴𝑅_𝑃𝑂𝐼𝑆𝑆𝑂𝑁 + 𝑉 𝐴𝑅_𝑅𝑁𝑂𝐼𝑆𝐸 + 𝑉 𝐴𝑅_𝐹𝐿𝐴𝑇

Multi-integration datasets (“_rateints.fits” products), which are common for modes like NIRCam Time-Series Grism,
NIRISS SOSS, and MIRI LRS Slitless, are handled by applying the above equations to each integration.

For guider exposures, the flat is applied in the same manner as given in the equations above, except for several differ-
ences. First, the variances due to Poisson noise and read noise are not calculated. Second, the output ERR array is the
combined input ERR plus the flatfield ERR, summed in quadrature.

NIRSpec Spectroscopic Data

Flat-fielding of NIRSpec spectrographic data differs from other modes in that the flat-field array that will be applied to
the science data is not read directly from CRDS. This is because the flat-field varies with wavelength and the wavelength
of light that falls on any given pixel depends on the mode and which slits are open. The flat-field array that is divided
into the SCI and ERR arrays is constructed on-the-fly by extracting the relevant section from the reference files, and
then – for each pixel – interpolating to the appropriate wavelength for that pixel. This interpolation requires knowledge
of the dispersion direction, which is read from keyword “DISPAXIS.” See the Reference File section for further details.

For NIRSpec Fixed-Slit and MOS exposures, an on-the-fly flat-field is constructed to match each of the slits/slitlets
contained in the science exposure. For NIRSpec IFU exposures, a single full-frame flat-field is constructed, which is
applied to the entire science image.

NIRSpec NRS_BRIGHTOBJ data are processed just like NIRSpec Fixed-Slit data, except that NRS_BRIGHTOBJ
data are stored in a CubeModel, rather than a MultiSlitModel. A 2-D flat-field image is constructed on-the-fly as usual,
but this image is then divided into each plane of the 3-D science data arrays.

In all cases, there is a step option that allows for saving the on-the-fly flatfield to a file, if desired.

15.1. Package Index 295

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NIRSpec Fixed-Slit Primary Slit

The primary slit in a NIRSpec fixed-slit exposure receives special handling. If the primary slit, as given by the
“FXD_SLIT” keyword value, contains a point source, as given by the “SRCTYPE” keyword, it is necessary to know
the flatfield conversion factors for both a point source and a uniform source for use later in the master background step
in Stage 3 processing. The point source version of the flatfield correction is applied to the slit data, but that correction
is not appropriate for the background signal contained in the slit, and hence corrections must be applied later in the
master background step.

So in this case the flatfield step will compute 2D arrays of conversion factors that are appropriate for a uniform
source and for a point source, and store those correction factors in the “FLATFIELD_UN” and “FLATFIELD_PS”
extensions, respectively, of the output data product. The point source correction array is also applied to the slit data.

Note that this special handling is only needed when the slit contains a point source, because in that case corrections to
the wavelength grid are applied by the wavecorr step to account for any source mis-centering in the slit and the flatfield
conversion factors are wavelength-dependent. A uniform source does not require wavelength corrections and hence the
flatfield conversions will differ for point and uniform sources. Any secondary slits that may be included in a fixed-slit
exposure do not have source centering information available, so the wavecorr step is not applied, and hence there’s no
difference between the point source and uniform source flatfield conversions for those slits.

Reference Files

The flat_field step uses four different types of reference files, depending on the type of data being processed. Most
cases just use the FLAT reference file, while NIRSpec spectroscopic exposures use the three reference files FFLAT
(fore optics), SFLAT (spectrograph optics), and DFLAT (detector).

FLAT Reference File

REFTYPE
FLAT

Data model
FlatModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.FlatModel.html#jwst.datamodels.FlatModel)

The FLAT reference file contains pixel-by-pixel detector response values. It is used for all instrument modes except
the NIRSpec spectroscopic modes.

Reference Selection Keywords for FLAT

CRDS selects appropriate FLAT references based on the following keywords. FLAT is not applicable for instruments
not in the table. Non-standard keywords used for file selection are required.

Instrument Keywords
FGS INSTRUME, DETECTOR, EXP_TYPE, DATE-OBS, TIME-OBS
MIRI INSTRUME, DETECTOR, FILTER, BAND, READPATT, SUBARRAY, DATE-OBS, TIME-OBS
NIRCam INSTRUME, DETECTOR, FILTER, PUPIL, DATE-OBS, TIME-OBS
NIRISS INSTRUME, DETECTOR, FILTER, PUPIL, DATE-OBS, TIME-OBS
NIRSpec INSTRUME, DETECTOR, FILTER, GRATING, EXP_TYPE, DATE-OBS, TIME-OBS

296 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.FlatModel.html#jwst.datamodels.FlatModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for FLAT

In addition to the standard reference file keywords listed above, the following keywords are required in FLAT reference
files, because they are used as CRDS selectors (see Reference Selection Keywords for FLAT):

Keyword Data Model Name Instruments
DETECTOR model.meta.instrument.detector All
EXP_TYPE model.meta.exposure.type FGS, NIRSpec
FILTER model.meta.instrument.filter MIRI, NIRCam, NIRISS, NIRSpec
PUPIL model.meta.instrument.pupil NIRCam, NIRISS
BAND model.meta.instrument.band MIRI
READPATT model.meta.exposure.readpatt MIRI
SUBARRAY model.meta.subarray.name MIRI
GRATING model.meta.instrument.grating NIRSpec

Reference File Format

FLAT reference files are FITS format, with 3 IMAGE extensions and 1 BINTABLE extension. The FITS primary HDU
does not contain a data array. The format and content of the file is as follows:

EXTNAME XTENSION NAXIS Dimensions Data type
SCI IMAGE 2 ncols x nrows float
ERR IMAGE 2 ncols x nrows float
DQ IMAGE 2 ncols x nrows integer
DQ_DEF BINTABLE 2 TFIELDS = 4 N/A

The DQ_DEF table extension lists the bit assignments for the flag conditions used in the DQ array.

15.1. Package Index 297

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

The DQ_DEF extension contains the bit assignments used in the DQ array. It contains the following 4 columns:

TTYPE TFORM Description
BIT integer The bit number, starting at zero
VALUE integer The equivalent base-10 value of BIT
NAME string The mnemonic name of the data quality condition
DESCRIPTION string A description of the data quality condition

NOTE: For more information on standard bit definitions see: Data Quality Flags.

For application to imaging data, the FITS file contains a single set of SCI, ERR, DQ, and DQ_DEF extensions. Image
dimensions should be 2048x2048 for the NIR detectors and 1032x1024 for MIRI (i.e. they include reference pixels),
unless data were taken in subarray mode.

Reference Files for NIRSpec Spectroscopy

For NIRSpec spectroscopic data, the flat-field reference files allow for variations in the flat field with wavelength, as
well as from pixel to pixel. There is a separate flat-field reference file for each of three sections of the instrument: the
fore optics (FFLAT), the spectrograph (SFLAT), and the detector (DFLAT). The contents of the reference files differ
from one mode to another (see below), but in general they may contain a flat-field image and a 1-D array. The image
provides pixel-to-pixel values for the flat field that may vary slowly (or not at all) with wavelength, while the 1-D array
is for a pixel-independent fast variation with wavelength. Details of the file formats are given in the following sections.

If there is no significant slow variation with wavelength, the image will be a 2-D array; otherwise, the image will be a
3-D array, with each plane corresponding to a different wavelength. In the latter case, the wavelength for each plane will
be given in a table extension called WAVELENGTH in the flat-field reference file. The fast variation is given in a table
extension called FAST_VARIATION, with column names “slit_name”, “nelem”, “wavelength”, and “data” (an array
of wavelength-dependent flat-field values). Each row of the table contains a slit name (for fixed-slit data, otherwise
“ANY”), an array of flat-field values, an array of the corresponding wavelengths, and the number of elements (“nelem”)
of “data” and “wavelength” that are populated, because the allocated array size can be larger than needed. For some
reference files there will not be any image array, in which case all the flat field information will be taken from the
FAST_VARIATION table.

The SCI extension of the reference files may contain NaNs. If so, the flat_field step will replace these values with
1 and will flag the corresponding pixel in the DQ extension with NO_FLAT_FIELD. The WAVELENGTH extension
is not expected to contain NaNs.

For the detector section, there is only one flat-field reference file for each detector. For the fore optics and the spectro-
graph sections, however, there are different flat fields for fixed-slit data, IFU data, and for multi-object spectroscopic
data. Here is a summary of the contents of these files.

For the fore optics (FFLAT), the flat field for fixed-slit data contains just a FAST_VARIATION table (i.e. there is
no image). This table has five rows, one for each of the fixed slits. The FFLAT for IFU data also contains just a
FAST_VARIATION table, but it has only one row with the value “ANY” in the “slit_name” column. For multi-object
spectroscopic data, the FFLAT contains four sets of images (one for each MSA quadrant), WAVELENGTH tables, and
FAST_VARIATION tables. The images are unique to the FFLATs, however. The image “pixels” correspond to micro-
shutter array slits, rather than to detector pixels. The array size is 365 columns by 171 rows, and there are multiple
planes to handle the slow variation of flat field with wavelength.

For the spectrograph optics (SFLAT), the flat-field files have nearly the same format for fixed-slit data, IFU, and multi-
object data. The difference is that for fixed-slit and IFU data, the image is just a single plane, i.e. the only variation
with wavelength is in the FAST_VARIATION table, while there are multiple planes in the image for multi-object
spectroscopic data (and therefore there is also a corresponding WAVELENGTH table, with one row for each plane of
the image).

298 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

For the detector section, the DFLAT file contains a 3-D image (i.e. the flat field at multiple wavelengths), a correspond-
ing WAVELENGTH table, and a FAST_VARIATION table with one row.

As just described, there are 3 types of reference files for NIRSpec (FFLAT, SFLAT, and DFLAT), and within each of
these types, there are several formats, which are now described.

FFLAT Reference File

REFTYPE
FFLAT

There are 3 forms of NIRSpec FFLAT reference files: fixed slit, MSA spec, and IFU. For each type the primary HDU
does not contain a data array.

Reference Selection Keywords for FFLAT

CRDS selects appropriate FFLAT references based on the following keywords. FFLAT is not applicable for instruments
not in the table. Non-standard keywords used for file selection are required.

Instrument Keywords
NIRSpec INSTRUME, FILTER, EXP_TYPE, DATE-OBS, TIME-OBS

Fixed Slit

Data model
NirspecFlatModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecFlatModel.html#jwst.datamodels.NirspecFlatModel)

The fixed slit FFLAT files have EXP_TYPE=NRS_FIXEDSLIT, and have a single BINTABLE extension, labeled
FAST_VARIATION.

The table contains four columns:

• slit_name: string, name of slit

• nelem: integer, maximum number of wavelengths

• wavelength: float 1-D array, values of wavelength

• data: float 1-D array, flat field values for each wavelength

The number of rows in the table is given by NAXIS2, and each row corresponds to a separate slit.

MSA Spec

Data model
NirspecQuadFlatModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecQuadFlatModel.html#jwst.datamodels.NirspecQuadFlatModel)

The MSA Spec FFLAT files have EXP_TYPE=NRS_MSASPEC, and contain data pertaining to each of the 4 quadrants.
For each quadrant, there is a set of 5 extensions - SCI, ERR, DQ, WAVELENGTH, and FAST_VARIATION. The file
also contains a single DQ_DEF extension.

The extensions have the following characteristics:

15.1. Package Index 299

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecFlatModel.html#jwst.datamodels.NirspecFlatModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecQuadFlatModel.html#jwst.datamodels.NirspecQuadFlatModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

EXTNAME XTENSION NAXIS Dimensions Data type
SCI IMAGE 3 ncols x nrows x nelem float
ERR IMAGE 3 ncols x nrows x nelem float
DQ IMAGE 3 ncols x nrows x nelem integer
WAVELENGTH BINTABLE 2 TFIELDS = 1 N/A
FAST_VARIATION BINTABLE 2 TFIELDS = 4 N/A
DQ_DEF BINTABLE 2 TFIELDS = 4 N/A

The DQ_DEF extension contains the bit assignments used in the DQ array. It contains the following 4 columns:

TTYPE TFORM Description
BIT integer The bit number, starting at zero
VALUE integer The equivalent base-10 value of BIT
NAME string The mnemonic name of the data quality condition
DESCRIPTION string A description of the data quality condition

NOTE: For more information on standard bit definitions see: Data Quality Flags.

For the 5 extensions that appear multiple times, the EXTVER keyword indicates the quadrant number, 1 to 4. Each
plane of the SCI array gives the throughput value for every shutter in the MSA quadrant for the corresponding wave-
length, which is specified in the WAVELENGTH table. These wavelength-dependent values are combined with the
FAST_VARIATION array, and are then applied to the science spectrum based on the wavelength of each pixel.

The WAVELENGTH table contains a single column:

• wavelength: float 1-D array, values of wavelength

Each of these wavelength values corresponds to a single plane of the IMAGE arrays.

The FAST_VARIATION table contains four columns:

• slit_name: the string “ANY”

• nelem: integer, maximum number of wavelengths

• wavelength: float 1-D array, values of wavelength

• data: float 1-D array, flat field values for each wavelength

The flat field values in this table are used to account for a wavelength-dependence on a much finer scale than given by
the values in the SCI array. There is a single row in this table, which contains 1-D arrays of wavelength and flat-field
values. The same wavelength-dependent value is applied to all pixels in a quadrant.

IFU

Data model
NirspecFlatModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecFlatModel.html#jwst.datamodels.NirspecFlatModel)

The IFU FFLAT files have EXP_TYPE=NRS_IFU. These have one extension, a BINTABLE extension labeled
FAST_VARIATION.

The FAST_VARIATION table contains four columns:

• slit_name: the string “ANY”

• nelem: integer, maximum number of wavelengths

300 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecFlatModel.html#jwst.datamodels.NirspecFlatModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• wavelength: float 1-D array, values of wavelength

• data: float 1-D array, flat field values for each wavelength

For each pixel in the science data, the wavelength of the light that fell on that pixel will be determined from the WAVE-
LENGTH array in the science exposure (in the absence of that array, it will be computed using the WCS interface).
The flat-field value for that pixel will then be obtained by interpolating within the wavelength and data arrays from the
FAST_VARIATION table.

SFLAT Reference File

REFTYPE
SFLAT

Data model
NirspecFlatModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecFlatModel.html#jwst.datamodels.NirspecFlatModel)

There are 3 types of NIRSpec SFLAT reference files: fixed slit, MSA spec, and IFU. For each type the primary HDU
does not contain a data array.

Reference Selection Keywords for SFLAT

CRDS selects appropriate SFLAT references based on the following keywords. SFLAT is not applicable for instruments
not in the table. Non-standard keywords used for file selection are required.

Instru-
ment

Keywords

NIRSpec INSTRUME, DETECTOR, FILTER, GRATING, EXP_TYPE, LAMP, OPMODE, DATE-OBS,
TIME-OBS

Fixed Slit

The fixed slit references files have EXP_TYPE=NRS_FIXEDSLIT, and have a BINTABLE extension labeled
FAST_VARIATION. The table contains four columns:

• slit_name: string, name of slit

• nelem: integer, maximum number of wavelengths

• wavelength: float 1-D array, values of wavelength

• data: float 1-D array, flat field values for each wavelength

The number of rows in the table is given by NAXIS2, and each row corresponds to a separate slit.

15.1. Package Index 301

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecFlatModel.html#jwst.datamodels.NirspecFlatModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

MSA Spec

The MSA Spec SFLAT files have EXP_TYPE=NRS_MSASPEC. They contain 6 extensions, with the following char-
acteristics:

EXTNAME XTENSION NAXIS Dimensions Data type
SCI IMAGE 3 ncols x nrows x n_wl float
ERR IMAGE 3 ncols x nrows x n_wl float
DQ IMAGE 3 ncols x nrows x n_wl integer
WAVELENGTH BINTABLE 2 TFIELDS = 1 N/A
FAST_VARIATION BINTABLE 2 TFIELDS = 4 N/A
DQ_DEF BINTABLE 2 TFIELDS = 4 N/A

The DQ_DEF extension contains the bit assignments used in the DQ array. It contains the following 4 columns:

TTYPE TFORM Description
BIT integer The bit number, starting at zero
VALUE integer The equivalent base-10 value of BIT
NAME string The mnemonic name of the data quality condition
DESCRIPTION string A description of the data quality condition

NOTE: For more information on standard bit definitions see: Data Quality Flags.

The keyword NAXIS3 in the 3 IMAGE extensions specifies the number, n_wl, of monochromatic slices, each of which
gives the flat_field value for every pixel for the corresponding wavelength, which is specified in the WAVELENGTH
table.

The WAVELENGTH table contains a single column:

• wavelength: float 1-D array, values of wavelength

Each of these wavelength values corresponds to a single plane of the IMAGE arrays.

The FAST_VARIATION table contains four columns:

• slit_name: the string “ANY”

• nelem: integer, maximum number of wavelengths

• wavelength: float 1-D array, values of wavelength

• data: float 1-D array, flat field values for each wavelength

The flat field values in this table are used to account for a wavelength-dependence on a much finer scale than given by
the values in the SCI array. For each pixel in the science data, the wavelength of the light that fell on that pixel will
be read from the WAVELENGTH array in the science exposure (if that array is absent, it will be computed using the
WCS interface). The flat-field value for that pixel will then be obtained by interpolating within the wavelength and data
arrays from the FAST_VARIATION table.

302 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

DFLAT Reference File

REFTYPE
DFLAT

Data model
NirspecFlatModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecFlatModel.html#jwst.datamodels.NirspecFlatModel)

Reference Selection Keywords for DFLAT

CRDS selects appropriate DFLAT references based on the following keywords. DFLAT is not applicable for instru-
ments not in the table. Non-standard keywords used for file selection are required.

Instrument Keywords
NIRSpec INSTRUME, DETECTOR, EXP_TYPE, DATE-OBS, TIME-OBS

There is one type of DFLAT reference file, containing 6 extensions with the following characteristics:

EXTNAME XTENSION NAXIS Dimensions Data type
SCI IMAGE 3 ncols x nrows x n_wl float
ERR IMAGE 2 ncols x nrows float
DQ IMAGE 2 ncols x nrows integer
WAVELENGTH BINTABLE 2 TFIELDS = 1 N/A
FAST_VARIATION BINTABLE 2 TFIELDS = 4 N/A
DQ_DEF BINTABLE 2 TFIELDS = 4 N/A

The DQ_DEF extension contains the bit assignments used in the DQ array. It contains the following 4 columns:

TTYPE TFORM Description
BIT integer The bit number, starting at zero
VALUE integer The equivalent base-10 value of BIT
NAME string The mnemonic name of the data quality condition
DESCRIPTION string A description of the data quality condition

NOTE: For more information on standard bit definitions see: Data Quality Flags.

The keyword NAXIS3 in the SCI extension specifies the number, n_wl, of monochromatic slices, each of which gives
the flat_field value for every pixel for the corresponding wavelength, which is specified in the WAVELENGTH table.

The WAVELENGTH table contains a single column:

• wavelength: float 1-D array, values of wavelength

Each of these wavelength values corresponds to a single plane of the SCI IMAGE array.

The FAST_VARIATION table contains four columns:

• slit_name: the string “ANY”

• nelem: integer, maximum number of wavelengths

• wavelength: float 1-D array, values of wavelength

15.1. Package Index 303

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecFlatModel.html#jwst.datamodels.NirspecFlatModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• data: float 1-D array, flat field values for each wavelength

The flat field values in this table are used to account for a wavelength-dependence on a much finer scale than given by
the values in the SCI array. There is a single row in this table, which contains 1-D arrays of wavelength and flat-field
values. The same wavelength-dependent value is applied to all pixels in a quadrant.

Step Arguments

The flat_field step has the following optional arguments to control the behavior of the processing.

--save_interpolated_flat (boolean, default=False)
A flag to indicate whether to save to a file the NIRSpec flat field that was constructed on-the-fly by the step. Only
relevant for NIRSpec data.

--user_supplied_flat (string, default=None)
The name of a user-supplied flat-field reference file.

--inverse (boolean, default=False)
A flag to indicate whether the math operations used to apply the flat-field should be inverted (i.e. multiply the
flat-field into the science data, instead of the usual division).

jwst.flatfield Package

Classes

FlatFieldStep([name, parent, config_file, ...]) Flat-field a science image using a flatfield reference im-
age.

FlatFieldStep

class jwst.flatfield.FlatFieldStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

Flat-field a science image using a flatfield reference image.

correction_pars

After the step has successfully run, the flat field applied is stored.

Type
{‘flat’: DataModel}

use_correction_pars

Use the flat stored in correction_pars

Type
boolean

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

304 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

flat_suffix

reference_file_types

spec

Methods Summary

process(input) This is where real work happens.
skip_step(input_model) Set the calibration switch to SKIPPED.

Attributes Documentation

class_alias = 'flat_field'

flat_suffix = 'interpolatedflat'

reference_file_types = ['flat', 'fflat', 'sflat', 'dflat']

spec

save_interpolated_flat = boolean(default=False) # Save interpolated NRS flat
user_supplied_flat = string(default=None) # User-supplied flat
inverse = boolean(default=False) # Invert the operation

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

skip_step(input_model)
Set the calibration switch to SKIPPED.

This method makes a copy of input_model, sets the calibration switch for the flat_field step to SKIPPED
in the copy, closes input_model, and returns the copy.

15.1. Package Index 305

https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Class Inheritance Diagram

FlatFieldStepJwstStepStep

15.1.23 Fringe Correction

Description

Class
jwst.fringe.FringeStep

Alias
fringe

The fringe step applies a fringe correction to MIRI MRS images. In particular, the SCI array from a fringe reference
file is divided into the SCI and ERR arrays of the science data set. Only pixels that have valid (non-NaN) values in the
SCI array of the reference file will be corrected. The DQ and variance arrays of the science exposure are not currently
modified by this step.

The input to this step is in the form of an ImageModel data model. The fringe reference file that matches the input
detector (MIRIFUSHORT or MIRIFULONG) and wavelength band (SHORT, MEDIUM, or LONG, as specified by
GRATNG14) is used.

Upon successful application of this correction, the status keyword “S_FRINGE” is set to “COMPLETE”.

Step Arguments

The fringe step has no step-specific arguments.

Reference Files

The fringe step uses a FRINGE reference file.

FRINGE Reference File

REFTYPE
FRINGE

Data model
FringeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.FringeModel.html#jwst.datamodels.FringeModel)

The FRINGE reference file contains pixel-by-pixel fringing correction values.

306 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.FringeModel.html#jwst.datamodels.FringeModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference Selection Keywords for FRINGE

CRDS selects appropriate FRINGE references based on the following keywords. FRINGE is not applicable for instru-
ments not in the table. Non-standard keywords used for file selection are required.

Instrument Keywords
MIRI INSTRUME, DETECTOR, BAND, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for FRINGE

In addition to the standard reference file keywords listed above, the following keywords are required in FRINGE refer-
ence files, because they are used as CRDS selectors (see Reference Selection Keywords for FRINGE):

Keyword Data Model Name
DETECTOR model.meta.instrument.detector
BAND model.meta.instrument.band

15.1. Package Index 307

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference File Format

FRINGE reference files are FITS format, with 3 IMAGE extensions and 1 BINTABLE extension. The FITS primary
HDU does not contain a data array. The format and content of the file is as follows:

EXTNAME XTENSION NAXIS Dimensions Data type
SCI IMAGE 2 ncols x nrows float
ERR IMAGE 2 ncols x nrows float
DQ IMAGE 2 ncols x nrows integer
DQ_DEF BINTABLE 2 TFIELDS = 4 N/A

The values in the SCI array give the correction values to be applied to the science data. Because MIRI MRS exposures
are always full-frame, the image dimensions should be 1032 x 1024.

The DQ_DEF extension contains the bit assignments used in the DQ array. It contains the following 4 columns:

TTYPE TFORM Description
BIT integer The bit number, starting at zero
VALUE integer The equivalent base-10 value of BIT
NAME string The mnemonic name of the data quality condition
DESCRIPTION string A description of the data quality condition

NOTE: For more information on standard bit definitions see: Data Quality Flags.

jwst.fringe Package

Classes

FringeStep([name, parent, config_file, ...]) FringeStep: Apply fringe correction to a science image
using a fringe reference image.

FringeStep

class jwst.fringe.FringeStep(name=None, parent=None, config_file=None, _validate_kwds=True, **kws)
Bases: JwstStep

FringeStep: Apply fringe correction to a science image using a fringe reference image.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

308 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'fringe'

reference_file_types = ['fringe']

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

FringeStepJwstStepStep

15.1. Package Index 309

https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

15.1.24 Gain Scale Correction

Description

Class
jwst.gain_scale.GainScaleStep

Alias
gain_scale

The gain_scale step rescales pixel values in JWST countrate science data products in order to correct for the effect
of using a non-standard detector gain setting. The countrate data are rescaled to make them appear as if they had been
obtained using the standard gain setting.

This currently only applies to NIRSpec exposures that are read out using a subarray pattern, in which case a gain setting
of 2 is used instead of the standard setting of 1. Note that this only applies to NIRSpec subarray data obtained after
April 2017, which is when the change was made in the instrument flight software to use gain=2. NIRSpec subarray
data obtained previous to that time used the standard gain=1 setting.

The gain_scale step is applied at the end of the calwebb_detector1 pipeline, after the ramp_fit step has been applied.
It is applied to both the “rate” and “rateints” products from ramp_fit, if both types of products were created. The science
(SCI) and error (ERR) arrays are multiplied by the gain factor, and the Poisson variance (VAR_POISSON) and read
noise variance (VAR_RNOISE) arrays are multiplied by the square of the gain factor.

The scaling factor is obtained from the “GAINFACT” keyword in the header of the gain reference file. Normally the
ramp_fit step reads that keyword value during its execution and stores the value in the science data “GAINFACT”
keyword, so that the gain reference file does not have to be loaded again by the gain_scale step. If, however, the step
does not find that keyword populated in the science data, it loads the gain reference file to retrieve it. If all attempts to
find the scaling factor fail, the step is skipped.

Gain reference files for instruments or modes that use the standard gain setting will typically not have the “GAINFACT”
keyword in their header, which causes the gain_scale step to be skipped. Alternatively, gain reference files for modes
that use the standard gain can have GAINFACT=1.0, in which case the correction is benign.

Upon successful completion of the step, the “S_GANSCL” keyword in the science data is set to “COMPLETE”.

Arguments

The gain_scale correction has no step-specific arguments.

Reference File

The gain_scale step uses the GAIN reference file. It requires this reference file only to get the value of the “GAIN-
FACT” keyword in the header of the file. This is the value used to rescale the science data. The ramp_fit step also
uses the GAIN reference file and if it succeeded in finding the “GAINFACT” keyword when it was executed, it will have
already stored the keyword value in the science data, for later use by the gain_scale step. In this case the gain_scale
step will not read the GAIN reference file again when it runs.

310 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

GAIN reference file

REFTYPE
GAIN

Data model
GainModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.GainModel.html#jwst.datamodels.GainModel)

The GAIN reference file contains a pixel-by-pixel gain map, which can be used to convert pixel values from units of
DN to electrons. The gain values are assumed to be in units of e/DN.

Reference Selection Keywords for GAIN

CRDS selects appropriate GAIN references based on the following keywords. GAIN is not applicable for instruments
not in the table. All keywords used for file selection are required.

Instrument Keywords
FGS INSTRUME, DETECTOR, SUBARRAY, DATE-OBS, TIME-OBS
MIRI INSTRUME, DETECTOR, SUBARRAY, DATE-OBS, TIME-OBS
NIRCam INSTRUME, DETECTOR, SUBARRAY, DATE-OBS, TIME-OBS
NIRISS INSTRUME, DETECTOR, SUBARRAY, DATE-OBS, TIME-OBS
NIRSpec INSTRUME, DETECTOR, SUBARRAY, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

15.1. Package Index 311

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.GainModel.html#jwst.datamodels.GainModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Type Specific Keywords for GAIN

In addition to the standard reference file keywords listed above, the following keywords are required in GAIN reference
files, because they are used as CRDS selectors (see gain_selectors):

Keyword Data Model Name
DETECTOR model.meta.instrument.detector
SUBARRAY model.meta.subarray.name
BUNIT1 model.meta.bunit_data

1 BUNIT is not used as a CRDS selector, but is required in the “SCI” extension header of GAIN reference files to
document the units of the data. The expected value is “ELECTRONS/DN”.

Reference File Format

GAIN reference files are FITS files with a single IMAGE extension. The FITS primary data array is assumed to be
empty. The characteristics of the FITS extensions are as follows:

EXTNAME XTENSION NAXIS Dimensions Data type
SCI IMAGE 2 ncols x nrows float

jwst.gain_scale Package

Classes

GainScaleStep([name, parent, config_file, ...]) GainScaleStep: Rescales countrate data to account for
use of a non-standard gain value.

GainScaleStep

class jwst.gain_scale.GainScaleStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

GainScaleStep: Rescales countrate data to account for use of a non-standard gain value. All integrations are
multiplied by the factor GAINFACT.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

312 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'gain_scale'

reference_file_types = ['gain']

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

GainScaleStepJwstStepStep

15.1. Package Index 313

https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

15.1.25 Group Scale Correction

Description

Class
jwst.group_scale.GroupScaleStep

Alias
group_scale

The group_scale step rescales pixel values in raw JWST science data products to correct for instances where on-board
frame averaging did not result in the proper downlinked values.

When multiple frames are averaged together on-board into a single group, the sum of the frames is computed and then
the sum is divided by the number of frames to compute the average. Division by the number of frames is accomplished
by simply bit-shifting the sum by an appropriate number of bits, corresponding to the decimal value of the number of
frames. For example, when 2 frames are averaged into a group, the sum is shifted by 1 bit to achieve the equivalent of
dividing by 2, and for 8 frames, the sum is shifted by 3 bits. The number of frames that are averaged into a group is
recorded in the NFRAMES header keyword in science products and the divisor that was used is recorded in the FRMDIVSR
keyword.

This method results in the correct average only when NFRAMES is a power of 2. When NFRAMES is not a power
of 2, the next largest divisor is used to perform the averaging. For example, when NFRAMES=5, a divisor of 8 (bit
shift of 3) is used to compute the average. This results in averaged values for each group that are too low by the factor
NFRAMES/FRMDIVSR. This step rescales the pixel values by multiplying all groups in all integrations by the factor
FRMDIVSR/NFRAMES.

The step decides whether rescaling is necessary by comparing the values of the NFRAMES and FRMDIVSR keywords.
If they are equal, then the on-board averaging was computed correctly and this step is skipped. In this case, the cali-
bration step status keyword S_GRPSCL is set to “SKIPPED.” If the keyword values are not equal, rescaling is applied
and the S_GRPSCL keyword is set to “COMPLETE”.

It is assumed that this step is always applied to raw data before any other processing is done to the pixel values and
hence rescaling is applied only to the SCI data array of the input product. It assumes that the ERR array has not yet
been populated and hence there’s no need for rescaling that array. The input GROUPDQ and PIXELDQ arrays are not
affected by this step.

MIRI FASTGRPAVG mode

The MIRI detector readout pattern “FASTGRPAVG” results in individual frames being averaged together into a group,
but the on-board averaging process is done differently than for other instruments. This results in a situation where the
FRMDIVSR keyword gets assigned a value of 4, while NFRAMES still has a value of 1, despite the fact that 4 frames
were actually averaged together to produce each downlinked group. This mismatch in keyword values would cause the
group_scale step to think that rescaling needs to be applied.

To work around this issue, the original values of the number of frames per group and the number of groups per inte-
gration that are downlinked from the instrument are stored in the special keywords “MIRNFRMS” and “MIRNGRPS”,
respectively, so that their values are preserved. During Stage 1 processing in the pipeline, the value of the NFRAMES
keyword is computed from MIRNFRMS * FRMDIVSR. The result is that when 4 frames are averaged together on
board, both NFRAMES and FRMDIVSR will have a value of 4, which allows the group_scale step to correctly
determine that no rescaling of the data is necessary.

314 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Arguments

The group_scale correction has no step-specific arguments.

Reference File

The group_scale correction step does not use any reference files.

jwst.group_scale Package

Classes

GroupScaleStep([name, parent, config_file, ...]) GroupScaleStep: Rescales group data to account for on-
board frame averaging that did not use FRMDIVSR =
NFRAMES.

GroupScaleStep

class jwst.group_scale.GroupScaleStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

GroupScaleStep: Rescales group data to account for on-board frame averaging that did not use FRMDIVSR =
NFRAMES. All groups in the exposure are rescaled by FRMDIVSR/NFRAMES.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

15.1. Package Index 315

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'group_scale'

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

GroupScaleStepJwstStepStep

15.1.26 Guider CDS Processing

Description

Class
jwst.guider_cds.GuiderCdsStep

Alias
guider_cds

The guider_cds step computes countrate images from the Correlated Double Sampling (CDS) detector readouts used
in FGS guiding mode data. The exact way in which the countrate images are computed depends on the guiding mode
(ID, ACQ1, ACQ2, TRACK, FineGuide) in use.

316 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

ID mode

The ID mode uses 2 integrations (NINTS=2) with 2 groups per integration (NGROUPS=2). For this mode the
guider_cds step first computes a difference image for each integration by subtracting group 1 from group 2. A final
difference image is then computed by taking the minimum value at each pixel from the 2 integrations. The minimum
difference image is then divided by the group time to produce a countrate image. The output data array is 3D, with
dimensions of (ncols x nrows x 1).

For this mode, the output ERR array has the same dimensions as the output data array. The values for the ERR array are
calculated for each 2-group segment in each of the 2 integrations from the two variances of the slope of the segment.

The segment’s variance due to read noise is:

𝑣𝑎𝑟𝑅 =
2 𝑅2

𝑡𝑔𝑟𝑜𝑢𝑝2
,

where 𝑅 is the noise (using the default READNOISE pixel value) in the difference between the 2 groups and 𝑡𝑔𝑟𝑜𝑢𝑝
is the group time in seconds (from the keyword TGROUP).

The segment’s variance due to Poisson noise is:

𝑣𝑎𝑟𝑃 =
𝑠𝑙𝑜𝑝𝑒

𝑡𝑔𝑟𝑜𝑢𝑝× 𝑔𝑎𝑖𝑛
,

where 𝑔𝑎𝑖𝑛 is the gain for the pixel (using the default GAIN pixel value), in e/DN. The 𝑠𝑙𝑜𝑝𝑒 is the value of the pixel
in the minimum difference image.

ACQ1, ACQ2, and TRACK modes

These modes use multiple integrations (NINTS>1) with 2 groups per integration (NGROUPS=2). For these modes the
guider_cds step computes a countrate image for each integration, by subtracting group 1 from group 2 and dividing
by the group time. The output data array is 3D, with dimensions of (ncols x nrows x nints).

For these modes, the values for the variances are calculated using the same equations as above for the ID mode, except
:

1) 𝑠𝑙𝑜𝑝𝑒 is the slope of the pixel.

2) 𝑅 is the noise from the READNOISE reference file, or the default READNOISE pixel value if the reference file
is not accessible.

3) 𝑔𝑎𝑖𝑛 is the gain from the GAIN reference file, or the default GAIN pixel value if the reference file is not accessible.

FineGuide mode

The FineGuide mode uses many integrations (NINTS>>1) with 4 groups at the beginning and 4 groups at the end of
each integration. The guider_cds step computes a countrate image for each integration by subtracting the average of
the first 4 groups from the average of the last 4 groups and dividing by the group time. The output data array is 3D,
with dimensions of (ncols x nrows x nints).

For this mode, the values for the variancesare calculated using the same equations as above for the ID mode, except
𝑠𝑙𝑜𝑝𝑒 is the slope of the pixel, averaged over all integrations.

15.1. Package Index 317

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

All modes

For all of the above modes, the square-root of the sum of the Poisson variance and read noise variance is written to the
ERR extension.

After successful completion of the step, the “BUNIT” keyword in the output data is updated to “DN/s” and the
“S_GUICDS” keyword is set to “COMPLETE”.

Arguments

The guider_cds correction has no step-specific arguments.

Reference File

The guider_cds step uses two reference file types: GAIN and READNOISE.

Both the GAIN and READNOISE values are used to compute the total error estimates. If either reference file is
inaccessible, representative default values will be used.

GAIN

READNOISE

jwst.guider_cds Package

Classes

GuiderCdsStep([name, parent, config_file, ...]) This step calculates the countrate for each pixel for FGS
modes.

GuiderCdsStep

class jwst.guider_cds.GuiderCdsStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

This step calculates the countrate for each pixel for FGS modes.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

318 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'guider_cds'

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

GuiderCdsStepJwstStepStep

15.1.27 HLSP Processing

Description

Class
jwst.coron.HlspStep

Alias
hlsp

The hlsp step is one of the coronagraphic-specific steps in the coron sub-package. It produces high-level science
products for KLIP-processed (PSF-subtracted) coronagraphic images. The step is currently a prototype and produces
two simple products: a signal-to-noise ratio (SNR) image and a table of contrast data. The SNR image is computed
by simply taking the ratio of the SCI and ERR arrays of the input target image. The contrast data are in the form
of azimuthally-averaged noise versus radius. The noise is computed as the 1-sigma standard deviation within a set of
concentric annuli centered in the input image. The annuli regions are computed to the nearest whole pixel; no sub-pixel
calculations are performed.

15.1. Package Index 319

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Note: This step is not currently included in the calwebb_coron3 pipeline, but can be run standalone.

Arguments

The hlsp step has one optional argument:

--annuli_width
which is an integer parameter with a default value of 2 and is used to specify the width, in pixels, of the annuli
to use when computing the contrast curve data.

Inputs

2D image

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)

File suffix
_psfsub

The input is the KLIP-processed (PSF-subtracted) image to be analyzed.

Outputs

2D SNR image

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)

File suffix
_snr

The computed SNR image.

Contrast table

Data model
ContrastModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ContrastModel.html#jwst.datamodels.ContrastModel)

File suffix
_contrast

The table of contrast data, containing columns of radii (in pixels) and 1-sigma noise.

320 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ContrastModel.html#jwst.datamodels.ContrastModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference Files

The hlsp step does not use any reference files.

jwst.coron.hlsp_step Module

Classes

HlspStep([name, parent, config_file, ...]) HlspStep: Make High-Level Science Products (HLSP's)
from the results of coronagraphic exposure that's had
KLIP processing applied to it.

HlspStep

class jwst.coron.hlsp_step.HlspStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

HlspStep: Make High-Level Science Products (HLSP’s) from the results of coronagraphic exposure that’s had
KLIP processing applied to it.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

spec

15.1. Package Index 321

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

process(target) This is where real work happens.

Attributes Documentation

class_alias = 'hlsp'

spec

annuli_width = integer(default=2, min=1) # Width of contrast annuli
save_results = boolean(default=true) # Save results

Methods Documentation

process(target)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

HlspStepJwstStepStep

15.1.28 Imprint Subtraction

Description

Class
jwst.imprint.ImprintStep

Alias
imprint

The NIRSpec MSA imprint subtraction step removes patterns created in NIRSpec MOS and IFU exposures by the MSA
structure. This is accomplished by subtracting a dedicated exposure taken with all MSA shutters closed and the IFU
entrance aperture blocked.

The step has two input parameters: the target exposure and a list of one or more imprint exposures. These arguments
can be provided as either file names or JWST data models.

In the event that multiple imprint images are provided, the step uses the meta data of the target and imprint exposures
to find the imprint exposure that matches the observation number (keyword “OBSERVTN”) and dither pattern position

322 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

number (keyword “PATT_NUM”) of the target exposure. The matching imprint image is then subtracted from the target
image. If no matching imprint image is found, the step will be skipped, returning the input target image unaltered.

When subtracting the imprint data model from the target data model, the SCI data array of the imprint exposure is
subtracted from the SCI array of the target exposure, and the DQ arrays of the two exposures are combined using a
bitwise logical OR operation. The ERR and variance arrays are not currently used or modified.

Step Arguments

The imprint subtraction step has no step-specific arguments.

Reference File

The imprint subtraction step does not use any reference files.

jwst.imprint Package

Classes

ImprintStep([name, parent, config_file, ...]) ImprintStep: Removes NIRSpec MSA imprint structure
from an exposure by subtracting an imprint (a.k.a.

ImprintStep

class jwst.imprint.ImprintStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

ImprintStep: Removes NIRSpec MSA imprint structure from an exposure by subtracting an imprint (a.k.a. leak-
cal) exposure.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

15.1. Package Index 323

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

spec

Methods Summary

process(input, imprint) This is where real work happens.

Attributes Documentation

class_alias = 'imprint'

spec

Methods Documentation

process(input, imprint)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

ImprintStepJwstStepStep

15.1.29 IPC Correction

Description

Class
jwst.ipc.IPCStep

Alias
ipc

324 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

The ipc step corrects a JWST exposure for interpixel capacitance by convolving with an IPC reference image.

The current implementation uses an IPC reference file that is normally a small, rectangular image (e.g. 3 x 3 pixels), a
deconvolution kernel. The kernel may, however, be a 4-D array (e.g. 3 x 3 x 2048 x 2048), to allow the IPC correction
to vary across the detector.

For each integration in the input science data, the data are corrected group-by-group by convolving with the kernel.
Reference pixels are not included in the convolution; that is, their values will not be changed, and when the kernel
overlaps a region of reference pixels, those pixels contribute a value of zero to the convolution. The ERR and DQ
arrays will not be modified.

Subarrays

Subarrays are treated the same as full-frame data, with the exception that the reference pixels may be absent.

Step Arguments

The IPC deconvolution step has no step-specific arguments.

Reference Files

The IPC deconvolution step uses an IPC reference file.

IPC Reference File

REFTYPE
IPC

Data model
IPCModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IPCModel.html#jwst.datamodels.IPCModel)

The IPC reference file contains a deconvolution kernel.

Reference Selection Keywords for IPC

CRDS selects appropriate IPC references based on the following keywords. IPC is not applicable for instruments not
in the table. All keywords used for file selection are required.

Instrument Keywords
FGS INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
MIRI INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
NIRCam INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
NIRISS INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
NIRSpec INSTRUME, DETECTOR, DATE-OBS, TIME-OBS

15.1. Package Index 325

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IPCModel.html#jwst.datamodels.IPCModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for IPC

In addition to the standard reference file keywords listed above, the following keywords are required in IPC reference
files, because they are used as CRDS selectors (see Reference Selection Keywords for IPC):

Keyword Data Model Name
DETECTOR model.meta.instrument.detector

Reference File Format

IPC reference files are FITS format, with 1 IMAGE extension. The FITS primary HDU does not contain a data array.
The format and content of the file can be one of two forms, as described below:

EXTNAME XTENSION NAXIS Dimensions Data type
SCI IMAGE 2 nkern x nkern float
or
SCI IMAGE 4 ncols x nrows x nkern x nkern float

Two formats are currently supported for the IPC kernel: a small 2-D array or a 4-D array. If the kernel is 2-D, its
dimensions should be odd, for example 3 x 3 or 5 x 5 pixels. The value at the center pixel will be larger than 1 (e.g.
1.02533) and the sum of all pixel values will be equal to 1.

A 4-D kernel may be used to allow the IPC correction to vary from pixel to pixel across the image. In this case, the axes
that are most rapidly varying (the last two in Python notation; the first two in IRAF/FITS notation) have dimensions
equal to those of a full-frame image. At each point in that image, there will be a small, 2-D kernel as described in the
previous paragraph.

326 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.ipc Package

Classes

IPCStep([name, parent, config_file, ...]) IPCStep: Performs IPC correction by convolving the in-
put science data model with the IPC reference data.

IPCStep

class jwst.ipc.IPCStep(name=None, parent=None, config_file=None, _validate_kwds=True, **kws)
Bases: JwstStep

IPCStep: Performs IPC correction by convolving the input science data model with the IPC reference data.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

Methods Summary

process(input) Apply the IPC correction.

15.1. Package Index 327

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Documentation

class_alias = 'ipc'

reference_file_types = ['ipc']

Methods Documentation

process(input)
Apply the IPC correction.

Parameters
input (data model object) – Science data model to be corrected.

Returns
IPC-corrected science data model.

Return type
data model object

Class Inheritance Diagram

IPCStepJwstStepStep

15.1.30 Jump Detection

Description

Class
jwst.jump.JumpStep

Alias
jump

This step finds and flags outliers (usually caused by cosmic-ray hits) in each pixel of an “up the ramp” IR exposure.

328 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Assumptions

We assume that the saturation step has already been applied to the input exposure, so that saturated ramp groups are
appropriately flagged in the input GROUPDQ array. We also assume that steps such as reference pixel correction and
non-linearity correction have been applied, so that the input data ramps do not have any non-linearities or noise above
the modeled Poisson and read noise due to instrumental effects. The absence of any of these preceding corrections or
the presence of residual non-linearities and noise can lead to false detection of jumps in the ramps, due to departure
from linearity.

The jump step will automatically skip execution if the input data contain fewer than 3 groups per integration, because
the baseline algorithm requires at least two first differences to work.

Note that the core algorithms for this step are called from the external package stcal, an STScI effort to unify common
calibration processing algorithms for use by multiple observatories.

Algorithm (https://stcal.readthedocs.io/en/latest/stcal/jump/description.html#jump-algorithm)

Large Events (Snowballs and Showers)

All the detectors on JWST are affected by large cosmic ray events. While these events, in general, affect a large number
of pixels, the more distinguishing characteristic is that they are surrounded by a halo of pixels that have a low level of
excess counts. These excess counts are, in general, below the detection threshold of normal cosmic rays.

To constrain the effect of this halo, the jump step will fit ellipses or circles that enclose the large events and expand the
ellipses and circles by the input expand_factor and mark them as jump (see jump step arguments for details).

The two different types of JWST detectors respond differently. The large events in the near-infrared detectors are almost
always circles with a central region that is saturated. The saturated core allows the search for smaller events without
false positives. The mid-IR (MIRI) detectors do not, in general, have a saturated center and are only rarely circular.
Thus, we fit the minimum enclosing ellipse and do not require that there are saturated pixels within the ellipse.

Multiprocessing

This step has the option of running in multiprocessing mode. In that mode it will split the input data cube into a
number of row slices based on the number of available cores on the host computer and the value of the max_cores
input parameter. By default the step runs on a single processor. At the other extreme, if max_cores is set to “all”, it
will use all available cores (real and virtual). Testing has shown a reduction in the elapsed time for the step proportional
to the number of real cores used. Using the virtual cores also reduces the elapsed time, but at a slightly lower rate than
the real cores.

If multiprocessing is requested, the input cube will be divided into a number of slices in the row dimension (with the
last slice being slightly larger, if needed), and sent for processing in parallel. In the event the number of cores (and
hence slices) selected exceeds the number of available image rows, the number of slices will be reduced to match the
number of rows. After all the slices have finished processing, the output GROUPDQ cube - containing the DQ flags
for detected jumps - is reassembled from the slices.

15.1. Package Index 329

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Subarrays

Full-frame reference files can be used for all science exposures even if the science exposure was taken in a subarray
mode. If so, subarrays will be extracted from the reference file data to match the science exposure. Alternatively,
subarray-specific reference files, which match the science exposure, may be used.

Arguments

The jump step has many optional arguments that can be set by the user. The details for each are listed below.

Parameters for Baseline Cosmic Ray Jump Detection
• --rejection_threshold: A floating-point value that sets the sigma threshold for jump detection. In the code,

sigma is determined using the read noise from the read noise reference file and the Poisson noise (based on the
median difference between samples and the gain reference file). Note that any noise source beyond these two
that may be present in the data will lead to an increase in the false positive rate and thus may require an increase
in the value of this parameter. The default value of 4.0 for the rejection threshold will yield 6200 false positives
for every million pixels, if the noise model is correct.

• --three_group_rejection_threshold: Cosmic ray sigma rejection threshold for ramps having 3 groups.
This is a floating-point value with default value of 6.0, and minimum of 0.0.

• --four_group_rejection_threshold: Cosmic ray sigma rejection threshold for ramps having 4 groups.
This is a floating-point value with default value of 5.0, and minimum of 0.0.

• --maximum_cores: The number of available cores that will be used for multi-processing in this step. The default
value is ‘1’, which does not use multi-processing. The other options are either an integer, ‘quarter’, ‘half’, or ‘all’.
Note that these fractions refer to the total available cores and on most CPUs these include physical and virtual
cores. The clock time for the step is reduced almost linearly by the number of physical cores used on all machines.
For example, on an Intel CPU with six real cores and six virtual cores, setting maximum_cores to ‘half’ results
in a decrease of a factor of six in the clock time for the step to run. Depending on the system, the clock time can
also decrease even more with maximum_cores is set to ‘all’. Setting the number of cores to an integer can be
useful when running on machines with a large number of cores where the user is limited in how many cores they
can use. Note that, currently, snowball and shower detection does not use multiprocessing.

• --flag_4_neighbors: If set to True (default is True) it will cause the four perpendicular neighbors of all
detected jumps to also be flagged as a jump. This is needed because of the inter-pixel capacitance (IPC), which
causes a small jump in the neighbors. The small jump might be below the rejection threshold, but will affect the
slope determination of the pixel. The step will take about 40% longer to run when this is set to True.

• --max_jump_to_flag_neighbors: A floating point value in units of sigma that limits the flagging of neigh-
bors. Any jump above this cutoff will not have its neighbors flagged. The concept is that the jumps in neighbors
will be above the rejection threshold and thus be flagged as primary jumps. The default value is 200.

• --min_jump_to_flag_neighbors: A floating point value in units of sigma that limits the flagging of neighbors
of marginal detections. Any primary jump below this value will not have its neighbors flagged. The goal is to
prevent flagging jumps that would be too small to significantly affect the slope determination. The default value
is 10.

Parameters that affect after jump Flagging
After a jump of at least ‘after_jump_flag_dn1’ DN, groups up to ‘after_jump_flag_time1’ seconds will also be flagged
as jumps. That pair of arguments is defined as:

• --after_jump_flag_dn1: A floating point value in units of DN

• --after_jump_flag_time1: A floating point value in units of seconds

330 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

A second threshold and time can also be set: after a jump of at least ‘after_jump_flag_dn2’ DN, groups up to ‘af-
ter_jump_flag_time2’ seconds will also be flagged as jumps. That pair of arguments is defined as:

• --after_jump_flag_dn2: A floating point value in units of DN

• --after_jump_flag_time2: A floating point value in units of seconds

Parameters that affect Near-IR Snowball Flagging
• --expand_large_events: A boolean parameter that controls whether the jump step will expand the number

of pixels that are flagged around large cosmic ray events. These are know as “snowballs” in the near-infrared
detectors and “showers” for the MIRI detectors. In general, this should be set to True.

• --min_jump_area: The minimum number of contiguous pixels needed to trigger the expanded flagging of large
cosmic rays events.

• --min_sat_area: The minimum number of saturated pixels required to meet “sat_required_snowball”.

• --expand_factor: A multiplicative factor applied to the enclosing ellipse for snowballs. This larger area will
have all pixels flagged as having a jump.

• --use_ellipses: deprecated

• --sat_required_snowball: A boolean value that if True requires that there are saturated pixels within the
enclosed jump circle.

• --min_sat_radius_extend: The minimum radius of the saturated core of a snowball required to for the radius
of the saturated core to be extended.

• --sat_expand: Number of pixels to add to the radius of the saturated core of snowballs

• --edge_size: The distance from the edge of the detector where saturated cores are not required for snowball
detection

Parameters that affect MIRI Shower Flagging
• --find_showers: Turn on the detection of showers for the MIRI detectors

• --extend_snr_threshold: The SNR minimum for the detection of faint extended showers in MIRI

• --extend_min_area: The required minimum area of extended emission after convolution for the detection of
showers in MIRI

• --extend_inner_radius: The inner radius of the ring_2D_kernel that is used for the detection of extended
emission in showers

• --extend_outer_radius: The outer radius of the Ring2DKernal that is used for the detection of extended
emission in showers

• --extend_ellipse_expand_ratio: Multiplicative factor to expand the radius of the ellipse fit to the detected
extended emission in MIRI showers

• --time_masked_after_showers: Number of seconds to flag groups as jump after a detected extended emis-
sion in MIRI showers

Parameter that affects both Snowball and Shower flagging
• --max_extended_radius: The maxiumum extension of the jump and saturation that will be flagged for showers

or snowballs

Parameters that affect Sigma Clipping
• --minimum_groups: The minimum number of groups to run the jump step with sigma clipping

• --minimum_sigclip_groups: The minimum number of groups to switch the jump detection to use sigma
clipping

15.1. Package Index 331

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• --only_use_ints: If true the sigma clipping is applied only for a given group across all ints. If not, all groups
from all ints are used for the sigma clipping.

Reference File Types

The jump step uses two reference files: GAIN and READNOISE. The GAIN reference file is used to temporarily convert
pixel values in the jump step from units of DN to electrons. The READNOISE reference file is used in estimating the
expected noise in each pixel. Both are necessary for proper computation of noise estimates within the jump step.

GAIN

READNOISE

jwst.jump Package

Classes

JumpStep([name, parent, config_file, ...]) JumpStep: Performs CR/jump detection on each ramp
integration within an exposure.

JumpStep

class jwst.jump.JumpStep(name=None, parent=None, config_file=None, _validate_kwds=True, **kws)
Bases: JwstStep

JumpStep: Performs CR/jump detection on each ramp integration within an exposure. The 2-point difference
method is applied.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

332 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'jump'

reference_file_types = ['gain', 'readnoise']

spec

rejection_threshold = float(default=4.0,min=0) # CR sigma rejection threshold
three_group_rejection_threshold = float(default=6.0,min=0) # CR sigma rejection␣
→˓threshold
four_group_rejection_threshold = float(default=5.0,min=0) # CR sigma rejection␣
→˓threshold
maximum_cores = string(default='1') # cores for multiprocessing. Can be an␣
→˓integer, 'half', 'quarter', or 'all'
flag_4_neighbors = boolean(default=True) # flag the four perpendicular␣
→˓neighbors of each CR
max_jump_to_flag_neighbors = float(default=1000) # maximum jump sigma that will␣
→˓trigger neighbor flagging
min_jump_to_flag_neighbors = float(default=10) # minimum jump sigma that will␣
→˓trigger neighbor flagging
after_jump_flag_dn1 = float(default=0) # 1st flag groups after jump above DN␣
→˓threshold
after_jump_flag_time1 = float(default=0) # 1st flag groups after jump groups␣
→˓within specified time
after_jump_flag_dn2 = float(default=0) # 2nd flag groups after jump above DN␣
→˓threshold
after_jump_flag_time2 = float(default=0) # 2nd flag groups after jump groups␣
→˓within specified time
expand_large_events = boolean(default=False) # Turns on Snowball detector for␣
→˓NIR detectors
min_sat_area = float(default=1.0) # minimum required area for the central␣
→˓saturation of snowballs
min_jump_area = float(default=5.0) # minimum area to trigger large events␣
→˓processing
expand_factor = float(default=2.0) # The expansion factor for the enclosing␣

(continues on next page)

15.1. Package Index 333

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

→˓circles or ellipses
use_ellipses = boolean(default=False) # deprecated
sat_required_snowball = boolean(default=True) # Require the center of snowballs␣
→˓to be saturated
min_sat_radius_extend = float(default=2.5) # The min radius of the sat core to␣
→˓trigger the extension of the core
sat_expand = integer(default=2) # Number of pixels to add to the radius of the␣
→˓saturated core of snowballs
edge_size = integer(default=25) # Size of region on the edges of NIR detectors␣
→˓where a sat core is not required
find_showers = boolean(default=False) # Turn on shower flagging for MIRI
extend_snr_threshold = float(default=1.2) # The SNR minimum for detection of␣
→˓extended showers in MIRI
extend_min_area = integer(default=90) # Min area of emission after convolution␣
→˓for the detection of showers
extend_inner_radius = float(default=1) # Inner radius of the ring_2D_kernel␣
→˓used for convolution
extend_outer_radius = float(default=2.6) # Outer radius of the ring_2D_Kernel␣
→˓used for convolution
extend_ellipse_expand_ratio = float(default=1.1) # Expand the radius of the␣
→˓ellipse fit to the extended emission
time_masked_after_shower = float(default=15) # Seconds to flag as jump after a␣
→˓detected extended emission
max_extended_radius = integer(default=200) # The maximum radius of an extended␣
→˓snowball or shower
minimum_groups = integer(default=3) # The minimum number of groups to perform␣
→˓jump detection using sigma clipping
minimum_sigclip_groups = integer(default=100) # The minimum number of groups to␣
→˓switch to sigma clipping
only_use_ints = boolean(default=True) # In sigclip only compare the same group␣
→˓across ints, if False compare all groups

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JumpStepJwstStepStep

334 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

15.1.31 KLIP Processing

Description

Class
jwst.coron.KlipStep

Alias
klip

The klip step is one of the coronagraphic-specific steps in the coron sub-package and is used in Stage 3 cal-
webb_coron3 processing. It applies the Karhunen-Loeve Image Plane (KLIP) algorithm to coronagraphic images,
using an accompanying set of reference PSF images, in order to fit and subtract an optimal PSF from a source image.
The KLIP algorithm uses a KL decomposition of the set of reference PSF’s, and generates a model PSF from the pro-
jection of the target on the KL vectors. The model PSF is then subtracted from the target image (Soummer, Pueyo, and
Larkin 2012). KLIP is a Principle Component Analysis (PCA) method and is very similar to the Locally Optimized
Combination of Images (LOCI) method. The main advantages of KLIP over LOCI are the possibility of direct forward
modeling and a significant speed increase.

The KLIP algorithm consists of the following high-level steps:

1) Partition the target and reference PSF images in a set of search areas, and subtract their average values so that
they have zero mean

2) Compute the KL transform of the set of reference PSF’s

3) Choose the number of modes to keep in the estimated target PSF

4) Compute the best estimate of the target PSF from the projection of the target image on the KL eigenvectors

5) Calculate the PSF-subtracted target image

Arguments

The klip step has one optional argument:

--truncate
This is an integer parameter with a default value of 50 and is used to specify the number of KL transform rows
to keep when computing the PSF fit to the target.

Inputs

The klip step takes two inputs: a science target exposure in the form of a 3D data cube and a 4D aligned PSF image
(“_psfalign”) product.

3D calibrated images

Data model
CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_calints

A 3D calibrated science target product containing a stack of per-integration images. This should be a “_calints” product
created by the calwebb_image2 pipeline. Normally one of the science target exposures specified in the ASN file used
as input to the calwebb_coron3 pipeline.

15.1. Package Index 335

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

4D aligned PSF images

Data model
QuadModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.QuadModel.html#jwst.datamodels.QuadModel)

File suffix
_psfalign

A 4D collection of PSF images that have been aligned to each of the per-integration images contained in the science
target “_calints” product, created by the align_refs step.

Outputs

3D PSF-subtracted images

Data model
CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_psfsub

The output is a 3D stack of PSF-subtracted images of the science target, having the same dimensions as
the input science target (“_calints”) product. The PSF fitting and subtraction has been applied to each in-
tegration image independently. The file name syntax is exposure-based, using the root of the input “_cal-
ints” product, with the addition of the association candidate ID and the “_psfsub” product type suffix, e.g.
“jw8607342001_02102_00001_nrcb3_a3001_psfsub.fits.”

Reference Files

The klip step does not use any reference files.

jwst.coron.klip_step Module

Classes

KlipStep([name, parent, config_file, ...]) KlipStep: Performs KLIP processing on a science target
coronagraphic exposure.

KlipStep

class jwst.coron.klip_step.KlipStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

KlipStep: Performs KLIP processing on a science target coronagraphic exposure. The input science exposure is
assumed to be a fully calibrated level-2b image. The processing is performed using a set of reference PSF images
observed in the same coronagraphic mode.

Create a Step instance.

Parameters

336 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.QuadModel.html#jwst.datamodels.QuadModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of
the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

spec

Methods Summary

process(target, psfrefs) This is where real work happens.

Attributes Documentation

class_alias = 'klip'

spec

truncate = integer(default=50,min=0) # The number of KL transform rows to keep

Methods Documentation

process(target, psfrefs)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep KlipStepStep

15.1. Package Index 337

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

15.1.32 Library Utilities

Engineering Database Interface

jwst.lib.engdb_tools Module

Access the JWST Engineering Mnemonic Database

The engineering mnemonics are provided by multiple services, all of which require a level of authentication.

For non-operational use, the providing service is through the MAST AUI website

https://mast.stsci.edu/portal/Mashup/Clients/jwstedb/jwstedb.html

Authorization can be requested through

https://auth.mast.stsci.edu/

Interface

The primary entry point is the function jwst.lib.engdb_tools.ENGDB_Service. This function returns a jwst.
lib.engdb_lib.EngdbABC connection object. Using this object, values for a mnemonic covering a specified time
range can be retrieved using the get_values method.

By default, only values inclusively between the time end points are returned. Depending on the frequency a mnemonic
is updated, there can be no values. If values are always desired, the nearest, bracketing values outside the time range
can be requested.

Warning: Many mnemonics are updated very quickly, up to 16Hz. When in doubt, specify a very short time
frame, and request bracketing values. Otherwise, the request can return a very large amount of data, risking timeout,
unnecessary memory consumption, or access restrictions.

Examples

The typical workflow is as follows:

from jwst.lib.engdb_tools import ENGDB_Service

service = ENGDB_Service() # By default, will use the public MAST service.

values = service.get_values('sa_zattest2', '2021-05-22T00:00:00', '2021-05-22T00:00:01')

Environmental Variables

ENG_BASE_URL
If no URL is specified in code or by command line parameters, this value is used. If not defined, a default, as
defined by the individual services, will be attempted.

MAST_API_TOKEN
If no token is provided in code or by command line parameters, this value will be used. EngdbMast service
requires a token to be provided. See https://auth.mast.stsci.edu/ for more information.

338 Chapter 15. Package Documentation

https://mast.stsci.edu/portal/Mashup/Clients/jwstedb/jwstedb.html
https://auth.mast.stsci.edu/
https://auth.mast.stsci.edu/

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

ENG_RETRIES
Number of attempts to make when connecting to the service. Default is 10.

ENG_TIMEOUT
Number of seconds before timing out a network connection. Default is 600 seconds (10 minutes)

Functions

ENGDB_Service([base_url]) Access the JWST Engineering Database

ENGDB_Service

jwst.lib.engdb_tools.ENGDB_Service(base_url=None, **service_kwargs)
Access the JWST Engineering Database

Access can be either through the public MAST API or by direct connection to the database server.

Parameters
• base_url (str (https://docs.python.org/3/library/stdtypes.html#str) or None.) – The

base url for the engineering RESTful service

• service_kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Service-
specific keyword arguments. Refer to the concrete implementations of EngdbABC.

Returns
service – The engineering database service to use.

Return type
EngdbABC

jwst.lib.engdb_mast Module

Access the JWST Engineering Mnemonic Database through MAST

Classes

EngdbMast([base_url, token]) Access the JWST Engineering Database through MAST

EngdbMast

class jwst.lib.engdb_mast.EngdbMast(base_url=None, token=None, **service_kwargs)
Bases: EngdbABC

Access the JWST Engineering Database through MAST

Parameters
• base_url (str (https://docs.python.org/3/library/stdtypes.html#str)) – The base url for the

engineering RESTful service. If not defined, the environmental variable ENG_BASE_URL
is queried. Otherwise the default MAST website is used.

15.1. Package Index 339

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• token (str (https://docs.python.org/3/library/stdtypes.html#str) or None) – The MAST
access token. If not defined, the environmental variable MAST_API_TOKEN is queried. A
token is required. For more information, see ‘https://auth.mast.stsci.edu/’

• service_kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Service-
specific keyword arguments that are not relevant to this implementation of EngdbABC.

Raises
RuntimeError (https://docs.python.org/3/library/exceptions.html#RuntimeError) – Any and all
failures with connecting with the MAST server.

Attributes Summary

base_url The base URL for the engineering service.
endtime The end time of the last query.
response The results of the last query.
retries Number of retries to attempt to contact the service
starttime The start time of the last query.
timeout Network timeout when communicating with the ser-

vice
token MAST Token

Methods Summary

cache(mnemonics, starttime, endtime, cache_path) Cache results for the list of mnemonics
cache_as_local(mnemonics, starttime, ...) Cache results for the list of mnemonics, but in the En-

gdbLocal format
configure([base_url, token]) Configure from parameters and environment
get_meta(*kwargs) Get the mnemonics meta info
get_values(mnemonic, starttime, endtime[, ...]) Retrieve all results for a mnemonic in the requested

time range.
set_session() Setup HTTP session

Attributes Documentation

base_url = None

The base URL for the engineering service.

endtime = None

The end time of the last query.

response = None

The results of the last query.

retries = 10

Number of retries to attempt to contact the service

starttime = None

The start time of the last query.

340 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://auth.mast.stsci.edu/
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#RuntimeError

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

timeout = 600

Network timeout when communicating with the service

token = None

MAST Token

Methods Documentation

cache(mnemonics, starttime, endtime, cache_path)
Cache results for the list of mnemonics

Parameters
• mnemonics (iterable) – List of mnemonics to retrieve

• starttime (str (https://docs.python.org/3/library/stdtypes.html#str) or astropy.
time.Time) – The, inclusive, start time to retrieve from.

• endtime (str (https://docs.python.org/3/library/stdtypes.html#str) or astropy.time.
Time) – The, inclusive, end time to retrieve from.

• cache_path (str (https://docs.python.org/3/library/stdtypes.html#str) or Path-like)
– Path of the cache directory.

cache_as_local(mnemonics, starttime, endtime, cache_path)
Cache results for the list of mnemonics, but in the EngdbLocal format

The target format is native to what the EngdbDirect service provides.

Parameters
• mnemonics (iterable) – List of mnemonics to retrieve

• starttime (str (https://docs.python.org/3/library/stdtypes.html#str) or astropy.
time.Time) – The, inclusive, start time to retrieve from.

• endtime (str (https://docs.python.org/3/library/stdtypes.html#str) or astropy.time.
Time) – The, inclusive, end time to retrieve from.

• cache_path (str (https://docs.python.org/3/library/stdtypes.html#str) or Path-like)
– Path of the cache directory.

configure(base_url=None, token=None)
Configure from parameters and environment

Parameters
• base_url (str (https://docs.python.org/3/library/stdtypes.html#str)) – The base url

for the engineering RESTful service. If not defined, the environmental variable
ENG_BASE_URL is queried. Otherwise the default MAST website is used.

• token (str (https://docs.python.org/3/library/stdtypes.html#str) or None) – The MAST
access token. If not defined, the environmental variable MAST_API_TOKEN is queried.
A token is required. For more information, see ‘https://auth.mast.stsci.edu/’

get_meta(*kwargs)
Get the mnemonics meta info

The MAST interface does not provide any meta.

15.1. Package Index 341

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://auth.mast.stsci.edu/

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

get_values(mnemonic, starttime, endtime, time_format=None, include_obstime=False,
include_bracket_values=False, zip_results=True)

Retrieve all results for a mnemonic in the requested time range.

Parameters
• mnemonic (str (https://docs.python.org/3/library/stdtypes.html#str)) – The engineering

mnemonic to retrieve

• starttime (str or astropy.time.Time) – The, inclusive, start time to retrieve from.

• endtime (str or astropy.time.Time) – The, inclusive, end time to retrieve from.

• time_format (str (https://docs.python.org/3/library/stdtypes.html#str)) – The format of
the input time used if the input times are strings. If None, a guess is made.

• include_obstime (bool (https://docs.python.org/3/library/functions.html#bool)) – If
True (https://docs.python.org/3/library/constants.html#True), the return values will in-
clude observation time as astropy.time.Time. See zip_results for further details.

• include_bracket_values (bool (https://docs.python.org/3/library/functions.html#bool))
– The DB service, by default, returns the bracketing values outside of the requested time.
If True (https://docs.python.org/3/library/constants.html#True), include these values.

• zip_results (bool (https://docs.python.org/3/library/functions.html#bool)) – If True
(https://docs.python.org/3/library/constants.html#True) and include_obstime is True
(https://docs.python.org/3/library/constants.html#True), the return values will be a list of
2-tuples. If false, the return will be a single 2-tuple, where each element is a list.

Returns
values – Returns the list of values. See include_obstime and zip
(https://docs.python.org/3/library/functions.html#zip) for modifications.

Return type
[value, . . .] or [(obstime, value), . . .] or ([obstime,. . .], [value, . . .])

set_session()

Setup HTTP session

jwst.lib.engdb_direct Module

Access the JWST Engineering Mnemonic Database through direct connection

Classes

EngdbDirect([base_url, default_format]) Access the JWST Engineering Database through direct
connection

342 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#zip

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

EngdbDirect

class jwst.lib.engdb_direct.EngdbDirect(base_url=None, default_format='dict', **service_kwargs)
Bases: EngdbABC

Access the JWST Engineering Database through direct connection

Parameters
• base_url (str (https://docs.python.org/3/library/stdtypes.html#str)) – The base url for the

engineering RESTful service

• default_format (str (https://docs.python.org/3/library/stdtypes.html#str)) – The format
the results of the data should be returned from the service. If ‘dict’, the result will be in
Python dict format.

• service_kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Service-
specific keyword arguments that are not relevant to this implementation of EngdbABC.

Attributes Summary

base_url The base URL for the engineering service.
default_format The format the results of the data should be returned

from the service.
endtime The end time of the last query.
response The results of the last query.
starttime The start time of the last query.

Methods Summary

configure([base_url]) Configure from parameters and environment
get_meta([mnemonic, result_format]) Get the mnemonics meta info
get_values(mnemonic, starttime, endtime[, ...]) Retrieve all results for a mnemonic in the requested

time range.
set_session() Setup HTTP session

Attributes Documentation

base_url = None

The base URL for the engineering service.

default_format

The format the results of the data should be returned from the service.

endtime = None

The end time of the last query.

response = None

The results of the last query.

starttime = None

The start time of the last query.

15.1. Package Index 343

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

configure(base_url=None)
Configure from parameters and environment

Parameters
base_url (str (https://docs.python.org/3/library/stdtypes.html#str)) – The base url for the
engineering RESTful service

get_meta(mnemonic='', result_format=None)
Get the mnemonics meta info

Parameters
• mnemonic (str (https://docs.python.org/3/library/stdtypes.html#str)) – The engineering

mnemonic to retrieve

• result_format (str (https://docs.python.org/3/library/stdtypes.html#str)) – The format
to request from the service. If None, the default_format is used.

get_values(mnemonic, starttime, endtime, time_format=None, include_obstime=False,
include_bracket_values=False, zip_results=True)

Retrieve all results for a mnemonic in the requested time range.

Parameters
• mnemonic (str (https://docs.python.org/3/library/stdtypes.html#str)) – The engineering

mnemonic to retrieve

• starttime (str or astropy.time.Time) – The, inclusive, start time to retrieve from.

• endtime (str or astropy.time.Time) – The, inclusive, end time to retrieve from.

• time_format (str (https://docs.python.org/3/library/stdtypes.html#str)) – The format of
the input time used if the input times are strings. If None, a guess is made.

• include_obstime (bool (https://docs.python.org/3/library/functions.html#bool)) – If
True (https://docs.python.org/3/library/constants.html#True), the return values will in-
clude observation time as astropy.time.Time. See zip_results for further details.

• include_bracket_values (bool (https://docs.python.org/3/library/functions.html#bool))
– The DB service, by default, returns the bracketing values outside of the requested time.
If True (https://docs.python.org/3/library/constants.html#True), include these values.

• zip_results (bool (https://docs.python.org/3/library/functions.html#bool)) – If True
(https://docs.python.org/3/library/constants.html#True) and include_obstime is True
(https://docs.python.org/3/library/constants.html#True), the return values will be a list of
2-tuples. If false, the return will be a single 2-tuple, where each element is a list.

Returns
values – Returns the list of values. See include_obstime and zip_results for modifica-
tions.

Return type
[value, . . .] or [(obstime, value), . . .] or ([obstime,. . .], [value, . . .])

Raises
requests.exceptions.HTTPError – Either a bad URL or non-existant mnemonic.

set_session()

Setup HTTP session

344 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.lib.engdb_lib Module

Engineering DB common library

Classes

EngDB_Value(obstime, value) Create new instance of EngDB_Value(obstime, value)
EngdbABC([base_url]) Access the JWST Engineering Database

EngDB_Value

class jwst.lib.engdb_lib.EngDB_Value(obstime, value)
Bases: tuple (https://docs.python.org/3/library/stdtypes.html#tuple)

Create new instance of EngDB_Value(obstime, value)

Attributes Summary

obstime Alias for field number 0
value Alias for field number 1

Attributes Documentation

obstime

Alias for field number 0

value

Alias for field number 1

EngdbABC

class jwst.lib.engdb_lib.EngdbABC(base_url=None, **service_kwargs)
Bases: ABC (https://docs.python.org/3/library/abc.html#abc.ABC)

Access the JWST Engineering Database

This is the minimal API for the service definition. Concrete implementations may provide other parameters and
attributes.

Parameters
• base_url (str (https://docs.python.org/3/library/stdtypes.html#str)) – The base url for the

engineering RESTful service

• service_kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Service-
specific keyword arguments. Refer to the concrete implementations of EngdbABC.

15.1. Package Index 345

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

base_url The URL of the service in use
endtime The endtime of the search
response The requests.Response information
starttime The start time of the search

Methods Summary

get_meta([mnemonic]) Get the mnemonics meta info
get_values(mnemonic, starttime, endtime[, ...]) Retrieve all results for a mnemonic in the requested

time range.

Attributes Documentation

base_url

The URL of the service in use

endtime

The endtime of the search

response

The requests.Response information

starttime

The start time of the search

Methods Documentation

abstract get_meta(mnemonic='', **service_kwargs)
Get the mnemonics meta info

Parameters
mnemonic (str (https://docs.python.org/3/library/stdtypes.html#str)) – The engineering
mnemonic to retrieve

Returns
• meta (object) – The meta information. Type of return is dependent on the type of service

• service_kwargs (dict) – Service-specific keyword arguments. Refer to the concrete imple-
mentations of EngdbABC.

abstract get_values(mnemonic, starttime, endtime, time_format=None, include_obstime=False,
include_bracket_values=False, zip_results=True)

Retrieve all results for a mnemonic in the requested time range.

Parameters
• mnemonic (str (https://docs.python.org/3/library/stdtypes.html#str)) – The engineering

mnemonic to retrieve

• starttime (str or astropy.time.Time) – The, inclusive, start time to retrieve from.

346 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• endtime (str or astropy.time.Time) – The, inclusive, end time to retrieve from.

• time_format (str (https://docs.python.org/3/library/stdtypes.html#str)) – The format of
the input time used if the input times are strings. If None, a guess is made.

• include_obstime (bool (https://docs.python.org/3/library/functions.html#bool)) – If
True (https://docs.python.org/3/library/constants.html#True), the return values will in-
clude observation time as astropy.time.Time. See zip_results for further details.

• include_bracket_values (bool (https://docs.python.org/3/library/functions.html#bool))
– The DB service, by default, returns the bracketing values outside of the requested time.
If True (https://docs.python.org/3/library/constants.html#True), include these values.

• zip_results (bool (https://docs.python.org/3/library/functions.html#bool)) – If True
(https://docs.python.org/3/library/constants.html#True) and include_obstime is True
(https://docs.python.org/3/library/constants.html#True), the return values will be a list of
2-tuples. If false, the return will be a single 2-tuple, where each element is a list.

Returns
values – Returns the list of values. See include_obstime and zip_results for modifica-
tions.

Return type
[value, . . .] or [(obstime, value), . . .] or ([obstime,. . .], [value, . . .])

Raises
requests.exceptions.HTTPError – Either a bad URL or non-existant mnemonic.

Telescope Pointing Utilities

jwst.lib.set_telescope_pointing Module

Set Telescope Pointing from Observatory Engineering Telemetry

Calculate and update the pointing-related and world coordinate system-related keywords. Given a time period, usually
defined by an exposure, the engineering mnemonic database is queried for observatory orientation. The orientation de-
fines the sky coordinates a particular point on the observatory is pointed to. Then, using a set of matrix transformations,
the sky coordinates of the reference pixel of a desired aperture is calculated.

The transformations are defined by the Technical Reference JWST-STScI-003222, SM-12. This document has under-
gone a number of revisions. The current version implemented is based on an internal email version Rev. C, produced
2021-11.

There are a number of algorithms, or methods, that have been implemented. Most represent the historical refinement of
the algorithm. Until the technical reference is finalized, all methods will remain in the code. The default, state-of-the
art algorithm is represented by method OPS_TR_202111, implemented by calc_transforms_ops_tr_202111.

Interface

The primary usage is through the command line interface set_telescope_pointing.py. Operating on a list of
JWST Level 1b exposures, this command updates the world coordinate system keywords with the values necessary to
translate from aperture pixel to sky coordinates.

Access to the JWST Engineering Mnemonic database is required. See the Engineering Database Interface for more
information.

Programmatically, the command line is implemented by the function add_wcs, which calls the basic function
calc_wcs. The available methods are defined by Methods.

15.1. Package Index 347

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

There are two data structures used to maintain the state of the transformation. TransformParameters contains the
parameters needed to perform the transformations. Transforms contains the calculated transformation matrices.

Transformation Matrices

All the transformation matrices, as defined by Transforms, are Direction Cosine Matrices (DCM). A DCM contains
the Euler rotation angles that represent the sky coordinates for a particular frame-of-reference. The initial DCM is
provided through the engineering telemetry and represents where in the sky either the Fine Guidance Sensor (FGS) or
star tracker is pointed to. Then, through a set of transformations, the DCM for the reference point of the target aperture
is calculated.

Functions

add_wcs(filename[, allow_any_file, ...]) Add WCS information to a JWST DataModel.
calc_transforms(t_pars) Calculate transforms which determine reference point

celestial WCS
calc_transforms_ops_tr_202111(t_pars) Calculate transforms in OPS using TR 2021-11
calc_wcs(t_pars) Given observatory orientation and target aperture, cal-

culate V1 and Reference Pixel sky coordinates
calc_wcs_over_time(obsstart, obsend, t_pars) Calculate V1 and WCS over a time period
update_wcs(model[, default_pa_v3, ...]) Update WCS pointing information

add_wcs

jwst.lib.set_telescope_pointing.add_wcs(filename, allow_any_file=False, force_level1bmodel=False,
default_pa_v3=0.0, siaf_path=None, prd=None,
engdb_url=None, fgsid=None, tolerance=60,
allow_default=False, reduce_func=None, dry_run=False,
save_transforms=None, **transform_kwargs)

Add WCS information to a JWST DataModel.

Telescope orientation is attempted to be obtained from the engineering database. Failing that, a default pointing
is used based on proposal target.

The file is updated in-place.

Parameters
• filename (str (https://docs.python.org/3/library/stdtypes.html#str)) – The path to a data

file.

• allow_any_file (bool (https://docs.python.org/3/library/functions.html#bool)) – At-
tempt to add the WCS information to any type of file. The default, False
(https://docs.python.org/3/library/constants.html#False), only allows modifications of files
that contain known datamodels of Level1bmodel, ImageModel, or CubeModel.

• force_level1bmodel (bool (https://docs.python.org/3/library/functions.html#bool)) – If
not allow_any_file, and the input file model is unknown, open the input file as a
Level1bModel regardless.

• default_pa_v3 (float (https://docs.python.org/3/library/functions.html#float)) – The V3
position angle to use if the pointing information is not found.

348 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• siaf_path (str (https://docs.python.org/3/library/stdtypes.html#str) or file-like
object or None) – The path to the SIAF database. See SiafDb for more information.

• prd (str (https://docs.python.org/3/library/stdtypes.html#str)) – The PRD version from the
pysiaf to use. siaf_path overrides this value.

• engdb_url (str (https://docs.python.org/3/library/stdtypes.html#str) or None) – URL of
the engineering telemetry database REST interface.

• fgsid (int (https://docs.python.org/3/library/functions.html#int) or None) – When in
COARSE mode, the FGS to use as the guider reference. If None, use what is provided
in telemetry.

• tolerance (int (https://docs.python.org/3/library/functions.html#int)) – If no telemetry
can be found during the observation, the time, in seconds, beyond the observation time to
search for telemetry.

• allow_default (bool (https://docs.python.org/3/library/functions.html#bool)) – If
telemetry cannot be determine, use existing information in the observation’s header.

• reduce_func (func or None) – Reduction function to use on values.

• dry_run (bool (https://docs.python.org/3/library/functions.html#bool)) – Do not write out
the modified file.

• save_transforms (Path-like or None) – File to save the calculated transforms to.

• transform_kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Key-
word arguments used by matrix calculation routines.

Notes

This function adds absolute pointing information to the JWST datamodels provided. By default, only Stage 1
and Stage 2a exposures are allowed to be updated. These have the suffixes of “uncal”, “rate”, and “rateints”
representing datamodels Level1bModel, ImageModel, and CubeModel. Any higher level product, from Stage
2b and beyond, that has had the assign_wcs step applied, have improved WCS information. Running this task
on such files will potentially corrupt the WCS.

It starts by populating the headers with values from the SIAF database. It adds the following keywords to all
files:

V2_REF (arcseconds) V3_REF (arcseconds) VPARITY (+1 or -1) V3I_YANG (decimal degrees)

The keywords computed and added to all files are:

RA_V1 DEC_V1 PA_V3 RA_REF DEC_REF ROLL_REF S_REGION

In addition the following keywords are computed and added to IMAGING_MODES only:

CRVAL1 CRVAL2 PC1_1 PC1_2 PC2_1 PC2_2

It does not currently place the new keywords in any particular location in the header other than what is required
by the standard.

15.1. Package Index 349

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

calc_transforms

jwst.lib.set_telescope_pointing.calc_transforms(t_pars: TransformParameters)
Calculate transforms which determine reference point celestial WCS

This implements Eq. 3 from Technical Report JWST-STScI-003222, SM-12. Rev. C, 2021-11 From Section 3:

The Direction Cosine Matrix (DCM) that provides the transformation of a unit pointing vector defined in inertial
frame (ECI J2000) coordinates to a unit vector defined in the science aperture Ideal frame coordinates is defined
as [follows.]

Parameters
t_pars (TransformParameters) – The transformation parameters. Parameters are updated
during processing.

Returns
transforms – The list of coordinate matrix transformations

Return type
Transforms

calc_transforms_ops_tr_202111

jwst.lib.set_telescope_pointing.calc_transforms_ops_tr_202111(t_pars: TransformParameters)
Calculate transforms in OPS using TR 2021-11

This implements the ECI-to-SIAF transformation from Technical Report JWST-STScI-003222, SM-12, Rev.
C, 2021-11 The actual implementation depends on the guide star mode, represented by the header keyword
PCS_MODE. For COARSE or NONE, the method COARSE is used. For TRACK or FINEGUIDE, the method
TRACK is used.

Parameters
t_pars (TransformParameters) – The transformation parameters. Parameters are updated
during processing.

Returns
transforms – The list of coordinate matrix transformations

Return type
Transforms

calc_wcs

jwst.lib.set_telescope_pointing.calc_wcs(t_pars: TransformParameters)
Given observatory orientation and target aperture, calculate V1 and Reference Pixel sky coordinates

Parameters
t_pars (TransformParameters) – The transformation parameters. Parameters are updated
during processing.

Returns
wcsinfo, vinfo, transforms – A 3-tuple is returned with the WCS pointing for the aperture and
the V1 axis, and the transformation matrices.

Return type
WCSRef , WCSRef , Transforms

350 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

calc_wcs_over_time

jwst.lib.set_telescope_pointing.calc_wcs_over_time(obsstart, obsend, t_pars: TransformParameters)
Calculate V1 and WCS over a time period

Parameters
• obsstart (float (https://docs.python.org/3/library/functions.html#float)) – MJD observa-

tion start/end times

• obsend (float (https://docs.python.org/3/library/functions.html#float)) – MJD observation
start/end times

• t_pars (TransformParameters) – The transformation parameters. Parameters are up-
dated during processing.

Returns
obstimes, wcsinfos, vinfos – A 3-tuple is returned with the WCS pointings for the aperture and
the V1 axis

Return type
[astropy.time.Time[,. . .]], [WCSRef [,. . .]], [WCSRef [,. . .]]

update_wcs

jwst.lib.set_telescope_pointing.update_wcs(model, default_pa_v3=0.0, default_roll_ref=0.0,
siaf_path=None, prd=None, engdb_url=None, fgsid=None,
tolerance=60, allow_default=False, reduce_func=None,
**transform_kwargs)

Update WCS pointing information

Given a jwst.datamodels.JwstDataModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel),
determine the simple WCS parameters from the SIAF keywords in the model and the engineering parameters
that contain information about the telescope pointing.

It presumes all the accessed keywords are present (see first block).

Parameters
• model (JwstDataModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel))

– The model to update.

• default_roll_ref (float (https://docs.python.org/3/library/functions.html#float)) – If
pointing information cannot be retrieved, use this as the roll ref angle.

• siaf_path (str (https://docs.python.org/3/library/stdtypes.html#str) or Path-like
object) – The path to the SIAF database. See SiafDb for more information.

• prd (str (https://docs.python.org/3/library/stdtypes.html#str)) – The PRD version from the
pysiaf to use. siaf_path overrides this value.

• engdb_url (str (https://docs.python.org/3/library/stdtypes.html#str) or None) – URL of
the engineering telemetry database REST interface.

• fgsid (int (https://docs.python.org/3/library/functions.html#int) or None) – When in
COARSE mode, the FGS to use as the guider reference. If None, use what is provided
in telemetry.

15.1. Package Index 351

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• tolerance (int (https://docs.python.org/3/library/functions.html#int)) – If no telemetry
can be found during the observation, the time, in seconds, beyond the observation time to
search for telemetry.

• allow_default (bool (https://docs.python.org/3/library/functions.html#bool)) – If
telemetry cannot be determine, use existing information in the observation’s header.

• reduce_func (func or None) – Reduction function to use on values.

• transform_kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Key-
word arguments used by matrix calculation routines.

Returns
t_pars, transforms – The parameters and transforms calculated. May be None for either if
telemetry calculations were not performed. In particular, FGS GUIDER data does not need
transforms.

Return type
TransformParameters, Transforms

Classes

Methods(value[, names, module, qualname, ...]) Available methods to calculate V1 and aperture WCS in-
formation

TransformParameters([allow_default, ...]) Parameters required the calculations
Transforms([m_eci2fgs1, m_eci2gs, m_eci2j, ...]) The matrices used in calculation of the M_eci2siaf trans-

formation
WCSRef (ra, dec, pa) Create new instance of WCSRef(ra, dec, pa)

Methods

class jwst.lib.set_telescope_pointing.Methods(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

Bases: Enum (https://docs.python.org/3/library/enum.html#enum.Enum)

Available methods to calculate V1 and aperture WCS information

Current state-of-art is OPS_TR_202111. This method chooses either COARSE_TR_202111 or
TRACK_TR_202111 depending on the guidance mode, as specified by header keyword PCS_MODE.

352 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/enum.html#enum.Enum

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

COARSE Default algorithm under PCS_MODE COARSE.
COARSE_TR_202111 COARSE tracking mode algorithm, TR version

2021-11.
OPS Default algorithm for use by Operations.
OPS_TR_202111 Method to use in OPS to use TR version 2021-11
TRACK Default algorithm under PCS_MODE

TRACK/FINEGUIDE/MOVING.
TRACK_TR_202111 TRACK and FINEGUIDE mode algorithm, TR ver-

sion 2021-11
calc_func Function associated with the method
default Algorithm to use by default.
func Function associated with the method
mnemonics

Attributes Documentation

COARSE = 'coarse_tr_202111'

Default algorithm under PCS_MODE COARSE.

COARSE_TR_202111 = 'coarse_tr_202111'

COARSE tracking mode algorithm, TR version 2021-11.

OPS = 'ops_tr_202111'

Default algorithm for use by Operations.

OPS_TR_202111 = 'ops_tr_202111'

Method to use in OPS to use TR version 2021-11

TRACK = 'track_tr_202111'

Default algorithm under PCS_MODE TRACK/FINEGUIDE/MOVING.

TRACK_TR_202111 = 'track_tr_202111'

TRACK and FINEGUIDE mode algorithm, TR version 2021-11

calc_func

Function associated with the method

default = 'ops_tr_202111'

Algorithm to use by default. Used by Operations.

func

Function associated with the method

mnemonics

15.1. Package Index 353

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

TransformParameters

class jwst.lib.set_telescope_pointing.TransformParameters(allow_default: bool
(https://docs.python.org/3/library/functions.html#bool)
= False, default_pa_v3: float
(https://docs.python.org/3/library/functions.html#float)
= 0.0, detector: str
(https://docs.python.org/3/library/stdtypes.html#str)
= None, dry_run: bool
(https://docs.python.org/3/library/functions.html#bool)
= False, engdb_url: str
(https://docs.python.org/3/library/stdtypes.html#str)
= None, exp_type: str
(https://docs.python.org/3/library/stdtypes.html#str)
= None, fgsid: int
(https://docs.python.org/3/library/functions.html#int)
= None, fsmcorr_version: str
(https://docs.python.org/3/library/stdtypes.html#str)
= 'latest', fsmcorr_units: str
(https://docs.python.org/3/library/stdtypes.html#str)
= 'arcsec', guide_star_wcs: WCSRef =
(None, None, None), j2fgs_transpose:
bool
(https://docs.python.org/3/library/functions.html#bool)
= True, jwst_velocity: array = None,
method: Methods =
Methods.OPS_TR_202111, obsend: float
(https://docs.python.org/3/library/functions.html#float)
= None, obsstart: float
(https://docs.python.org/3/library/functions.html#float)
= None, override_transforms:
Transforms = None, pcs_mode: str
(https://docs.python.org/3/library/stdtypes.html#str)
= None, pointing: Pointing = None,
reduce_func: Callable
(https://docs.python.org/3/library/typing.html#typing.Callable)
= None, siaf: SIAF = None, siaf_db:
SiafDb = None, tolerance: float
(https://docs.python.org/3/library/functions.html#float)
= 60.0, useafter: str
(https://docs.python.org/3/library/stdtypes.html#str)
= None, v3pa_at_gs: float
(https://docs.python.org/3/library/functions.html#float)
= None)

Bases: object (https://docs.python.org/3/library/functions.html#object)

Parameters required the calculations

354 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

allow_default If telemetry cannot be determined, use existing infor-
mation in the observation's header.

default_pa_v3 The V3 position angle to use if the pointing informa-
tion is not found.

detector Detector in use.
dry_run Do not write out the modified file.
engdb_url URL of the engineering telemetry database REST in-

terface.
exp_type Exposure type
fgsid FGS to use as the guiding FGS.
fsmcorr_units Units of the FSM correction values.
fsmcorr_version The version of the FSM correction calculation to use.
guide_star_wcs Guide star WCS info, typically from the input model.
j2fgs_transpose Transpose the j2fgs1 matrix.
jwst_velocity The [DX, DY, DZ] barycentri velocity vector
method The method, or algorithm, to use in calculating the

transform.
obsend Observation end time
obsstart Observation start time
override_transforms If set, matrices that should be used instead of the cal-

culated one.
pcs_mode The tracking mode in use.
pointing The observatory orientation, represented by the ECI

quaternion, and other engineering mnemonics
reduce_func Reduction function to use on values.
siaf The SIAF information for the input model
siaf_db The SIAF database
tolerance If no telemetry can be found during the observation,

the time, in seconds, beyond the observation time to
search for telemetry.

useafter The date of observation (jwst.datamodels.
JwstDataModel.meta.date)

v3pa_at_gs V3 position angle at Guide Star (jwst.
datamodels.JwstDataModel.meta.
guide_star.gs_v3_pa_science)

Methods Summary

as_reprdict() Return a dict where all values are REPR of their val-
ues

update_pointing() Update pointing information

15.1. Package Index 355

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Documentation

allow_default: bool (https://docs.python.org/3/library/functions.html#bool) = False

If telemetry cannot be determined, use existing information in the observation’s header.

default_pa_v3: float (https://docs.python.org/3/library/functions.html#float) = 0.0

The V3 position angle to use if the pointing information is not found.

detector: str (https://docs.python.org/3/library/stdtypes.html#str) = None

Detector in use.

dry_run: bool (https://docs.python.org/3/library/functions.html#bool) = False

Do not write out the modified file.

engdb_url: str (https://docs.python.org/3/library/stdtypes.html#str) = None

URL of the engineering telemetry database REST interface.

exp_type: str (https://docs.python.org/3/library/stdtypes.html#str) = None

Exposure type

fgsid: int (https://docs.python.org/3/library/functions.html#int) = None

FGS to use as the guiding FGS. If None, will be set to what telemetry provides.

fsmcorr_units: str (https://docs.python.org/3/library/stdtypes.html#str) = 'arcsec'

Units of the FSM correction values. Default is ‘arcsec’. See calc_sifov_fsm_delta_matrix

fsmcorr_version: str (https://docs.python.org/3/library/stdtypes.html#str) =
'latest'

The version of the FSM correction calculation to use. See calc_sifov_fsm_delta_matrix

guide_star_wcs: WCSRef = (None, None, None)

Guide star WCS info, typically from the input model.

j2fgs_transpose: bool (https://docs.python.org/3/library/functions.html#bool) =
True

Transpose the j2fgs1 matrix.

jwst_velocity: array = None

The [DX, DY, DZ] barycentri velocity vector

method: Methods = 'ops_tr_202111'

The method, or algorithm, to use in calculating the transform. If not specified, the default method is used.

obsend: float (https://docs.python.org/3/library/functions.html#float) = None

Observation end time

obsstart: float (https://docs.python.org/3/library/functions.html#float) = None

Observation start time

override_transforms: Transforms = None

If set, matrices that should be used instead of the calculated one.

pcs_mode: str (https://docs.python.org/3/library/stdtypes.html#str) = None

The tracking mode in use.

pointing: Pointing = None

The observatory orientation, represented by the ECI quaternion, and other engineering mnemonics

356 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

reduce_func: Callable
(https://docs.python.org/3/library/typing.html#typing.Callable) = None

Reduction function to use on values.

siaf: SIAF = None

The SIAF information for the input model

siaf_db: SiafDb = None

The SIAF database

tolerance: float (https://docs.python.org/3/library/functions.html#float) = 60.0

If no telemetry can be found during the observation, the time, in seconds, beyond the observation time to
search for telemetry.

useafter: str (https://docs.python.org/3/library/stdtypes.html#str) = None

The date of observation (jwst.datamodels.JwstDataModel.meta.date)

v3pa_at_gs: float (https://docs.python.org/3/library/functions.html#float) = None

V3 position angle at Guide Star (jwst.datamodels.JwstDataModel.meta.guide_star.
gs_v3_pa_science)

Methods Documentation

as_reprdict()

Return a dict where all values are REPR of their values

update_pointing()

Update pointing information

Transforms

class jwst.lib.set_telescope_pointing.Transforms(m_eci2fgs1: array = None, m_eci2gs: array = None,
m_eci2j: array = None, m_eci2siaf: array = None,
m_eci2sifov: array = None, m_eci2v: array = None,
m_fgsx2gs: array = None, m_fgs12sifov: array =
None, m_gs2gsapp: array = None, m_j2fgs1: array
= None, m_sifov_fsm_delta: array = None,
m_sifov2v: ar-
ray = None, m_v2siaf: array = None, override: object
(https://docs.python.org/3/library/functions.html#object)
= None)

Bases: object (https://docs.python.org/3/library/functions.html#object)

The matrices used in calculation of the M_eci2siaf transformation

15.1. Package Index 357

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

m_eci2fgs1 ECI to FGS1
m_eci2gs ECI to Guide Star
m_eci2j ECI to J-Frame
m_eci2siaf ECI to SIAF
m_eci2sifov ECI to SIFOV
m_eci2v ECI to V
m_fgs12sifov FGS1 to SIFOV
m_fgsx2gs FGSX to Guide Stars transformation
m_gs2gsapp Velocity aberration
m_j2fgs1 J-Frame to FGS1
m_sifov2v SIFOV to V1
m_sifov_fsm_delta FSM correction
m_v2siaf V to SIAF
override Override values.

Methods Summary

from_asdf (asdf_file) Create Transforms from AsdfFile
to_asdf () Serialize to AsdfFile
write_to_asdf (path) Serialize to a file path

Attributes Documentation

m_eci2fgs1: array = None

ECI to FGS1

m_eci2gs: array = None

ECI to Guide Star

m_eci2j: array = None

ECI to J-Frame

m_eci2siaf: array = None

ECI to SIAF

m_eci2sifov: array = None

ECI to SIFOV

m_eci2v: array = None

ECI to V

m_fgs12sifov: array = None

FGS1 to SIFOV

m_fgsx2gs: array = None

FGSX to Guide Stars transformation

m_gs2gsapp: array = None

Velocity aberration

358 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

m_j2fgs1: array = None

J-Frame to FGS1

m_sifov2v: array = None

SIFOV to V1

m_sifov_fsm_delta: array = None

FSM correction

m_v2siaf: array = None

V to SIAF

override: object (https://docs.python.org/3/library/functions.html#object) = None

Override values. Either another Transforms or dict-like object

Methods Documentation

classmethod from_asdf(asdf_file)
Create Transforms from AsdfFile

Parameters
asdf_file (Stream-like or asdf.AsdfFile) – The asdf to create from.

Returns
transforms – The Transforms instance.

Return type
Transforms

to_asdf()

Serialize to AsdfFile

Returns
asdf_file – The ASDF serialization.

Return type
asdf.AsdfFile

Notes

The override transforms are not serialized, since the values of this transform automatically represent what
is in the override.

write_to_asdf(path)
Serialize to a file path

Parameters
path (Stream-like) –

15.1. Package Index 359

https://docs.python.org/3/library/functions.html#object

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

WCSRef

class jwst.lib.set_telescope_pointing.WCSRef(ra, dec, pa)
Bases: tuple (https://docs.python.org/3/library/stdtypes.html#tuple)

Create new instance of WCSRef(ra, dec, pa)

Attributes Summary

dec Alias for field number 1
pa Alias for field number 2
ra Alias for field number 0

Attributes Documentation

dec

Alias for field number 1

pa

Alias for field number 2

ra

Alias for field number 0

jwst.lib.v1_calculate Module

V1 Calculation based on time and engineering database info

Functions

v1_calculate_from_models(sources[, siaf_path]) Calculate V1 over the time period for the given models
v1_calculate_over_time(obsstart, obsend[, ...]) Calculate V1 over the given time period

v1_calculate_from_models

jwst.lib.v1_calculate.v1_calculate_from_models(sources, siaf_path=None,
**calc_wcs_from_time_kwargs)

Calculate V1 over the time period for the given models

Returns a table of V1 pointings for all input models. The table has the following columns:

• source (jwst.datamodels.JwstDataModel): The model

• obstime (astropy.time.Time): The observation time

• v1 (float, float, float): 3-tuple or ra, dec, and position angle

Parameters

360 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#tuple

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• sources ([File-like or jwst.datamodels.Datamodel[...]]) – The datamodels to
get timings other header parameters from.

• siaf_path (None or file-like) – The path to the SIAF database. If none, the default
used by the pysiaf package is used. See SiafDb for more information.

• calc_wcs_from_time_kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict))
– Keyword arguments to pass to calc_wcs_from_time

Returns
v1_table – Table of V1 pointing

Return type
astropy.table.Table

v1_calculate_over_time

jwst.lib.v1_calculate.v1_calculate_over_time(obsstart, obsend, siaf_path=None,
**calc_wcs_from_time_kwargs)

Calculate V1 over the given time period

Returns a table of all V1 pointings that can be retrieved from the engineering database that exist between, inclu-
sively, the start and end times.

The table has the following columns:

• source (str): The string “time range”

• obstime (astropy.time.Time): The observation time

• v1 (float, float, float): 3-tuple or ra, dec, and position angle

Parameters
• obsstart (float (https://docs.python.org/3/library/functions.html#float)) – The MJD start

and end time to search for pointings.

• obsend (float (https://docs.python.org/3/library/functions.html#float)) – The MJD start
and end time to search for pointings.

• siaf_path (None or file-like) – The path to the SIAF database. If none, the default
used by the pysiaf package is used. See SiafDb for more information.

• calc_wcs_from_time_kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict))
– Keyword arguments to pass to calc_wcs_from_time

Returns
v1_table – Table of V1 pointing

Return type
astropy.table.Table

15.1. Package Index 361

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Commands

Available commands are as follows. Use the -h option for more details.

set_telescope_pointing.py
Update basic WCS information in JWST exposures from the engineering database.

pointing_summary
Summarize various pointing information in a table.

v1_calculate
Calculate V1 over a time period.

15.1.33 Last Frame Correction

Description

Class
jwst.lastframe.LastFrameStep

Alias
lastframe

The last frame correction step is only applied to MIRI data and flags the final group in each integration as bad (the
“DO_NOT_USE” bit is set in the GROUPDQ flag array), but only if the total number of groups in each integration is
greater than 2. This results in the data contained in the last group being excluded from subsequent steps, such as jump
detection and ramp fitting. No flags are added if NGROUPS <= 2, because doing so would leave too few good groups
to work with in later steps.

Only the GROUPDQ array is modified. The SCI, ERR, and PIXELDQ arrays are unchanged.

Step Arguments

The last frame correction has no step-specific arguments.

Reference File

This step does not use any reference file.

jwst.lastframe Package

Classes

LastFrameStep([name, parent, config_file, ...]) LastFrameStep: This is a MIRI specific task.

362 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

LastFrameStep

class jwst.lastframe.LastFrameStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

LastFrameStep: This is a MIRI specific task. If the number of groups is greater than 2, the GROUP data quality
flags for the final group will be set to DO_NOT_USE.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'lastframe'

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

15.1. Package Index 363

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Class Inheritance Diagram

JwstStep LastFrameStepStep

15.1.34 Linearity Correction

Description

Class
jwst.linearity.LinearityStep

Alias
linearity

Assumptions

It is assumed that the input science exposure data for near-IR instruments have had the superbias subtraction step
applied, therefore the correction coefficients stored in the linearity reference files for those instruments must have been
derived from data that has also been bias subtracted. MIRI data, on the other hand, do not receive bias subtraction (see
calwebb_detector1) and hence the linearity correction is derived from data that has not been bias subtracted.

It is also assumed that the saturation step has already been applied to the input data, so that saturation flags are set in
the GROUPDQ array of the input science data.

Algorithm

The algorithm for this step is called from the external package stcal, an STScI effort to unify common calibration
processing algorithms for use by multiple observatories.

The linearity step applies the “classic” linearity correction adapted from the HST WFC3/IR linearity correction routine,
correcting science data values for detector non-linearity. The correction is applied pixel-by-pixel, group-by-group,
integration-by-integration within a science exposure.

The correction is represented by an nth-order polynomial for each pixel in the detector, with n+1 arrays of coefficients
read from the linearity reference file.

The algorithm for correcting the observed pixel value in each group of an integration is currently of the form:

𝐹c = 𝑐0 + 𝑐1𝐹 + 𝑐2𝐹
2 + 𝑐3𝐹

3 + ...+ 𝑐𝑛𝐹
𝑛

where 𝐹 is the observed counts (in DN), 𝑐𝑛 are the polynomial coefficients, and 𝐹c is the corrected counts. There is
no limit to the order of the polynomial correction; all coefficients contained in the reference file will be applied.

Upon successful completion of the linearity correction the S_LINEAR keyword is set to “COMPLETE”.

364 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Special Handling

1. Pixels having at least one correction coefficient equal to NaN will not have the linearity correction applied and
the DQ flag “NO_LIN_CORR” is added to the science exposure PIXELDQ array.

2. Pixels that have the “NO_LIN_CORR” flag set in the DQ array of the linearity reference file will not have the
correction applied and the “NO_LIN_CORR” flag is added to the science exposure PIXELDQ array.

3. Pixel values that have the “SATURATED” flag set in a particular group of the science exposure GROUPDQ
array will not have the linearity correction applied to that group. Any groups for that pixel that are not flagged
as saturated will be corrected.

The ERR array of the input science exposure is not modified.

The flags from the linearity reference file DQ array are propagated into the PIXELDQ array of the science exposure
using a bitwise OR operation.

NIRCam Frame 0

If the NIRCam “Frame 0” data are included in the input, the linearity correction is applied to each integration’s frame
zero image in the same way as it’s applied to the normal science data cube. The corrected frame zero data are returned
as part of the overall datamodel being processed.

Subarrays

This step handles input science exposures that were taken in subarray modes in a flexible way. If the reference data
arrays are the same size as the science data, they will be applied directly. If there is a mismatch, the routine will
extract a matching subarray from the reference file data arrays and apply them to the science data. Hence full-frame
reference files can be used for both full-frame and subarray science exposures, or subarray-dependent reference files
can be provided if desired.

Arguments

The linearity correction has no step-specific arguments.

Reference File Types

The linearity step uses a LINEARITY reference file.

LINEARITY Reference File

REFTYPE
LINEARITY

Data model
LinearityModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.LinearityModel.html#jwst.datamodels.LinearityModel)

The LINEARITY reference file contains pixel-by-pixel polynomial correction coefficients.

15.1. Package Index 365

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.LinearityModel.html#jwst.datamodels.LinearityModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference Selection Keywords for LINEARITY

CRDS selects appropriate LINEARITY references based on the following keywords. LINEARITY is not applicable
for instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
FGS INSTRUME, DETECTOR, SUBARRAY, DATE-OBS, TIME-OBS
MIRI INSTRUME, DETECTOR, SUBARRAY, BAND, FILTER, DATE-OBS, TIME-OBS
NIRCam INSTRUME, DETECTOR, SUBARRAY, DATE-OBS, TIME-OBS
NIRISS INSTRUME, DETECTOR, SUBARRAY, DATE-OBS, TIME-OBS
NIRSpec INSTRUME, DETECTOR, SUBARRAY, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for LINEARITY

In addition to the standard reference file keywords listed above, the following keywords are required in LINEARITY
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for LINEARITY):

Keyword Data Model Name Instruments
DETECTOR model.meta.instrument.detector All
SUBARRAY model.meta.subarray.name All
FILTER model.meta.instrument.filter MIRI only
BAND model.meta.instrument.band MIRI only

366 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference File Format

LINEARITY reference files are FITS format, with 2 IMAGE extensions and 1 BINTABLE extension. The FITS
primary HDU does not contain a data array. The format and content of the file is as follows:

EXTNAME XTENSION NAXIS Dimensions Data type
COEFFS IMAGE 3 ncols x nrows x ncoeffs float
DQ IMAGE 2 ncols x nrows integer
DQ_DEF BINTABLE 2 TFIELDS = 4 N/A

Each plane of the COEFFS data cube contains the pixel-by-pixel coefficients for the associated order of the polynomial.
There can be any number of planes to accommodate a polynomial of any order.

The DQ_DEF extension contains the bit assignments used in the DQ array. It contains the following 4 columns:

TTYPE TFORM Description
BIT integer The bit number, starting at zero
VALUE integer The equivalent base-10 value of BIT
NAME string The mnemonic name of the data quality condition
DESCRIPTION string A description of the data quality condition

NOTE: For more information on standard bit definitions see: Data Quality Flags.

jwst.linearity Package

Classes

LinearityStep([name, parent, config_file, ...]) LinearityStep: This step performs a correction for non-
linear detector response, using the "classic" polynomial
method.

LinearityStep

class jwst.linearity.LinearityStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

LinearityStep: This step performs a correction for non-linear detector response, using the “classic” polynomial
method.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

15.1. Package Index 367

https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'linearity'

reference_file_types = ['linearity']

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep LinearityStepStep

368 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

15.1.35 Master Background Subtraction

Description

Classes
jwst.master_background.MasterBackgroundStep, jwst.master_background.
MasterBackgroundMosStep

Aliases
master_background, master_background_mos

Master background subtraction is one form of background subtraction available for spectroscopic data. See Background
Subtraction for an overview of all the available methods and where they occur within the various stages of the calibration
pipeline.

The master background subtraction step subtracts background signal from 2-D spectroscopic data using a 1-D master
background spectrum. The 1-D master background spectrum is created from one or more input exposures, or can
alternatively be supplied by the user. The 1-D background spectrum - surface brightness versus wavelength - is projected
into the 2-D space of source data based on the wavelength of each pixel in the 2-D data. The resulting 2-D background
signal is then subtracted directly from the 2-D source data.

Logic built into the step checks to see if the exposure-based background subtraction step in the calwebb_spec2 pipeline
has already been performed on the input images, based on the value of the S_BKDSUB keyword. If S_BKGSUB is
set to “COMPLETE”, the master background step is skipped. If the calwebb_spec2 background step was not applied,
the master background step will proceed. The user can override this logic, if desired, by setting the step argument
--force_subtract to True, in which case master background subtraction will be applied regardless of the value of
S_BKDSUB (see Step Arguments).

Upon successful completion of the step, the S_MSBSUB keyword is set to “COMPLETE” in the output product. The
background-subtracted results are returned as a new data model, leaving the input model unchanged.

Note: The application of master background subtraction to NIRSpec Fixed-Slit, IFU, and MOS observations requires
special handling, due to unique types of calibrations that are applied to these modes. NIRSpec MOS mode requires
even more special handling than NIRSpec Fixed-Slit and IFU. The next several sections pertain primarily to MIRI MRS
and LRS Fixed-Slit, and in a general way to NIRSpec Fixed-Slit and IFU modes. Details regarding all NIRSpec modes
are given later in NIRSpec Master Background Subtraction.

Inputs

The primary driver of the master background step is usually a spec3 type Association (ASN) file or a ModelContainer
data model populated from a spec3 ASN file. This is the same ASN file used as input to the calwebb_spec3 pipeline,
which defines a stage 3 combined product and its input members. The list of input members includes both “science”
and “background” exposure types. The master background subtraction step uses the input members designated with
"exptype": "background" to create the master background spectrum (see example_asn1). These need to be x1d
products created from individual exposures at the end of the calwebb_spec2 pipeline, containing spectra of back-
ground regions. The master background signal will be subtracted from all input members designated as "exptype":
"science" in the ASN, resulting in a new version of each science input. These inputs need to be cal products created
from individual exposures by the calwebb_spec2 pipeline.

There are two main observing scenarios that are supported by this step: nodded exposures of point sources and off-
source background exposures of extended targets. A third type of operation is performed for NIRSpec MOS observa-
tions that include background slits. The details for each mode are explained below.

15.1. Package Index 369

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Nodded Point Sources

If an observation uses a nodding type dither pattern to move a small or point-like source within the field-of-view, it is
assumed that part of the field-of-view in each exposure is also suitable for measuring background. Exposures of this
type are identified by the pipeline based on their “PATTTYPE” (primary dither pattern type) keyword value. The value
will either contain the substring “NOD” somewhere within the name (e.g. “2-POINT-NOD” or “ALONG-SLIT-NOD”),
or will be set to “POINT-SOURCE” (for MIRI MRS). The calwebb_spec2 srctype step recognizes these PATTTYPE
values and sets the source type to “POINT.”

This in turn causes the extract_1d step at the end of calwebb_spec2 to extract spectra for both source and background
regions. For IFU exposures the background region is typically an annulus that is concentric with a circular source
region. For slit-like modes, one or more background regions can be defined in the extract1d reference file, flanking
the central source region. In both cases, the extraction regions are centered within the image/cube at the RA/Dec of
the target. Hence for nodded exposures, the location of the extraction regions follows the movement of the source in
each exposure. The extracted data from the source region are stored in the “FLUX” and “SURF_BRIGHT” (surface
brightness) columns of the x1d product, while the background extraction is stored in the “BACKGROUND” column.
The master_background step uses the data from the “BACKGROUND” column of each background x1d product to
create the 1-D master background spectrum.

Below is an example ASN file for a simple 2-point nodded observation consisting of two exposures.

{
"asn_type": "spec3",
"asn_rule": "candidate_Asn_IFU",
"program": "00626",
"asn_id": "c1003",
"target": "t001",
"asn_pool": "jw00626_20190128T194403_pool",
"products": [

{"name": "jw00626-c1003_t001_nrs",
"members": [

{"expname": "jw00626009001_02101_00001_nrs1_cal.fits",
"exptype": "science",
"asn_candidate": "('c1003', 'background')"

},
{"expname": "jw00626009001_02102_00001_nrs1_cal.fits",
"exptype": "science",
"asn_candidate": "('c1003', 'background')"
},
{"expname": "jw00626009001_02101_00001_nrs1_x1d.fits",
"exptype": "background",
"asn_candidate": "('c1003', 'background')"
},
{"expname": "jw00626009001_02102_00001_nrs1_x1d.fits",
"exptype": "background",
"asn_candidate": "('c1003', 'background')"
}

]
}

]
}

As you can see, the same two exposures are defined as being both “science” and “background” members, because they
both contain the target of interest and a region of background. The “science” members, which are the cal products
created by the calwebb_spec2 pipeline, are the data files that will have the master background subtraction applied,

370 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

while the “background” members are the x1d spectral products from which the master background spectrum will be
created. The combined master background spectrum will be subtracted from each of the two science exposures.

Extended Source with Dedicated Background Exposures

Observations of extended sources must obtain exposures of a separate background target/field in order to mea-
sure the background. Exposures of a background target are identified by the keyword “BKGDTARG” set to True
(https://docs.python.org/3/library/constants.html#True) in the header. During calwebb_spec2 processing, the srctype
step recognizes these and sets their source type to “EXTENDED”, because all dedicated background exposures are to
be processed as extended sources.

This in turn causes the extract_1d step at the end of calwebb_spec2 to extract a spectrum in extended source mode,
which uses the entire field-of-view (whether it be a slit image or an IFU cube) as the extraction region. The
master_background step recognizes which type of background exposure it’s working with and uses the appropri-
ate data from the x1d product to construct the master background spectrum.

Below is an example ASN file for an extended source observation that includes background target exposures, using a
2-point dither for both the science and background targets.

{
"asn_type": "spec3",
"asn_rule": "candidate_Asn_IFU",
"program": "00626",
"asn_id": "c1004",
"target": "t002",
"asn_pool": "jw00626_20190128T194403_pool",
"products": [

{"name": "jw00626-c1004_t002_nrs",
"members": [

{"expname": "jw00626009001_02101_00001_nrs1_cal.fits",
"exptype": "science",
"asn_candidate": "('c1004', 'background')"

},
{"expname": "jw00626009001_02102_00001_nrs1_cal.fits",
"exptype": "science",
"asn_candidate": "('c1004', 'background')"
},
{"expname": "jw00626009001_02103_00001_nrs1_x1d.fits",
"exptype": "background",
"asn_candidate": "('c1004', 'background')"
},
{"expname": "jw00626009001_02104_00001_nrs1_x1d.fits",
"exptype": "background",
"asn_candidate": "('c1004', 'background')"
}

]
}

]
}

In this example there are two exposures of the science target, labeled as “science” members, and two exposures of
the background target, labeled as “background” members. As before, the science members use cal products as input
and the background members use x1d products as input. The master background step will first combine the data from
the two background members into a master background spectrum and then subtract it from each of the two science

15.1. Package Index 371

https://docs.python.org/3/library/constants.html#True

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

exposures.

Creating the 1-D Master Background Spectrum

The 1-D master background spectrum is created by combining data contained in the x1d products listed in the input
ASN as "exptype": "background" members. As noted above, the background members can be exposures of
dedicated background targets or can be a collection of exposures of a point-like source observed in a nod pattern.

When all of the input background spectra have been collected, they are combined using the combine_1d step to produce
the 1-D master background spectrum. See the combine_1d step for more details on the processes used to create the
combined spectrum.

Subtracting the Master Background

The 1-D master background spectrum is interpolated by wavelength at each pixel of a 2-D source spectrum and sub-
tracted from it. The source data instances can be, for example, a set of NIRSpec or MIRI IFU exposures, a set of
NIRSpec fixed-slit 2-D extractions, or a set of nodded MIRI LRS fixed-slit exposures. The subtraction is performed
on all data instances within all input science exposures. For example, if there are 3 NIRSpec fixed-slit exposures, each
containing data from multiple slits, the subtraction is applied one-by-one to all slit instances in all exposures. For each
data instance to be subtracted the following steps are performed:

1. Compute a 2-D wavelength grid corresponding to the 2-D source data. For some observing modes, such as
NIRSpec MOS and fixed-slit, a 2-D wavelength array is already computed and attached to the data in the cal-
webb_spec2 pipeline extract_2d step. If such a wavelength array is present, it is used. For modes that don’t have
a 2-D wavelength array contained in the data, it is computed on the fly using the WCS object for each source data
instance.

2. Compute the background signal at each pixel in the 2-D wavelength grid by interpolating within the 1-D master
background spectrum as a function of wavelength. Pixels in the 2-D source data with an undefined wavelength
(e.g. wavelength array value of NaN) or a wavelength that is beyond the limits of the master background spectrum
receive special handling. The interpolated background value is set to zero and a DQ flag of “DO_NOT_USE” is
set.

3. Subtract the resulting 2-D background image from the 2-D source data. DQ values from the 2-D background
image are propagated into the DQ array of the subtracted science data.

NIRSpec Master Background Corrections

The master background subtraction methods and processing flow for NIRSpec Fixed-Slit and IFU modes is largely the
same as what’s outlined above, with some additional operations that need to be applied to accommodate some of the
unique calibrations applied to NIRSpec data. NIRSpec MOS mode requires even more special handling. This is due
to two primary effects of NIRSpec calibration:

1. Point sources in MOS and Fixed-Slit mode receive wavelength offset corrections if the source is not centered
(along the dispersion direction) within the slit. Hence the wavelength grid assigned to each 2-D slit cutout
can be shifted slightly relative to the wavelengths of the background signal contained in the same cutout. And
because the flat-field, pathloss, and photom corrections/calibrations are wavelength-dependent, the pixel-level
calibrations for the source signal are slightly different than the background.

2. Point sources and uniform sources receive different pathloss and bar shadow corrections (in fact point sources
don’t receive any bar shadow correction). So the background signal contained within a calibrated point source
cutout has received a different pathloss correction and hasn’t received any bar shadow correction. Meanwhile,
the master background is created from data that had corrections for a uniform source applied to it and hence
there’s a mismatch relative to the point source data.

372 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

The 2-D background that’s initially created from the 1-D master background is essentially a perfectly calibrated back-
ground signal. However, due to the effects mentioned above, the actual background signal contained within a calibrated
point source slit (or IFU image) is not perfect (e.g. it still has the bar shadow effects in it). So all of these effects need
to be accounted for in the computed 2-D background before subtracting from the source data.

NIRSpec IFU Mode

For the NIRSpec IFU mode, the overall processing flow is the same as other modes, in that the 1-D master background
spectrum is created and applied during calwebb_spec3 processing, as outlined above. No wavelength offset or bar
shadow corrections are applied to IFU data, so any differences due to the way those calibrations are applied are not
relevant to IFU mode. So the only effect that needs to be accounted for in the 2-D background generated from the master
background is the difference between point source and uniform source pathloss corrections. This is accomplished by
removing the uniform source pathloss correction from the 2-D background signal and applying the point source pathloss
correction to it. It is then in a state where it matches the background signal contained in the point source IFU image
from which it will be subtracted. Mathematically, the operation performed on the IFU 2-D background is:

𝑏𝑘𝑔(𝑐𝑜𝑟𝑟) = 𝑏𝑘𝑔 * 𝑝𝑎𝑡ℎ𝑙𝑜𝑠𝑠(𝑢𝑛𝑖𝑓𝑜𝑟𝑚)/𝑝𝑎𝑡ℎ𝑙𝑜𝑠𝑠(𝑝𝑜𝑖𝑛𝑡)

The uniform and point source pathloss correction arrays referenced above are retrieved from the cal products used as
input to the master background step. They are computed by the pathloss step during calwebb_spec2 processing and
stored as extra extensions in the cal products.

NIRSpec Fixed-Slit Mode

NIRSpec fixed slit data receive flat-field, pathloss, and photometric calibrations, all of which are wavelength-dependent,
and the pathloss correction is also source type dependent. Fixed slit data do not receive a bar shadow correction. Only
slits containing a point source can have a wavelength correction applied, to account for source centering within the slit,
hence slits containing uniform sources receive the same flat-field and photometric calibrations as background spectra
and therefore don’t require corrections for those two calibrations. Furthermore, the source position in the slit is only
known for the primary slit in an exposure, so even if the secondary slits contain point sources, no wavelength correction
can be applied, and therefore again the flat-field and photometric calibrations are the same as for background spectra.
This means only the pathloss correction difference between uniform and point sources needs to be accounted for in the
secondary slits.

Therefore if the primary slit (as given by the FXD_SLIT keyword) contains a point source (as given by the SRCTYPE
keyword) the corrections that need to be applied to the 2-D master background for that slit are:

𝑏𝑘𝑔(𝑐𝑜𝑟𝑟) = 𝑏𝑘𝑔 * [𝑓𝑙𝑎𝑡𝑓𝑖𝑒𝑙𝑑(𝑢𝑛𝑖𝑓𝑜𝑟𝑚)/𝑓𝑙𝑎𝑡𝑓𝑖𝑒𝑙𝑑(𝑝𝑜𝑖𝑛𝑡)]

* [𝑝𝑎𝑡ℎ𝑙𝑜𝑠𝑠(𝑢𝑛𝑖𝑓𝑜𝑟𝑚)/𝑝𝑎𝑡ℎ𝑙𝑜𝑠𝑠(𝑝𝑜𝑖𝑛𝑡)]

* [𝑝ℎ𝑜𝑡𝑜𝑚(𝑝𝑜𝑖𝑛𝑡)/𝑝ℎ𝑜𝑡𝑜𝑚(𝑢𝑛𝑖𝑓𝑜𝑟𝑚)]

For secondary slits that contain a point source, the correction applied to the 2-D master background is simply:

𝑏𝑘𝑔(𝑐𝑜𝑟𝑟) = 𝑏𝑘𝑔 * 𝑝𝑎𝑡ℎ𝑙𝑜𝑠𝑠(𝑢𝑛𝑖𝑓𝑜𝑟𝑚)/𝑝𝑎𝑡ℎ𝑙𝑜𝑠𝑠(𝑝𝑜𝑖𝑛𝑡)

The uniform and point source versions of the flat-field, pathloss, and photom corrections are retrieved from the input
cal product. They are computed and stored there during the execution of each of those steps during calwebb_spec2
processing of NIRSpec Fixed-Slit exposures.

15.1. Package Index 373

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NIRSpec MOS Mode

Master background subtraction for NIRSpec MOS mode shares the high-level concepts of other modes, but differs
greatly in the details. Most importantly, the source of the master background spectrum does not come from either nod-
ded exposures or exposures of a background target. The background data instead come from designated background
MSA slitlets contained with the same exposure as the science targets. Alternatively, a user can supply a master back-
ground spectrum to be used, as is the case for all other modes. The master background processing for MOS mode
is therefore done within the calwebb_spec2 pipeline when processing individual MOS exposures, rather than in the
calwebb_spec3 pipeline. Applying the master background subtraction within the calwebb_spec2 pipeline also has
advantages due to the complex series of operations that need to be performed, as described below.

During calwebb_spec2 processing, all source and background slits are first partially calibrated up through the ex-
tract_2d and srctype steps of calwebb_spec2, which results in 2D cutouts for each slit with the source type identified.
At this point the master_background_mos step is applied, which is a unique version of the step specifically tailored
to NIRSpec MOS mode.

This version of the master background step completes the remaining calibration for all slits, but treats them all as
extended sources and saves the correction arrays from each step (e.g. flat-field, pathloss, photom) for each slit, so
that they can be used later to apply corrections to the background data. The resulting extracted 1D spectra from the
background slits are combined to create the master background spectrum. The master background spectrum is then
interpolated into the 2D space of each slit and has the photom, barshadow, pathloss, and flat-field corrections removed
from the 2D background arrays, so that the background data now match the partially calibrated slit data from which
they’ll be subtracted. Mathematically, the corrections applied to the 2D master background for each MOS slit are:

𝑏𝑘𝑔(𝑐𝑜𝑟𝑟) = 𝑏𝑘𝑔 * 𝑓𝑙𝑎𝑡𝑓𝑖𝑒𝑙𝑑(𝑢𝑛𝑖𝑓𝑜𝑟𝑚) * 𝑝𝑎𝑡ℎ𝑙𝑜𝑠𝑠(𝑢𝑛𝑖𝑓𝑜𝑟𝑚)

* 𝑏𝑎𝑟𝑠ℎ𝑎𝑑𝑜𝑤(𝑢𝑛𝑖𝑓𝑜𝑟𝑚)/𝑝ℎ𝑜𝑡𝑜𝑚(𝑢𝑛𝑖𝑓𝑜𝑟𝑚)

Once the corrected 2D backgrounds have been subtracted from each slit, processing returns to the calwebb_spec2
flow, where all of the remaining calibration steps are applied to each slit, resulting in background-subtracted and fully
calibrated 2D cutouts (cal and s2d products) and extracted 1D spectra (x1d products).

The detailed list of operations performed when applying master background subtraction to MOS data during cal-
webb_spec2 processing is as follows:

1. Process all slitlets in the MOS exposure up through the extract_2d and srctype steps

2. The master_background_mos step temporarily applies remaining calibration steps up through photom to all
slits, treating them all as extended sources (appropriate for background signal), and saving the extended source
correction arrays for each slit in an internal copy of the data model

3. If a user-supplied master background spectrum is not given, the resample_spec and extract_1d steps are applied
to the calibrated background slits, resulting in extracted 1D background spectra

4. The 1D background spectra are combined, using the combine_1d step, into a master background spectrum

5. If a user-supplied master background is given, steps 3 and 4 are skipped and the user-supplied spectrum is inserted
into the processing flow

6. The master background spectrum (either user-supplied or created on-the-fly) is expanded into the 2D space of
each slit

7. The 2D background “image” for each slit is processed in inverse mode through the photom, barshadow, pathloss,
and flatfield steps, using the correction arrays that were computed in step 2, so that the background data now
matches the partially calibrated background signal in each slit

8. The corrected 2D background is subtracted from each slit

9. The background-subtracted slits are processed through all remaining calwebb_spec2 calibration steps, using the
corrections appropriate for the source type in each slit

374 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Step Arguments

The master background subtraction step uses the following optional arguments.

--user_background
The file name of a user-supplied 1-D master background spectrum. Must be in the form of a standard x1d product
containing a single ‘EXTRACT1D’ extension. When a user background spectrum is supplied, it is used for the
subtraction instead of a computed master background, and the name of the user-supplied file is recorded in the
MSTRBKGD keyword in the output product(s). Defaults to None.

--save_background
A boolean indicating whether the computed 1-D master background spectrum should be saved to a file. The
file name uses a product type suffix of “masterbg”. If a user-supplied background is specified, this argument is
ignored. Defaults to False.

--force_subtract
A boolean indicating whether or not to override the step’s built-in logic for determining if the step should be
applied. By default, the step will be skipped if the calwebb_spec2 background step has already been applied. If
--force_subtract = True, the master background will be applied.

--output_use_model
A boolean indicating whether to use the “filename” meta attribute in the data model to determine the name of
the output file created by the step. Defaults to True.

Reference Files

The master spectroscopic background subtraction step does not use any reference files.

jwst.master_background Package

Classes

MasterBackgroundStep([name, parent, ...]) MasterBackgroundStep: Compute and subtract master
background from spectra

MasterBackgroundMosStep(*args, **kwargs) Apply master background processing to NIRSpec MOS
data

MasterBackgroundStep

class jwst.master_background.MasterBackgroundStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

MasterBackgroundStep: Compute and subtract master background from spectra

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

15.1. Package Index 375

https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

spec

Methods Summary

process(input) Compute and subtract a master background spectrum

Attributes Documentation

class_alias = 'master_background'

spec

user_background = string(default=None) # Path to user-supplied master background
save_background = boolean(default=False) # Save computed master background
force_subtract = boolean(default=False) # Force subtracting master background
output_use_model = boolean(default=True)

Methods Documentation

process(input)
Compute and subtract a master background spectrum

Parameters
• input (ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel),
IFUImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel),
ModelContainer, association) – Input target datamodel(s) to which master background
subtraction is to be applied

• user_background (None, string, or MultiSpecModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSpecModel.html#jwst.datamodels.MultiSpecModel))
– Optional user-supplied master background 1D spectrum, path to file or opened datamodel

• save_background (bool (https://docs.python.org/3/library/functions.html#bool),
optional) – Save computed master background.

376 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSpecModel.html#jwst.datamodels.MultiSpecModel
https://docs.python.org/3/library/functions.html#bool

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• force_subtract (bool (https://docs.python.org/3/library/functions.html#bool),
optional) – Optional user-supplied flag that overrides step logic to force subtraction
of the master background. Default is False, in which case the step logic determines if
the calspec2 background step has already been applied and, if so, the master background
step is skipped. If set to True, the step logic is bypassed and the master background is
subtracted.

Returns
result – The background-subtracted science datamodel(s)

Return type
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel),
IFUImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel),
ModelContainer

MasterBackgroundMosStep

class jwst.master_background.MasterBackgroundMosStep(*args, **kwargs)
Bases: JwstPipeline

Apply master background processing to NIRSpec MOS data

For MOS, and ignoring FS, the calibration process needs to occur twice: Once to calibrate background slits and
create a master background. Then a second time to calibrate science using the master background.

Notes

The algorithm is as follows

• Calibrate all slits

– For each step

∗ Force the source type to be extended source for all slits.

∗ Return the correction array used.

• Create the 1D master background

• For each slit

– Expand out the 1D master background to match the 2D wavelength grid of the slit

– Reverse-calibrate the 2D background, using the correction arrays calculated above.

– Subtract the background from the input slit data

See Step.__init__ for the parameters.

15.1. Package Index 377

https://docs.python.org/3/library/functions.html#bool
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

prefetch_references

spec

step_defs

Methods Summary

process(data) Compute and subtract a master background spectrum
set_pars_from_parent() Set substep parameters from the parents substeps

Attributes Documentation

class_alias = 'master_background_mos'

prefetch_references = False

spec

force_subtract = boolean(default=False) # Force subtracting master background
save_background = boolean(default=False) # Save computed master background
user_background = string(default=None) # Path to user-supplied master␣
→˓background
inverse = boolean(default=False) # Invert the operation
output_use_model = boolean(default=True)

step_defs = {'barshadow': <class 'jwst.barshadow.barshadow_step.BarShadowStep'>,
'flat_field': <class 'jwst.flatfield.flat_field_step.FlatFieldStep'>, 'pathloss':
<class 'jwst.pathloss.pathloss_step.PathLossStep'>, 'photom': <class
'jwst.photom.photom_step.PhotomStep'>}

Methods Documentation

process(data)
Compute and subtract a master background spectrum

Parameters
data (MultiSlitModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel))
– The data to operate on.

correction_pars

The master background information from a previous invocation of the step. Keys are:
•“masterbkg_1d”: CombinedSpecModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CombinedSpecModel.html#jwst.datamodels.CombinedSpecModel)

The 1D version of the master background.

378 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CombinedSpecModel.html#jwst.datamodels.CombinedSpecModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

•“masterbkg_2d”: MultiSlitModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel)

The 2D slit-based version of the master background.

Type
dict (https://docs.python.org/3/library/stdtypes.html#dict)

force_subtract

Optional user-supplied flag that overrides step logic to force subtraction of the master background.
Default is False, in which case the step logic determines if the calspec2 background step has already
been applied and, if so, the master background step is skipped. If set to True, the step logic is bypassed
and the master background is subtracted.

Type
bool (https://docs.python.org/3/library/functions.html#bool), optional

save_background

Save computed master background.
Type

bool (https://docs.python.org/3/library/functions.html#bool), optional

user_background

Optional user-supplied master background 1D spectrum, path to file or opened datamodel
Type

None, string, or CombinedSpecModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CombinedSpecModel.html#jwst.datamodels.CombinedSpecModel)

Returns
result

Return type
MultiSlitModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel)

set_pars_from_parent()

Set substep parameters from the parents substeps

Class Inheritance Diagram

JwstPipeline MasterBackgroundMosStepPipeline

JwstStep MasterBackgroundStep

Step

15.1. Package Index 379

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CombinedSpecModel.html#jwst.datamodels.CombinedSpecModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

15.1.36 Model Blender

Role of Model Blender

One problem with combining data from multiple exposures stems from not being able to keep track of what kind of
data was used to create the final product. The final product only reports one value for each of the metadata attributes
from the model schema used to describe the science data, where each of multiple inputs may have had different values
for each attribute. The model_blender package solves this problem by allowing the user to define rules that can be
used to determine a final single value from all the input values for each attribute, using separate rules for each attribute
as appropriate. This package also creates a FITS binary table that records the input attribute values for all the input
models used to create the final product, allowing the user to select what attributes to keep in this table.

This code works by

• reading in all the input datamodels (either already in-memory or from FITS files)

• evaluating the rules for each attribute as defined in the model’s schema

• determining from definitions in the input model’s schema what attributes to keep in the table

• applying each attributes rule to the set of input values to determine the final output value

• updating the output model’s metadata with the new values

• generating the output table with one row for each input model’s values

Using model_blender

The model blender package requires

• all the input models be available

• the output product has already been generated

Both the input models and output product could be provided as either a datamodel instance in memory or as the name
of a FITS file on disk. The primary advantage to working strictly in-memory with datamodel instances comes from
minimizing the amount of disk I/O needed for this operation which can result in significantly more efficient (read that:
faster) processing.

Note: The generated output model will be considered to contain a default (or perhaps even empty) set of Meta-
data (https://stdatamodels.readthedocs.io/en/latest/jwst/datamodels/metadata.html#metadata) based on some model
defined in stdatamodels (https://stdatamodels.readthedocs.io/en/latest/jwst/datamodels/index.html#data-models) This
metadata will be replaced in-place when running Model Blender.

The simplest way to run model blender only requires calling a single interface:

from jwst.model_blender import blendmeta
blendmeta.blendmodels(product, inputs=input_list)

where

• product: the datamodel (or FITS filename) for the already combined product

• input_list: list of input datamodels or FITS filenames for all inputs used to create the product

The output product will end up with new metadata attribute values and a new HDRTAB FITS binary table extension
in the FITS file when the product gets saved to disk.

380 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/jwst/datamodels/metadata.html#metadata
https://stdatamodels.readthedocs.io/en/latest/jwst/datamodels/metadata.html#metadata
https://stdatamodels.readthedocs.io/en/latest/jwst/datamodels/index.html#data-models

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Customizing the behavior

By default, blendmodels will not write out the updated product model to disk. This allows the user or calling program
to revise or apply data-specific logic to redefine the output value for any of the output product’s metadata attributes.
For example, when combining multiple images, the WCS information does not represent any combination of the input
WCS attributes. Instead, the user can have their own processing code replace the blended WCS attributes with one that
was computed separately using a complex, accurate algorithm. This is, in fact, what the resample step does to create
the final resampled output product whenever it is called by steps in the JWST pipeline.

Additional control over the behavior of model_blender comes from editing the schema for the input datamodels where
the rules for each attribute are defined. A sample definition from the core schema demonstrates the basic syntax used
for any model blending definitions:

time_end:
title: UTC time at end of exposure
type: string
fits_keyword: TIME-END
blend_rule: last
blend_table: True

Any attribute without an entry for blend_rule will use the default rule of first which selects the first value from
all inputs in the order provided as the final output value. Any attribute with a blend_table rule will insure that the
specific attribute will be included in the output HDRTAB binary table appended to the product model when it gets
written out to disk as a FITS file.

The full set of rules included in the package are described in Model Blender Rules and include common list/array
operations such as (but not limited to):

• minimum

• maximum

• first

• last

• mean

• zero

These can then be used to customize the output value for any given attribute should the rule provided by default with
the schema installed with the JWST environment not be correct for the user’s input data. The user can simply edit the
schema definition installed in their JWST environment to apply custom rules for blending the data being processed.

Model Blender

These functions serve as the primary interface for blending models.

15.1. Package Index 381

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.model_blender.blendmeta Module

blendmeta - Merge metadata from multiple models.

This module will create a new metadata instance and table from a list of input datamodels or filenames.

Functions

blendmodels(product[, inputs, output, ...]) Run main interface for blending metadata from multiple
models.

build_tab_schema(new_table) Return new schema definition that describes the input
table.

cat_headers(hdr1, hdr2) Create new astropy.io.fits.Header object from
concatenating 2 input Headers

convert_dtype(value) Convert numarray column dtype into YAML-
compatible format description

extract_filenames_from_product(product) Returns the list of filenames with extensions of input ob-
servations that were used to generate the product.

get_blended_metadata(input_models[, verbose]) Return a blended metadata instance and table based on
the input datamodels.

blendmodels

jwst.model_blender.blendmeta.blendmodels(product, inputs=None, output=None, ignore=None,
verbose=False)

Run main interface for blending metadata from multiple models.

Blend models that went into creating the original drzfile into a new metadata instance with a table that contains
attribute values from all input datamodels.

The product will be used to determine the names of the input models, should no filenames be provided in the
‘inputs’ parameter.

The product will be updated ‘in-place’ with the new metadata attributes and FITS BinTableHDU table. The
blended FITS table, with extname=HDRTAB, has 1 column for each metadata attribute recorded from the input
models, one row for each input model, and column names are the FITS keywords for that metadata attribute. For
example, values from meta.observation.time would be stored in the TIME-OBS column.

Rules for what function to use to determine the blended output attribute value and what metadata attributes should
be used as columns in the blended FITS table are defined in the datamodel schema.

Note: Custom rules for a metadata value should be computed by the calling routine and used to update the
metadata in the output model AFTER calling this function.

Parameters
• product (str (https://docs.python.org/3/library/stdtypes.html#str)) – Name of combined

product with metadata that needs updating. This can be specified as a single filename. When
no value for inputs has been provided, this file will also evaluate meta.asn to determine
the names of the input datamodels whose metadata need to be blended to create the new
combined metadata.

382 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• inputs (list (https://docs.python.org/3/library/stdtypes.html#list), optional) – This
can be either a list of filenames or a list of DataModels objects. If provided, the filenames
provided in this list will be used to get the metadata which will be blended into the final
output metadata.

• output (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – If pro-
vided, update meta.filename in the blended product to define what file this model will
get written out to.

• ignore (list (https://docs.python.org/3/library/stdtypes.html#list) of str
(https://docs.python.org/3/library/stdtypes.html#str), None, optional) – A list of
string the meta attribute names which, if provided, will show which attributes should not be
blended.

• verbose (bool (https://docs.python.org/3/library/functions.html#bool), optional
[Default: False]) – Print out additional messages during processing when specified.

Example

This example shows how to blend the metadata from a set of DataModels already read in memory for the product
created by the resample step. This example relies on the Association file used as the input to the resample
step to specify all the inputs for blending using the following syntax:

>>> from stdatamodels.jwst import datamodels
>>> asnfile = "jw99999-a3001_20170327t121212_coron3_001_asn.json"
>>> data = datamodels.open(asnfile)
>>> input_models = [data[3], data[4]] # we know the last datasets are SCIENCE
>>> blendmodels(data.meta.asn_table.products[0].name, inputs=input_models)

build_tab_schema

jwst.model_blender.blendmeta.build_tab_schema(new_table)
Return new schema definition that describes the input table.

cat_headers

jwst.model_blender.blendmeta.cat_headers(hdr1, hdr2)
Create new astropy.io.fits.Header object from concatenating 2 input Headers

convert_dtype

jwst.model_blender.blendmeta.convert_dtype(value)
Convert numarray column dtype into YAML-compatible format description

15.1. Package Index 383

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

extract_filenames_from_product

jwst.model_blender.blendmeta.extract_filenames_from_product(product)
Returns the list of filenames with extensions of input observations that were used to generate the product.

get_blended_metadata

jwst.model_blender.blendmeta.get_blended_metadata(input_models, verbose=False)
Return a blended metadata instance and table based on the input datamodels. This will serve as the primary
interface for blending datamodels.

Parameters
input_models (list (https://docs.python.org/3/library/stdtypes.html#list)) – Either a single
list of filenames from which to extract the metadata to be blended, or a list of datamodels.
JwstDataModel objects to be blended. The input models are assumed to have the blending
rules defined as an integral part of the schema definition for the model.

Returns
• metadata (list) – A list of blended metadata instances, one for each i

• new_table (object) – Single fits.TableHDU object that contains the combined results from
all input headers(extension). Each row will correspond to an image, and each column corre-
sponds to a single keyword listed in the rules.

jwst.model_blender.blender Module

Functions

metablender(input_models, spec) Given a list of datamodels, aggregate metadata attribute
values and create a table made up of values from a num-
ber of metadata instances, according to the given speci-
fication.

metablender

jwst.model_blender.blender.metablender(input_models, spec)
Given a list of datamodels, aggregate metadata attribute values and create a table made up of values from a
number of metadata instances, according to the given specification.

Parameters:
• input_models is a sequence where each element is either:

– a datamodels.JwstDataModel instance or sub-class

– a string giving the filename for the input_model

• spec is a list defining which keyword arguments are to be aggregated and how. Each element in the list
should be a sequence with 2 to 5 elements of the form:

(src_keyword, dst_name, function, error_type, error_value)

384 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#list

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

– src_keyword is the keyword to pull values from. It is case-insensitive.

– dst_name is the name to use as a dictionary key or column name for the destination values.

– function (optional). If function is not None, the values from the source are aggregated and returned in
the aggregate_dict. If function is None (or the tuple contains only 2 elements), all values are stored as
a column with the name dst_name in the result table.

If not None, function should be a callable object that takes a sequence of values and returns an aggregate
result. If the function returns None, no values will be added to the aggregate dictionary. There are
many functions in Numpy that are directly useful as an aggregating function, for example:

∗ mean: numpy.mean (https://numpy.org/devdocs/reference/generated/numpy.mean.html#numpy.mean)

∗ median: numpy.median (https://numpy.org/devdocs/reference/generated/numpy.median.html#numpy.median)

∗ maximum: numpy.max (https://numpy.org/devdocs/reference/generated/numpy.max.html#numpy.max)

∗ minimum: numpy.min (https://numpy.org/devdocs/reference/generated/numpy.min.html#numpy.min)

∗ sum: numpy.sum (https://numpy.org/devdocs/reference/generated/numpy.sum.html#numpy.sum)

∗ standard deviation: numpy.std (https://numpy.org/devdocs/reference/generated/numpy.std.html#numpy.std)

Lambda functions are also often useful:

∗ first: lambda x: x[0]

∗ last: lambda x: x[-1]

Additionally, function may be a tuple, where each member is itself a callable object. The result will
be a tuple containing results from each of the given functions. For instance, to aggregate a range of
values, i.e. both the minimum and maximum values, use the following as function: (numpy.min,
numpy.max).

– error_type (optional) defines how missing or syntax-errored values are handled. It may be one of the
following:

∗ ‘ignore’: missing or unparsable values are ignored. They are not included in the list of values
passed to the aggregating function. In the result table, missing values are masked out.

∗ ‘raise’: missing or unparsable values raise a ValueError
(https://docs.python.org/3/library/exceptions.html#ValueError) exception.

∗ ‘constant’: missing or unparsable values are replaced with a constant, given by the error_value
field.

– error_value (optional) is the constant value to be used for missing or unparsable values when er-
ror_type is set to ‘constant’. When not provided, it defaults to NaN.

Returns:
A 2-tuple of the form (aggregate_dict, table) where:

• aggregate_dict is a dictionary of where the keys come from dst_name and the values are the aggregated
values as run_KeywordMapping through function.

• table is a masked Numpy structured array where the column names come from dst_name and the column
contains the values from src_keyword for all of the given headers. Missing values are masked out.

15.1. Package Index 385

https://numpy.org/devdocs/reference/generated/numpy.mean.html#numpy.mean
https://numpy.org/devdocs/reference/generated/numpy.median.html#numpy.median
https://numpy.org/devdocs/reference/generated/numpy.max.html#numpy.max
https://numpy.org/devdocs/reference/generated/numpy.min.html#numpy.min
https://numpy.org/devdocs/reference/generated/numpy.sum.html#numpy.sum
https://numpy.org/devdocs/reference/generated/numpy.std.html#numpy.std
https://docs.python.org/3/library/exceptions.html#ValueError

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Model Blender Rules

Blending models relies on rules to define how to evaluate all the input values for a model attribute in order to determine
the final output value. These rules then get specified in the model schema for each attribute.

The rules get interpreted and applied as list or array operations that work on the set of input values for each attribute.
The full set of pre-defined rules includes

import numpy as np
translation dictionary for function entries from rules files
blender_funcs = {'first': first,

'last': last,
'float_one': float_one,
'int_one': int_one,
'zero': zero,
'multi': multi,
'multi?': multi1,
'mean': np.mean,
'sum': np.sum,
'max': np.max,
'min': np.min,
'stddev': np.std,
'mintime': mintime,
'maxtime': maxtime,
'mindate': mindate,
'maxdate': maxdate,
'mindatetime': mindatetime,
'maxdatetime': maxdatetime}

The rules that should be referenced in the model schema definition are the keys defined for jwst.model_blender.
blender_rules.blender_funcs listed above. This definition illustrates how several rules are simply interfaces for
numpy array operations, while others are defined internally to model_blender.

jwst.model_blender.blendrules Module

blendmeta - Merge metadata from multiple models to create a new metadata instance and table

386 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Functions

find_keywords_in_section(hdr, title) Return a list of keyword names.
first(items) Return first item from list of values
float_one(vals) Return a constant floating point value of 1.0
int_one(vals) Return an integer value of 1
interpret_attr_line(attr, line_spec) Generate rule for single attribute from input line from

rules file.
interpret_entry(line, hdr) Generate the rule(s) specified by the entry from the rules

file.
last(items) Return last item from list of values
maxdate(items) Return the maximum date from a list of date strings in

yyyy-mm-dd format.
maxdatetime(items) Return the maximum datetime from a list of datetime

strings in ISO-8601 format.
maxtime(items)

mindate(items) Return the minimum date from a list of date strings in
yyyy-mm-dd format.

mindatetime(items) Return the minimum datetime from a list of datetime
strings in ISO-8601 format.

mintime(items)

multi(vals) This will either return the common value from a list of
identical values or 'MULTIPLE'

multi1(vals) This will either return the common value from a list of
identical values or the single character '?'

zero(vals) Return a value of 0

find_keywords_in_section

jwst.model_blender.blendrules.find_keywords_in_section(hdr, title)
Return a list of keyword names.

The list will be derived from the section
with the specified section title identified in the hdr.

15.1. Package Index 387

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

first

jwst.model_blender.blendrules.first(items)
Return first item from list of values

float_one

jwst.model_blender.blendrules.float_one(vals)
Return a constant floating point value of 1.0

int_one

jwst.model_blender.blendrules.int_one(vals)
Return an integer value of 1

interpret_attr_line

jwst.model_blender.blendrules.interpret_attr_line(attr, line_spec)
Generate rule for single attribute from input line from rules file.

interpret_entry

jwst.model_blender.blendrules.interpret_entry(line, hdr)
Generate the rule(s) specified by the entry from the rules file.

Notes

The entry should always be a dict with format: {attribute_name : {‘rule’:’some_rule’, ‘output’:”}} – or (for
table column specification)– {attribute_name: attribute_name} where ‘output’ is assumed to be the same as
attribute_name if not present

last

jwst.model_blender.blendrules.last(items)
Return last item from list of values

maxdate

jwst.model_blender.blendrules.maxdate(items)
Return the maximum date from a list of date strings in yyyy-mm-dd format.

388 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

maxdatetime

jwst.model_blender.blendrules.maxdatetime(items)
Return the maximum datetime from a list of datetime strings in ISO-8601 format.

maxtime

jwst.model_blender.blendrules.maxtime(items)

mindate

jwst.model_blender.blendrules.mindate(items)
Return the minimum date from a list of date strings in yyyy-mm-dd format.

mindatetime

jwst.model_blender.blendrules.mindatetime(items)
Return the minimum datetime from a list of datetime strings in ISO-8601 format.

mintime

jwst.model_blender.blendrules.mintime(items)

multi

jwst.model_blender.blendrules.multi(vals)
This will either return the common value from a list of identical values or ‘MULTIPLE’

multi1

jwst.model_blender.blendrules.multi1(vals)
This will either return the common value from a list of identical values or the single character ‘?’

zero

jwst.model_blender.blendrules.zero(vals)
Return a value of 0

15.1. Package Index 389

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Classes

KeywordRules(model) Read in the rules used to interpret the keywords from the
specified instrument image header.

KwRule(line) This class encapsulates the logic needed for interpreting
a single keyword rule from a text file.

KeywordRules

class jwst.model_blender.blendrules.KeywordRules(model)
Bases: object (https://docs.python.org/3/library/functions.html#object)

Read in the rules used to interpret the keywords from the specified instrument image header.

Methods Summary

add_rules_kws(hdr) Update metadata with .. warning::.
apply(models[, tabhdu]) For a full list of metadata objects, apply the specified

rules to generate a dictionary of new values and a ta-
ble using blender.

index_of (kw) Reports the index of the specified kw.
interpret_rules(hdrs) Convert specifications for rules from rules file into

specific rules for this header(instrument/detector).
merge(kwrules) Merge a new set of interpreted rules into the current

set The new rules, kwrules, can either be a new class
or a whole new set of rules (like those obtained from
using self.interpret_rules with a new header).

Methods Documentation

add_rules_kws(hdr)
Update metadata with .. warning:

Needs to be modified to work with metadata.

Update PRIMARY header with HISTORY cards that report the exact
rules used to create this header. Only non-comment lines from the
rules file will be reported.

apply(models, tabhdu=False)
For a full list of metadata objects, apply the specified rules to generate a dictionary of new values and a
table using blender.

This method returns the new metadata object and summary table as datamodels.model.ndmodel and
fits.binTableHDU objects.

index_of(kw)
Reports the index of the specified kw.

390 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#object

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

interpret_rules(hdrs)
Convert specifications for rules from rules file into specific rules for this header(instrument/detector).

Notes

This allows for expansion rules to be applied to rules from the rules files (such as any wildcards or section
titles).

Output will be ‘self.rules’ that contains a list of tuples: - a tuple of 2 values for each column in the
table - a tuple of 4 values for each attribute identified in metadata Partial sample from HST to show
format: [(‘CTYPE1O’, ‘CTYPE1O’), (‘CTYPE2O’, ‘CTYPE2O’), (‘CUNIT1O’, ‘CUNIT1O’), (‘CU-
NIT2O’, ‘CUNIT2O’), (‘APERTURE’, ‘APERTURE’, <function fitsblender.blendheaders.multi>,
‘ignore’), (‘DETECTOR’, ‘DETECTOR’, <function fitsblender.blender.first>, ‘ignore’), (‘EX-
PEND’, ‘EXPEND’, <function numpy.core.fromnumeric.amax>, ‘ignore’), (‘EXPSTART’, ‘EX-
PSTART’, <function numpy.core.fromnumeric.amin>, ‘ignore’), (‘EXPTIME’, ‘TEXPTIME’,
<function numpy.core.fromnumeric.sum>, ‘ignore’), (‘EXPTIME’, ‘EXPTIME’, <function
numpy.core.fromnumeric.sum>, ‘ignore’)]

This rules format will allow the algorithm, logic and code from the original fitsblender to be used with
as little change as possible. It will need to be derived (as with HST) from the input models metadata for
expansion of attribute sections or wildcards in attributes specified in the rules.

merge(kwrules)
Merge a new set of interpreted rules into the current set The new rules, kwrules, can either be a new class
or a whole new set of rules (like those obtained from using self.interpret_rules with a new header).

KwRule

class jwst.model_blender.blendrules.KwRule(line)
Bases: object (https://docs.python.org/3/library/functions.html#object)

This class encapsulates the logic needed for interpreting a single keyword rule from a text file.

Notes

The .rules attribute contains the interpreted set of rules that corresponds to this line.

Example:

Interpreting rule from
{'meta.attribute': { 'rule': 'first', 'output': 'meta.attribute'}}
--or--
{'meta.attribute': 'meta.attribute'} # Table column specification

into rule [('meta.attribute', 'meta.attribute', <function first at 0x7fe505db7668>,
→˓'ignore')]
and sname None

Initialize new keyword rule.

Parameters
line (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Line should be dict with
attribute name as the key, and a dict as the value specifying ‘rule’ and (optionally)’output’.

15.1. Package Index 391

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

interpret(hdr) Use metadata to interpret rule.

Methods Documentation

interpret(hdr)
Use metadata to interpret rule.

jwst.model_blender Package

15.1.37 MIRI MRS Sky Matching

Description

Class
jwst.mrs_imatch.MRSIMatchStep

Alias
mrs_imatch

Overview

The mrs_imatch step “matches” image intensities of several input 2D MIRI MRS images by fitting polynomials to
cube intensities (cubes built from the input 2D images), in such a way as to minimize - in the least squares sense - inter-
image mismatches in intensity. The “background matching” polynomials are defined in the frame of world coordinates
(e.g. RA, DEC, lambda).

If any of background polynomial coefficients are a nan then the step is skipped and S_MRSMAT is set to SKIPPED.

Any sources in the scene are identified via sigma clipping and removed from the matching region.

Assumptions

Because the fitted polynomials are defined in terms of world coordinates, and because the algorithm needs to build 3D
cubes for each input image, all input images need to have a valid WCS defined.

Algorithm

This step builds a system of linear equations

𝑎 · 𝑐 = 𝑏

whose solution 𝑐 is a set of coefficients of (multivariate) polynomials that represent the “background” in each input
image (these are polynomials that are “corrections” to the intensities in the input images) such that the following sum
is minimized:

𝐿 =

𝑁∑︁
𝑛,𝑚=1,�̸�=𝑚

∑︁
𝑘

[𝐼𝑛(𝑘)− 𝐼𝑚(𝑘)− 𝑃𝑛(𝑘) + 𝑃𝑚(𝑘)]
2

𝜎2
𝑛(𝑘) + 𝜎2

𝑚(𝑘)
.

392 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

In the above equation, index 𝑘 = (𝑘1, 𝑘2, ...) labels a position in an input image’s pixel grid [NOTE: all input images
share a common pixel grid].

“Background” polynomials 𝑃𝑛(𝑘) are defined through the corresponding coefficients as:

𝑃𝑛(𝑘1, 𝑘2, ...) =

𝐷1,𝐷2,...∑︁
𝑑1=0,𝑑2=0,...

𝑐𝑛𝑑1,𝑑2,... · 𝑘
𝑑1
1 · 𝑘𝑑2

2 ·

Step Arguments

The mrs_imatch step has two optional arguments:

bkg_degree
The background polynomial degree (int; default=1)

subtract
Indicates whether the computed matching “backgrounds” should be subtracted from the image data (bool; de-
fault=False)

Reference Files

This step does not require any reference files.

Also See

See wiimatch package documentation (http://wiimatch.readthedocs.io) for more details.

Also See:

LSQ Equation Construction and Solving

jwst.mrs_imatch.mrs_imatch_step Module

JWST pipeline step for image intensity matching for MIRI images.

Authors
Mihai Cara

Functions

apply_background_2d(model2d[, channel, subtract]) Apply (subtract or add back) background values com-
puted from meta.background polynomials to 2D im-
age data.

15.1. Package Index 393

http://wiimatch.readthedocs.io

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

apply_background_2d

jwst.mrs_imatch.mrs_imatch_step.apply_background_2d(model2d, channel=None, subtract=True)
Apply (subtract or add back) background values computed from meta.background polynomials to 2D image
data.

This function modifies the input model2d’s data.

Warning: This function does not check whether background was previously applied to image data (through
meta.background.subtracted).

Warning: This function does not modify input model’s meta.background.subtracted attribute to indi-
cate that background has been applied to model’s data. User is responsible for setting meta.background.
subtracted after background was applied to all channels. Partial application of background (i.e., to only
some channels as opposite to all channels) is not recommended.

Parameters
• model2d (jwst.datamodels.image.ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel))

– A jwst.datamodels.image.ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)
from whose data background needs to be subtracted (or added back).

• channel (str (https://docs.python.org/3/library/stdtypes.html#str),
int (https://docs.python.org/3/library/functions.html#int), list
(https://docs.python.org/3/library/stdtypes.html#list), None, optional) – This pa-
rameter indicates for which channel background values should be applied. An integer
value is automatically converted to a string type. A string type input value indi-
cates a single channel to which background should be applied. channel can also be
a list of several string or integer single channel values. The default value of None
(https://docs.python.org/3/library/constants.html#None) indicates that background should
be applied to all channels.

• subtract (bool (https://docs.python.org/3/library/functions.html#bool), optional) –
Indicates whether to subtract or add back background values to input model data. By de-
fault background is subtracted from data.

394 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Classes

MRSIMatchStep([name, parent, config_file, ...]) MRSIMatchStep: Subtraction or equalization of sky
background in MIRI MRS science images.

MRSIMatchStep

class jwst.mrs_imatch.mrs_imatch_step.MRSIMatchStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

MRSIMatchStep: Subtraction or equalization of sky background in MIRI MRS science images.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(images) This is where real work happens.

15.1. Package Index 395

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Documentation

class_alias = 'mrs_imatch'

reference_file_types = []

spec

General sky matching parameters:
bkg_degree = integer(min=0, default=1) # Degree of the polynomial for␣
→˓background fitting
subtract = boolean(default=False) # subtract computed sky from 'images' cube␣
→˓data?

Methods Documentation

process(images)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep MRSIMatchStepStep

jwst.mrs_imatch Package

This package provides support for image intensity subtraction and equalization (matching) for MIRI images.

Classes

MRSIMatchStep([name, parent, config_file, ...]) MRSIMatchStep: Subtraction or equalization of sky
background in MIRI MRS science images.

396 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

MRSIMatchStep

class jwst.mrs_imatch.MRSIMatchStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

MRSIMatchStep: Subtraction or equalization of sky background in MIRI MRS science images.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(images) This is where real work happens.

Attributes Documentation

class_alias = 'mrs_imatch'

reference_file_types = []

spec

General sky matching parameters:
bkg_degree = integer(min=0, default=1) # Degree of the polynomial for␣
→˓background fitting
subtract = boolean(default=False) # subtract computed sky from 'images' cube␣
→˓data?

15.1. Package Index 397

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

process(images)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep MRSIMatchStepStep

15.1.38 MSAFlagOpen Correction

Description

Class
jwst.msaflagopen.MSAFlagOpenStep

Alias
msa_flagging

Overview

The msaflagopen step flags pixels in NIRSpec exposures that are affected by MSA shutters that are stuck in the open
position.

Background

The correction is applicable to NIRSpec IFU and MSA exposure types.

Algorithm

The set of shutters whose state is not commandable (i.e. they are permanently stuck in ‘open’ or ‘closed’ positions)
is recorded in the MSAOPER reference file. The reference file is searched for all shutters with any of the quantities
‘Internal state’, ‘TA state’ or ‘state’ set to ‘open’.

The step loops over the list of stuck open shutters. For each shutter, the bounding box that encloses the projection of the
shutter onto the detector array is calculated, and for each pixel in the bounding box, the WCS is calculated. If the pixel
is inside the region affected by light through the shutter, the WCS will have valid values, whereas if the pixel is outside,
the WCS values will be NaN. The indices of each non-NaN pixel in the WCS are used to alter the corresponding pixels
in the DQ array by OR’ing their DQ value with that for “MSA_FAILED_OPEN.”

398 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Step Arguments

The msaflagopen step has no step-specific arguments.

Reference File

The msaflagopen step uses a MSAOPER reference file.

MSAOPER Reference File

REFTYPE
MSAOPER

Data model
N/A

The MSAOPER reference file contains a list of failed MSA shutters and their failure state (stuck open, stuck closed,
etc.)

Reference Selection Keywords for MSAOPER

CRDS selects appropriate MSAOPER references based on the following keywords. MSAOPER is not applicable for
instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
NIRSpec INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

15.1. Package Index 399

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Type Specific Keywords for MSAOPER

In addition to the standard reference file keywords listed above, the following keywords are required in MSAOPER
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for MSAOPER):

Keyword Data Model Name
EXP_TYPE model.meta.exposure.type

Reference File Format

The MSAOPER reference files are json format.

The fields are:

title
Short description of the reference file

reftype
Should be “MSAOPER”

pedigree
Should be one of “DUMMY”, “GROUND” or “INFLIGHT”

author
Creator of the file

instrument
JWST Instrument; should be “NIRSPEC”

exp_type
EXP_TYPEs this file should be used with; should be “NRS_IFU|NRS_MSASPEC”

telescope
Should be “JWST”

useafter
Exposure datetime after which this file is applicable

descrip
Description of reference file

msaoper
Q

Quadrant; should be an integer 1-4

x
x location of shutter (integer, 1-indexed)

y
y location of shutter (integer, 1-indexed)

state
state of shutter; should be “closed” or “open”

TA state
TA state of shutter; should be “closed” or “open”

Internal state
Internal state of shutter; should be “closed”, “normal” or “open”

400 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Vignetted
Is the shutter vignetted? Should be “yes” or “no”

history
Description of the history relevant to this file; might point to documentation

jwst.msaflagopen Package

Classes

MSAFlagOpenStep([name, parent, config_file, ...]) MSAFlagOpenStep: Flags pixels affected by MSA failed
open shutters

MSAFlagOpenStep

class jwst.msaflagopen.MSAFlagOpenStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

MSAFlagOpenStep: Flags pixels affected by MSA failed open shutters

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

15.1. Package Index 401

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'msa_flagging'

reference_file_types = ['msaoper']

spec

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep MSAFlagOpenStepStep

15.1.39 NSClean 1/f Correction

Description

Class
jwst.nsclean.NSCleanStep

Alias
nsclean

402 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Overview

The nsclean step applies an algorithm for removing correlated read noise from NIRSpec images. The noise often
appears as faint vertical banding and so-called “picture frame noise.” The algorithm uses dark (unilluminated) areas of
an image to fit a background model in Fourier space. When the fit is subtracted, it removes nearly all correlated noise.
Compared to simpler strategies, like subtracting a rolling median, this algorithm is more thorough and uniform. It is
also computationally undemanding, typically requiring only a few seconds to clean a full-frame image.

The correction can be applied to any type of NIRSpec exposure, including IFU, MOS, fixed slit, and Bright Object
Time Series (BOTS), in both full-frame and subarray readouts. Time series (3D) data are corrected one integration at
a time.

Note: The step is currently not capable of processing images taken using the “ALLSLITS” subarray. Other subarray
types are allowed.

Details on the source of the correlated noise and the algorithm used in the nsclean step to fit and remove it can be
found in Rauscher 2023 (https://ui.adsabs.harvard.edu/abs/2023arXiv230603250R/abstract).

Upon completion of the step, the step status keyword “S_NSCLEN” gets set to “COMPLETE” in the output science
data.

Assumptions

As described below, the creation of a pixel mask depends on the presence of a World Coordinate System (WCS) object
for the image, which is constructed by the assign_wcs step. In addition, creating a mask for IFU and MOS images
depends on the presence of DQ flags assigned by the msaflagopen step. It is therefore required that those steps be run
before attempting to apply nsclean.

Creation of an image mask

One of the key components of the correction is knowing which pixels are unilluminated and hence can be used in fitting
the background noise. The step builds a mask on the fly for each image, which is used to mark useable and unuseable
pixels. The mask is a 2D boolean array, having the same size as the image, with pixels set to True interpreted as being
OK to use. The process of building the mask varies somewhat depending on the observing mode of the image being
processed. Some features are common to all modes, while others are mode-specific. The following sections describe
each type of masking that can be applied and at the end there is a summary of the types applied to each image mode.

The user-settable step parameter save_mask can be used to save the mask to a file, if desired (see nsclean step argu-
ments).

Note that a user may supply their own mask image as input to the step, in which case the process of creating a mask is
skipped. The step parameter user_mask is used to specify an input mask.

15.1. Package Index 403

https://ui.adsabs.harvard.edu/abs/2023arXiv230603250R/abstract

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

IFU Slices

For IFU images the majority of the mask is based on knowing which pixels are contained within the footprints of the
IFU slices. To do this, the image’s World Coordinate System (WCS) object is queried in order to determine which
pixels are contained within each of the 30 slices. Pixels within each slice are set to False (do not use) in the mask.

MOS/FS Slits

The footprints of each open MOS slitlet or fixed slit are flagged in a similar way as IFU slices. For MOS and FS images,
the WCS object is queried to determine which pixels are contained within each open slit/slitlet and they are set to False
in the mask.

MSA Failed Open Shutters

Pixels affected by stuck open MSA shutters are masked, because they may contain signal. This is accomplished by
setting all pixels flagged by the msaflagopen step with DQ value “MSA_FAILED_OPEN” to False in the mask.

NaN Pixels

Any pixel in the input image that has a value of NaN is temporarily reset to zero for input to the fitting routine and
flagged as False in the mask. Upon completion of the noise subtraction, this population of pixels is set back to NaN
again in the output (corrected) image.

Fixed-Slit Region Pixels

Full-frame MOS and IFU images may contain signal from the always open fixed slits, which appear in fixed region in
the middle of each image. The entire region containing the fixed slits is masked out when processing MOS and IFU
images. The masked region is currently hardwired in the step to image indexes [1:2048, 923:1116], where the indexes
are in x, y order and in 1-indexed values.

Left/Right Reference Pixel Columns

Full-frame images contain 4 columns of reference pixels on the left and right edges of the image. These are not to be
used in the fitting algorithm and hence are set to False in the mask.

Outliers

Pixels in the unilluminated areas of the region can contain anomalous signal, due to uncaught Cosmic Rays, hot pixels,
etc. A sigma-clipping routine is employed to find such outliers within the input image and set them to False in the mask.
All pixels with values greater than 𝑚𝑒𝑑𝑖𝑎𝑛+ 𝑛𝑠𝑖𝑔𝑚𝑎 * 𝑠𝑖𝑔𝑚𝑎 are set to False in the mask. Here median and sigma
are computed from the image using the astropy.stats sigma_clipped_stats routine, using the image mask to exclude
pixels that have already been flagged and a clipping level of 5 sigma. n_sigma is a user-settable step parameter, with
a default value of 5.0 (see nsclean step arguments).

404 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Mode-Specific Masking Steps

The following table indicates which flavors of masking are applied to images from each type of observing mode.

Mode
Masking IFU MOS FS
IFU Slices1 ✓
Slits/Slitlets1 ✓ ✓
MSA_FAILED_OPEN ✓ ✓ ✓
NaN Pixels ✓ ✓ ✓
FS Region ✓ ✓
Reference Pix ✓ ✓ ✓
Outliers ✓ ✓ ✓

1The application of these steps can be turned on and off via the step parameter mask_spectral_regions. This
parameter controls whether the “IFU Slices” and “Slits/Slitlets” portions of the masking are applied.

Reference Files

The nsclean step does not use any reference files.

Step Arguments

The nsclean step has the following optional arguments to control the behavior of the processing.

--mask_spectral_regions (boolean, default=True)
Mask regions in IFU and MOS images that are within the bounding boxes for each slice or slitlet defined in the
WCS object of the image.

--n_sigma (float, default=5.0)
The sigma-clipping threshold to use when searching for outliers and illuminated pixels to be excluded from use
in the fitting process.

--save_mask (boolean, default=False)
A flag to indicate whether the mask constructed by the step should be saved to a file.

--user_mask (string, default=None)
Path to a user-supplied mask file. If supplied, the mask is used directly and the process of creating a mask in the
step is skipped.

jwst.nsclean Package

Classes

NSCleanStep([name, parent, config_file, ...]) NSCleanStep: This step performs 1/f noise correction
("cleaning") of NIRSpec images, using the "NSClean"
method.

15.1. Package Index 405

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NSCleanStep

class jwst.nsclean.NSCleanStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

NSCleanStep: This step performs 1/f noise correction (“cleaning”) of NIRSpec images, using the “NSClean”
method.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

spec

Methods Summary

process(input) Fit and subtract 1/f background noise from a NIRSpec
image

Attributes Documentation

class_alias = 'nsclean'

spec

mask_spectral_regions = boolean(default=True) # Mask WCS-defined regions
n_sigma = float(default=5.0) # Clipping level for outliers
save_mask = boolean(default=False) # Save the created mask
user_mask = string(default=None) # Path to user-supplied mask
skip = boolean(default=True) # By default, skip the step

406 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

process(input)
Fit and subtract 1/f background noise from a NIRSpec image

Parameters
• input (ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel),
IFUImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel))
– Input datamodel to be corrected

• n_sigma (float (https://docs.python.org/3/library/functions.html#float), optional) –
Sigma clipping threshold to be used in detecting outliers in the image

• save_mask (bool (https://docs.python.org/3/library/functions.html#bool), optional) –
Save the computed mask image

• user_mask (None, str, or ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel))
– Optional user-supplied mask image; path to file or opened datamodel

• mask_spectral_regions (bool (https://docs.python.org/3/library/functions.html#bool),
optional) – Mask regions of the image defined by WCS bounding boxes for slits/slices

Returns
output_model – The 1/f corrected datamodel

Return type
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel),
IFUImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel)

Class Inheritance Diagram

JwstStep NSCleanStepStep

15.1.40 Outlier Detection

Description

Classes
jwst.outlier_detection.OutlierDetectionStep, jwst.outlier_detection.
OutlierDetectionScaledStep, jwst.outlier_detection.OutlierDetectionStackStep

Aliases
outlier_detection, outlier_detection_scaled, outlier_detection_stack

Processing multiple datasets together allows for the identification of bad pixels or cosmic-rays that remain in each of
the input images, many times at levels which were not detectable by the jump step. The outlier_detection step
implements the following algorithm to identify and flag any remaining cosmic-rays or other artifacts left over from
previous calibrations:

15.1. Package Index 407

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://docs.python.org/3/library/functions.html#bool
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

1. build a stack of input data

• all inputs will need to have the same WCS since outlier detection assumes the same flux for each point
on the sky, and variations from one image to the next would indicate a problem with the detector during
readout of that pixel

• if needed, each input will be resampled to a common output WCS

2. create a median image from the stack of input data

• this median operation will ignore any input pixels which have a weight which is too low (<70% max weight)

3. create “blotted” data from the median image to exactly match each original input dataset

4. perform a statistical comparison (pixel-by-pixel) between the median blotted data with the original input data to
look for pixels with values that are different from the mean value by more than some specified sigma based on
the noise model

• the noise model used relies on the error array computed by previous calibration steps based on the readnoise
and calibration errors

5. flag the DQ array for the input data for any pixel (or affected neighboring pixels) identified as a statistical outlier

The outlier detection step serves as a single interface to apply this general process to any JWST data, with specific
variations of this algorithm for each type of data. Sub-classes of the outlier detection algorithm have been developed
specifically for:

1. Imaging data

2. IFU spectroscopic data

3. TSO data

4. coronagraphic data

5. spectroscopic data

This allows the outlier_detection step to be tuned to the variations in each type of JWST data.

Reference Files

The outlier_detection step uses the PARS-OUTLIERDETECTIONSTEP parameter reference file.

PARS-OUTLIERDETECTIONSTEP Parameter Reference File

REFTYPE
PARS-OUTLIERDETECTIONSTEP

Data model
N/A

408 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference Selection Keywords

CRDS selects appropriate pars-outlierdetectionstep references based on the following keywords.

Instrument Keywords
FGS EXP_TYPE
MIRI EXP_TYPE, FILTER, SUBARRAY, TSOVISIT
NIRCAM EXP_TYPE, FILTER, PUPIL, TSOVISIT
NIRISS EXP_TYPE, FILTER, PUPIL, TSOVISIT

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Step Arguments for Non-IFU data

The outlier_detection step for non-IFU data has the following optional arguments that control the behavior of the
processing:

--weight_type (string, default=’exptime’)
The type of data weighting to use during resampling; options are ‘exptime’, ‘error’, and ‘None’.

--pixfrac (float, default=1.0)
The pixel fraction used during resampling; valid values go from 0.0 to 1.0.

--kernel (string, default=’square’)
The form of the kernel function used to distribute flux onto a resampled image. Options are ‘square’, ‘turbo’,
‘point’, ‘lanczos’, and ‘tophat’.

--fillval (string, default=’INDEF’)
The value to assign to resampled image pixels that have zero weight or do not receive any flux from any input
pixels during drizzling. Any floating-point value, given as a string, is valid. A value of ‘INDEF’ will use the last
zero weight flux.

15.1. Package Index 409

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

--nlow (integer, default=0)
The number of low values in each pixel stack to ignore when computing the median value.

--nhigh (integer, default=0)
The number of high values in each pixel stack to ignore when computing the median value.

--maskpt (float, default=0.7)
The percent of maximum weight to use as lower-limit for valid data; valid values go from 0.0 to 1.0.

--snr (string, default=’4.0 3.0’)
The signal-to-noise values to use for bad pixel identification. Since cosmic rays often extend across several pixels
the user must specify two cut-off values for determining whether a pixel should be masked: the first for detecting
the primary cosmic ray, and the second (typically lower threshold) for masking lower-level bad pixels adjacent
to those found in the first pass. Valid values are a pair of floating-point values in a single string.

--scale (string, default=’0.5 0.4’)
The scaling factor applied to derivative used to identify bad pixels. Since cosmic rays often extend across several
pixels the user must specify two cut-off values for determining whether a pixel should be masked: the first for
detecting the primary cosmic ray, and the second (typically lower threshold) for masking lower-level bad pixels
adjacent to those found in the first pass. Valid values are a pair of floating-point values in a single string.

--backg (float, default=0.0)
User-specified background value to apply to the median image.

--save_intermediate_results (boolean, default=False)
Specifies whether or not to save any intermediate products created during step processing.

--resample_data (boolean, default=True)
Specifies whether or not to resample the input images when performing outlier detection.

--good_bits (string, default=”~DO_NOT_USE”)
The DQ bit values from the input image DQ arrays that should be considered ‘good’ when building the weight
mask. See DQ flag Parameter Specification for details.

--scale_detection (bool, default=False)
Specifies whether or not to rescale the individual input images to match total signal when doing comparisons.

--allowed_memory (float, default=None)
Specifies the fractional amount of free memory to allow when creating the resampled image. If None, the envi-
ronment variable DMODEL_ALLOWED_MEMORY is used. If not defined, no check is made. If the resampled image
would be larger than specified, an OutputTooLargeError exception will be generated.

For example, if set to 0.5, only resampled images that use less than half the available memory can be created.

--in_memory (boolean, default=False)
Specifies whether or not to load and create all images that are used during processing into memory. If False,
input files are loaded from disk when needed and all intermediate files are stored on disk, rather than in memory.

Step Arguments for IFU data

The outlier_detection step for IFU data has the following optional arguments that control the behavior of the
processing:

--kernel_size (string, default=’7 7’)
The size of the kernel to use to normalize the pixel differences. The kernel size must only contain odd values.

--threshold_percent (float, default=99.8)
The threshold (in percent) of the normalized minimum pixel difference used to identify bad pixels. Pixels with
a normalized minimum pixel difference above this percentage are flagged as a outlier.

410 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

--save_intermediate_results (boolean, default=False)
Specifies whether or not to save any intermediate products created during step processing.

--in_memory (boolean, default=False)
Specifies whether or not to load and create all images that are used during processing into memory. If False,
input files are loaded from disk when needed and all intermediate files are stored on disk, rather than in memory.

Python Step Design: OutlierDetectionStep

This module provides the sole interface to all methods of performing outlier detection on JWST observations. The
outlier_detection step supports multiple algorithms and determines the appropriate algorithm for the type of ob-
servation being processed. This step supports:

1. Image modes: ‘FGS_IMAGE’, ‘MIR_IMAGE’, ‘NRC_IMAGE’, ‘NIS_IMAGE’

2. Spectroscopic modes: ‘MIR_LRS-FIXEDSLIT’, ‘NRS_FIXEDSLIT’, ‘NRS_MSASPEC’

3. Time-Series-Observation(TSO) Spectroscopic modes: ‘MIR_LRS-SLITLESS’, ‘NRC_TSGRISM’,
‘NIS_SOSS’, ‘NRS_BRIGHTOBJ’

4. IFU Spectroscopic modes: ‘MIR_MRS’, ‘NRS_IFU’

5. TSO Image modes: ‘NRC_TSIMAGE’

6. Coronagraphic Image modes: ‘MIR_LYOT’, ‘MIR_4QPM’, ‘NRC_CORON’

This step uses the following logic to apply the appropriate algorithm to the input data:

1. Interpret inputs (ASN table, ModelContainer or CubeModel) to identify all input observations to be processed

2. Read in type of exposures in input by interpreting meta.exposure.type from inputs

3. Read in parameters set by user

4. Select outlier detection algorithm based on exposure type

• Images: like those taken with NIRCam, will use OutlierDetection as described in Default Outlier
Detection Algorithm

• Coronagraphic observations: use OutlierDetection with resampling turned off as described in Default
Outlier Detection Algorithm

• Time-Series Observations(TSO): both imaging and spectroscopic modes, use OutlierDetection with
resampling turned off as described in Default Outlier Detection Algorithm

• IFU observations: use OutlierDetectionIFU as described in Outlier Detection for IFU Data

• Long-slit spectroscopic observations: use OutlierDetectionSpec as described in Outlier Detection
for Slit-like Spectroscopic Data

5. Instantiate and run outlier detection class determined for the exposure type using parameter values interpreted
from inputs.

6. Return input models with DQ arrays updated with flags for identified outliers

15.1. Package Index 411

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.outlier_detection.outlier_detection_step Module

Public common step definition for OutlierDetection processing.

Classes

OutlierDetectionStep([name, parent, ...]) Flag outlier bad pixels and cosmic rays in DQ array of
each input image.

OutlierDetectionStep

class jwst.outlier_detection.outlier_detection_step.OutlierDetectionStep(name=None,
parent=None,
config_file=None,
_vali-
date_kwds=True,
**kws)

Bases: JwstStep

Flag outlier bad pixels and cosmic rays in DQ array of each input image.

Input images can be listed in an input association file or already opened with a ModelContainer. DQ arrays are
modified in place.

Parameters
input_data (asn file or ModelContainer) – Single filename association table, or a data-
models.ModelContainer.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

412 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

spec

Methods Summary

check_input() Use this method to determine whether input is valid
or not.

process(input_data) Perform outlier detection processing on input data.

Attributes Documentation

class_alias = 'outlier_detection'

spec

weight_type = option('ivm','exptime',default='ivm')
pixfrac = float(default=1.0)
kernel = string(default='square') # drizzle kernel
fillval = string(default='INDEF')
nlow = integer(default=0)
nhigh = integer(default=0)
maskpt = float(default=0.7)
snr = string(default='5.0 4.0')
scale = string(default='1.2 0.7')
backg = float(default=0.0)
kernel_size = string(default='7 7')
threshold_percent = float(default=99.8)
ifu_second_check = boolean(default=False)
save_intermediate_results = boolean(default=False)
resample_data = boolean(default=True)
good_bits = string(default="~DO_NOT_USE") # DQ flags to allow
scale_detection = boolean(default=False)
search_output_file = boolean(default=False)
allowed_memory = float(default=None) # Fraction of memory to use for the␣
→˓combined image
in_memory = boolean(default=False)

15.1. Package Index 413

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

check_input()

Use this method to determine whether input is valid or not.

process(input_data)
Perform outlier detection processing on input data.

Class Inheritance Diagram

JwstStep OutlierDetectionStepStep

Default Outlier Detection Algorithm

This module serves as the interface for applying outlier_detection to direct image observations, like those taken
with MIRI, NIRCam and NIRISS. The code implements the basic outlier detection algorithm used with HST data, as
adapted to JWST.

Specifically, this routine performs the following operations:

1. Extract parameter settings from input model and merge them with any user-provided values. See outlier detection
arguments for the full list of parameters.

2. Convert input data, as needed, to make sure it is in a format that can be processed.

• A ModelContainer serves as the basic format for all processing performed by this step, as each entry will
be treated as an element of a stack of images to be processed to identify bad-pixels/cosmic-rays and other
artifacts.

• If the input data is a CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel),
convert it into a ModelContainer. This allows each plane of the cube to be treated as a separate 2D image
for resampling (if done) and for combining into a median image.

3. By default, resample all input images.

• The resampling step starts by computing an output WCS that is large enoug to encompass all the input
images.

• All images from the same exposure will get resampled onto this output WCS to create a mosaic of all the
chips for that exposure. This product is referred to as a “grouped mosaic” since it groups all the chips from
the same exposure into a single image.

• Each dither position will result in a separate grouped mosaic, so only a single exposure ever contributes to
each pixel in these mosaics.

• An explanation of how all NIRCam multiple detector group mosaics are defined from a single ex-
posure or from a dithered set of exposures (https://jwst-docs.stsci.edu/near-infrared-camera/nircam-
operations/nircam-dithers-and-mosaics) can be found here.

414 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://jwst-docs.stsci.edu/near-infrared-camera/nircam-operations/nircam-dithers-and-mosaics
https://jwst-docs.stsci.edu/near-infrared-camera/nircam-operations/nircam-dithers-and-mosaics

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• The fillval parameter specifies what value to use in the ouptut resampled image for any pixel which has
no valid contribution from any input exposure. The default value of INDEF indicates that the value from
the last exposure will be used, while a value of 0 would result in holes.

• The resampling can be controlled with the pixfrac, kernel and weight_type parameters.

• The pixfrac indicates the fraction by which input pixels are “shrunk” before being drizzled onto the output
image grid, given as a real number between 0 and 1. This specifies the size of the footprint, or “dropsize”,
of a pixel in units of the input pixel size.

• The kernel specifies the form of the kernel function used to distribute flux onto the separate output images.

• The weight_type indicates the type of weighting image to apply with the bad pixel mask. Available
options are ivm (default) for computing and using an inverse-variance map and exptime for weighting by
the exposure time.

• The good_bits parameter specifies what DQ values from the input exposure should be used when resam-
pling to create the output mosaic. Any pixel with a DQ value not included in this value (or list of values)
will be ignored when resampling.

• Resampled images will be written out to disk as _outlier_i2d.fits by default.

• If resampling is turned off through the use of the resample_data parameter, a copy of the unrectified
input images (as a ModelContainer) will be used for subsequent processing.

4. Create a median image from all grouped observation mosaics.

• The median image is created by combining all grouped mosaic images or non-resampled input data (as
planes in a ModelContainer) pixel-by-pixel.

• The nlow and nhigh parameters specify how many low and high values to ignore when computing the
median for any given pixel.

• The maskpt parameter sets the percentage of the weight image values to use, and any pixel with a weight
below this value gets flagged as “bad” and ignored when resampled.

• The median image is written out to disk as _<asn_id>_median.fits by default.

5. By default, the median image is blotted back (inverse of resampling) to match each original input image.

• Blotted images are written out to disk as _<asn_id>_blot.fits by default.

• If resampling is turned off, the median image is compared directly to each input image.

6. Perform statistical comparison between blotted image and original image to identify outliers.

• This comparison uses the original input images, the blotted median image, and the derivative of the blotted
image to create a cosmic ray mask for each input image.

• The derivative of the blotted image gets created using the blotted median image to compute the absolute
value of the difference between each pixel and its four surrounding neighbors with the largest value being
the recorded derivative.

• These derivative images are used to flag cosmic rays and other blemishes, such as satellite trails. Where
the difference is larger than can be explained by noise statistics, the flattening effect of taking the median,
or an error in the shift (the latter two effects are estimated using the image derivative), the suspect pixel is
masked.

• The backg parameter specifies a user-provided value to be used as the background estimate. This gets
added to the background-subtracted blotted image to attempt to match the original background levels of the
original input mosaic so that cosmic-rays (bad pixels) from the input mosaic can be identified more easily
as outliers compared to the blotted mosaic.

15.1. Package Index 415

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• Cosmic rays are flagged using the following rule:

|𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑝𝑢𝑡− 𝑖𝑚𝑎𝑔𝑒_𝑏𝑙𝑜𝑡𝑡𝑒𝑑| > 𝑠𝑐𝑎𝑙𝑒 * 𝑖𝑚𝑎𝑔𝑒_𝑑𝑒𝑟𝑖𝑣 + 𝑆𝑁𝑅 * 𝑛𝑜𝑖𝑠𝑒

• The scale is defined as the multiplicative factor applied to the derivative which is used to determine if the
difference between the data image and the blotted image is large enough to require masking.

• The noise is calculated using a combination of the detector read noise and the poisson noise of the blotted
median image plus the sky background.

• The user must specify two cut-off signal-to-noise values using the snr parameter for determining whether
a pixel should be masked: the first for detecting the primary cosmic ray, and the second for masking lower-
level bad pixels adjacent to those found in the first pass. Since cosmic rays often extend across several
pixels, the adjacent pixels make use of a slightly lower SNR threshold.

7. Update input data model DQ arrays with mask of detected outliers.

Memory Model for Outlier Detection Algorithm

The outlier detection algorithm can end up using massive amounts of memory depending on the number of inputs, the
size of each input, and the size of the final output product. Specifically,

1. The input ModelContainer or CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)
for IFU data, by default, all input exposures would have been kept open in memory to make processing more
efficient.

2. The initial resample step creates an output product for EACH input that is the same size as the final output
product, which for imaging modes can span all chips in the detector while also accounting for all dithers. For
some Level 3 products, each resampled image can be on the order of 2Gb or more.

3. The median combination step then needs to have all pixels at the same position on the sky in memory in order
to perform the median computation. The simplest implementation for this step requires keeping all resampled
outputs fully in memory at the same time.

Many Level 3 products only include a modest number of input exposures that can be processed using less than 32Gb of
memory at a time. However, there are a number of ways this memory limit can be exceeded. This has been addressed by
implementing an overall memory model for the outlier detection that includes options to minimize the memory usage
at the expense of file I/O. The control over this memory model happens with the use of the in_memory parameter. The
full impact of this parameter during processing includes:

1. The save_open parameter gets set to False (https://docs.python.org/3/library/constants.html#False) when
opening the input ModelContainer object. This forces all input models in the input ModelContainer or
CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)
to get written out to disk. The ModelContainer then uses the filename of the input model during subsequent
processing.

2. The in_memory parameter gets passed to the ResampleStep to set whether or not to keep the resam-
pled images in memory or not. By default, the outlier detection processing sets this parameter to False
(https://docs.python.org/3/library/constants.html#False) so that each resampled image gets written out to disk.

3. Computing the median image works section-by-section by only keeping 1Mb of each input in memory at a time.
As a result, only the final output product array for the final median image along with a stack of 1Mb image
sections are kept in memory.

4. The final resampling step also avoids keeping all inputs in memory by only reading each input into memory 1 at
a time as it gets resampled onto the final output product.

These changes result in a minimum amount of memory usage during processing at the obvious expense of reading and
writing the products from disk.

416 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://docs.python.org/3/library/constants.html#False
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://docs.python.org/3/library/constants.html#False

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Outlier Detection for TSO data

Time-series observations (TSO) result in input data stored as a 3D CubeModel where each plane in the cube represents
a separate integration without changing the pointing. Normal imaging data benefit from combining all integrations into
a single image. TSO data’s value, however, comes from looking for variations from one integration to the next. The
outlier detection algorithm, therefore, gets run with a few variations to accomodate the nature of these 3D data.

1. Input data is converted from a CubeModel (3D data array) to a ModelContainer

• Each plane in the original input CubeModel gets copied to a separate model in the ModelContainer

2. The median image is created without resampling the input data

• All integrations are aligned already, so no resampling or shifting needs to be performed

3. A matched median gets created by combining the single median frame with the noise model for each input
integration.

4. Perform statistical comparison between the matched median with each input integration.

5. Update input data model DQ arrays with the mask of detected outliers.

Note: This same set of steps also gets used to perform outlier detection on coronographic data, because it too is
processed as 3D (per-integration) cubes.

Outlier Detection for IFU data

Integral Field Unit (IFU) data is handled as 2D images, similar to direct imaging modes. The nature of the detection
algorithm, however, is quite different and involves measuring the differences between neighboring pixels in the spatial
(cross-dispersion) direction within the IFU slice images. See the IFU outlier detection documentation for all the details.

jwst.outlier_detection.outlier_detection Module

Primary code for performing outlier detection on JWST observations.

Functions

flag_cr(sci_image, blot_image[, snr, scale, ...]) Masks outliers in science image by updating DQ in-place
abs_deriv(array) Take the absolute derivate of a numpy array.

flag_cr

jwst.outlier_detection.outlier_detection.flag_cr(sci_image, blot_image, snr='5.0 4.0', scale='1.2
0.7', backg=0, resample_data=True, **kwargs)

Masks outliers in science image by updating DQ in-place

Mask blemishes in dithered data by comparing a science image with a model image and the derivative of the
model image.

Parameters

15.1. Package Index 417

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• sci_image (ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel))
– the science data

• blot_image (ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel))
– the blotted median image of the dithered science frames

• snr (str (https://docs.python.org/3/library/stdtypes.html#str)) – Signal-to-noise ratio

• scale (str (https://docs.python.org/3/library/stdtypes.html#str)) – scaling factor applied to
the derivative

• backg (float (https://docs.python.org/3/library/functions.html#float)) – Background value
(scalar) to subtract

• resample_data (bool (https://docs.python.org/3/library/functions.html#bool)) – Boolean
to indicate whether blot_image is created from resampled, dithered data or not

abs_deriv

jwst.outlier_detection.outlier_detection.abs_deriv(array)
Take the absolute derivate of a numpy array.

Classes

OutlierDetection(input_models[, reffiles]) Main class for performing outlier detection.

OutlierDetection

class jwst.outlier_detection.outlier_detection.OutlierDetection(input_models, reffiles=None,
**pars)

Bases: object (https://docs.python.org/3/library/functions.html#object)

Main class for performing outlier detection.

This is the controlling routine for the outlier detection process. It loads and sets the various input data and
parameters needed by the various functions and then controls the operation of this process through all the steps
used for the detection.

Notes

This routine performs the following operations:

1. Extracts parameter settings from input model and merges
them with any user-provided values

2. Resamples all input images into grouped observation mosaics.
3. Creates a median image from all grouped observation mosaics.
4. Blot median image to match each original input image.
5. Perform statistical comparison between blotted image and original

image to identify outliers.
6. Updates input data model DQ arrays with mask of detected outliers.

Initialize the class with input ModelContainers.

418 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Parameters
• input_models (list (https://docs.python.org/3/library/stdtypes.html#list) of
DataModels, str (https://docs.python.org/3/library/stdtypes.html#str)) – list of data
models as ModelContainer or ASN file, one data model for each input image

• pars (dict (https://docs.python.org/3/library/stdtypes.html#dict), optional) – Optional
user-specified parameters to modify how outlier_detection will operate. Valid parameters
include: - resample_suffix

Attributes Summary

default_suffix

Methods Summary

blot_median(median_model) Blot resampled median image back to the detector im-
ages.

build_suffix(**pars) Build suffix.
create_median(resampled_models) Create a median image from the singly resampled im-

ages.
detect_outliers(blot_models) Flag DQ array for cosmic rays in input images.
do_detection() Flag outlier pixels in DQ of input images.

Attributes Documentation

default_suffix = 'i2d'

Methods Documentation

blot_median(median_model)
Blot resampled median image back to the detector images.

build_suffix(**pars)
Build suffix.

Class-specific method for defining the resample_suffix attribute using a suffix specific to the sub-class.

create_median(resampled_models)
Create a median image from the singly resampled images.

15.1. Package Index 419

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Notes

This version is simplified from astrodrizzle’s version in the following ways: - type of combination: fixed to
‘median’ - ‘minmed’ not implemented as an option

detect_outliers(blot_models)
Flag DQ array for cosmic rays in input images.

The science frame in each ImageModel in input_models is compared to the corresponding blotted median
image in blot_models. The result is an updated DQ array in each ImageModel in input_models.

Parameters
• input_models (JWST ModelContainer object) – data model container holding sci-

ence ImageModels, modified in place

• blot_models (JWST ModelContainer object) – data model container holding Image-
Models of the median output frame blotted back to the wcs and frame of the ImageModels
in input_models

Returns
The dq array in each input model is modified in place

Return type
None

do_detection()

Flag outlier pixels in DQ of input images.

Class Inheritance Diagram

OutlierDetection

Outlier Detection for IFU Data

This module serves as the interface for applying outlier_detection to IFU observations, like those taken with
NIRSpec and MIRI. The code implements the basic outlier detection algorithm searching for pixels that are consistent
outliers in the calibrated images created by the calwebb_spec2 pipeline. After launch it was discovered the bad pixels
on the MIRI detectors vary with time. The pixels varied from usable to unusable, and at times, back to usable on a time
frame that was too short (sometimes as short as 2 days) to fold into the bad pixel mask applied in the calwebb_detector1
pipeline. At this time it is believed that NIRSpec IFU data also have bad pixels that vary with time, though the time
variation is still under study.

An algorithm was developed to flag pixels that are outliers when compared to their neighbors for a set of input files
contained in an association. The neighbor pixel differences are the neighbors in spatial direction. For MIRI data ,the
neighbor differences are found to the left and right of every science pixel. While for NIRSpec data neighbor differences
are found between the pixels above and below every science pixel. The pixel differences for each input model in the
association is determined and is stored in a stack of pixel differences. For each pixel the minimum difference through

420 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

this stack is determined and normalized. The normalization uses a local median of the difference array (set by the
kernel size). A pixel is flagged as an outlier if this normalized minimum difference is greater than the input threshold
percentage. Pixels that are found to be outliers are flaged in in the DQ array.

jwst.outlier_detection.outlier_detection_ifu Module

Class definition for performing outlier detection on IFU data.

Classes

OutlierDetectionIFU(input_models[, reffiles]) Sub-class defined for performing outlier detection on
IFU data.

OutlierDetectionIFU

class jwst.outlier_detection.outlier_detection_ifu.OutlierDetectionIFU(input_models,
reffiles=None, **pars)

Bases: OutlierDetection

Sub-class defined for performing outlier detection on IFU data.

This is the controlling routine for the outlier detection process. It loads and sets the various input data and
parameters needed to flag outliers. Pixel are flagged as outliers based on the MINIMUM difference a pixel has
with its neighbor across all the input cal files.

Notes

This routine performs the following operations:

1. Extracts parameter settings from input ModelContainer and merges
them with any user-provided values

2. Loop over cal files
a. read in science data
b. Store computed neighbor differences for all the pixels.

The neighbor pixel differences are defined by the dispersion axis.
For MIRI (disp axis = 1) the neighbors to find differences are to the left␣

→˓and right of pixel
For NIRSpec (disp axis = 0) the neighbors to find the differences are above␣

→˓and below the pixel
3. For each input file store the minimum of the pixel neighbor differences
4. Comparing all the differences from all the input data find the minimum neighbor␣
→˓difference
5. Normalize minimum difference to local median of difference array
6. select outliers by flagging those normailzed minimum values > threshold_percent
7. Updates input ImageModel DQ arrays with mask of detected outliers.

Initialize class for IFU data processing.

Parameters

15.1. Package Index 421

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• input_models (ModelContainer, str (https://docs.python.org/3/library/stdtypes.html#str))
– list of data models as ModelContainer or ASN file, one data model for each input 2-D
ImageModel

• reffiles (dict of JwstDataModel (https://stdatamodels.readthedocs.io/en/latest/api/stdatamodels.jwst.datamodels.JwstDataModel.html#stdatamodels.jwst.datamodels.JwstDataModel))
– Dictionary of datamodels. Keys are reffile_types.

Methods Summary

create_optional_results_model(opt_info) Creates an OutlierOutputModel from the computed
arrays from outlier detection on IFU data.

do_detection() Split data by detector to find outliers.
flag_outliers(idet, uq_det, ndet_files, ...) Flag outlier pixels on IFU.

Methods Documentation

create_optional_results_model(opt_info)
Creates an OutlierOutputModel from the computed arrays from outlier detection on IFU data.

Parameter

input_model: ~stdatamodels.jwst.datamodels.RampModel

opt_info: tuple The output arrays needed for the OultierOutputModel.

returns
opt_model – The optional OutlierIFUOutputModel to be returned from the out-
lier_detection_ifu step.

rtype
OutlierIFUOutputModel

do_detection()

Split data by detector to find outliers.

flag_outliers(idet, uq_det, ndet_files, diffaxis, nx, ny, kern_size, threshold_percent,
save_intermediate_results, ifu_second_check)

Flag outlier pixels on IFU. In general we are searching for pixels that are a form of a bad pixel but not in
bad pixel mask, because the bad pixels vary with time. This program will flag the DQ of input images as
DO_NOT_USE and OUTLIER and set the associated science pixel to a Nan. This routine only works on
data from one detector.

Parameters
• idet (int (https://docs.python.org/3/library/functions.html#int)) – Integer indicating

which detector we are working with

• uq_det (string array) – Array of (unique) detector names found input data

• n_det_files (int (https://docs.python.org/3/library/functions.html#int)) – Number of
files for the detector we are working on

• diffaxis (int (https://docs.python.org/3/library/functions.html#int)) – The axis to form
the adjacent pixel differences

422 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://stdatamodels.readthedocs.io/en/latest/api/stdatamodels.jwst.datamodels.JwstDataModel.html#stdatamodels.jwst.datamodels.JwstDataModel
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• nx (int (https://docs.python.org/3/library/functions.html#int)) – Size of input data on x
axis

• ny (int (https://docs.python.org/3/library/functions.html#int)) – Since of inut data on y
axis

• threshold_percent (float (https://docs.python.org/3/library/functions.html#float)) –
Percent for flagging outliers. Flags pixels where the minimum difference between adja-
cent pixels for all the input data for a detector is above this percentage. The percentage is
based on using all the pixels except a 4 X 4 row and column region around the detector that
is often noisy.

• save_intermediate_results (boolean) – If True then save intermediate output data

• ifu_second_check (boolean) – If True then perform a secondary check searching for
outliers. This will set outliers where ever the difference array of adjacent pixels is a Nan.

Class Inheritance Diagram

OutlierDetection OutlierDetectionIFU

Outlier Detection for Slit-like Spectroscopic Data

This module serves as the interface for applying outlier_detection to slit-like spectroscopic observations. The code
implements the basic outlier detection algorithm used with HST data, as adapted to JWST spectroscopic observations.

Specifically, this routine performs the following operations (modified from the Default Outlier Detection Algorithm):

1. Extract parameter settings from input model and merge them with any user-provided values

• the same set of parameters available to: ref:Default Outlier Detection Algorithm also applies to
this code

2. Convert input data, as needed, to make sure it is in a format that can be processed

• A ModelContainer serves as the basic format for all processing performed by this step, as each entry will
be treated as an element of a stack of images to be processed to identify bad pixels, cosmic-rays and other
artifacts

• If the input data is a CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel),
convert it into a ModelContainer. This allows each plane of the cube to be treated as a separate 2D
image for resampling (if done) and for combining into a median image.

3. Resample all input images into a ModelContainer using ResampleSpecData

• Resampled images are written out to disk if the save_intermediate_results parameter is set to True
(https://docs.python.org/3/library/constants.html#True)

• If resampling is turned off, the original unrectified inputs are used to create the median image for cosmic-
ray detection

15.1. Package Index 423

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://docs.python.org/3/library/constants.html#True

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

4. Create a median image from (possibly) resampled ModelContainer

• The median image is written out to disk if the save_intermediate_results parameter is set to True
(https://docs.python.org/3/library/constants.html#True)

5. Blot median image to match each original input image

• Resampled/blotted images are written out to disk if the save_intermediate_results parameter is set
to True (https://docs.python.org/3/library/constants.html#True)

• If resampling is turned off, the median image is used for comparison with the original input models for
detecting outliers

6. Perform statistical comparison between blotted image and original image to identify outliers

7. Update input data model DQ arrays with mask of detected outliers

jwst.outlier_detection.outlier_detection_spec Module

Class definition for performing outlier detection on spectra.

Classes

OutlierDetectionSpec(input_models[, reffiles]) Class definition for performing outlier detection on spec-
tra.

OutlierDetectionSpec

class jwst.outlier_detection.outlier_detection_spec.OutlierDetectionSpec(input_models,
reffiles=None,
**pars)

Bases: OutlierDetection

Class definition for performing outlier detection on spectra.

This is the controlling routine for the outlier detection process. It loads and sets the various input data and
parameters needed by the various functions and then controls the operation of this process through all the steps
used for the detection.

Notes

This routine performs the following operations:

1. Extracts parameter settings from input model and merges
them with any user-provided values

2. Resamples all input images into grouped observation mosaics.
3. Creates a median image from all grouped observation mosaics.
4. Blot median image to match each original input image.
5. Perform statistical comparison between blotted image and original

image to identify outliers.
6. Updates input data model DQ arrays with mask of detected outliers.

Initialize class with input_models.

424 Chapter 15. Package Documentation

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Parameters
• input_models (list (https://docs.python.org/3/library/stdtypes.html#list) of
DataModels, str (https://docs.python.org/3/library/stdtypes.html#str)) – list of data
models as ModelContainer or ASN file, one data model for each input image

• reffiles (dict of stdatamodels.jwst.datamodels.JwstDataModel
(https://stdatamodels.readthedocs.io/en/latest/api/stdatamodels.jwst.datamodels.JwstDataModel.html#stdatamodels.jwst.datamodels.JwstDataModel))
– Dictionary of datamodels. Keys are reffile_types.

• pars (dict (https://docs.python.org/3/library/stdtypes.html#dict), optional) – Optional
user-specified parameters to modify how outlier_detection will operate. Valid parameters
include: - resample_suffix

Attributes Summary

default_suffix

Methods Summary

do_detection() Flag outlier pixels in DQ of input images.

Attributes Documentation

default_suffix = 's2d'

Methods Documentation

do_detection()

Flag outlier pixels in DQ of input images.

Class Inheritance Diagram

OutlierDetection OutlierDetectionSpec

15.1. Package Index 425

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://stdatamodels.readthedocs.io/en/latest/api/stdatamodels.jwst.datamodels.JwstDataModel.html#stdatamodels.jwst.datamodels.JwstDataModel
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.outlier_detection Package

Classes

OutlierDetectionStep([name, parent, ...]) Flag outlier bad pixels and cosmic rays in DQ array of
each input image.

OutlierDetectionScaledStep([name, parent, ...]) Flag outlier bad pixels and cosmic rays in DQ array of
each input image.

OutlierDetectionStackStep([name, parent, ...]) Class definition for stacked outlier detection.

OutlierDetectionStep

class jwst.outlier_detection.OutlierDetectionStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

Flag outlier bad pixels and cosmic rays in DQ array of each input image.

Input images can be listed in an input association file or already opened with a ModelContainer. DQ arrays are
modified in place.

Parameters
input_data (asn file or ModelContainer) – Single filename association table, or a data-
models.ModelContainer.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

spec

426 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

check_input() Use this method to determine whether input is valid
or not.

process(input_data) Perform outlier detection processing on input data.

Attributes Documentation

class_alias = 'outlier_detection'

spec

weight_type = option('ivm','exptime',default='ivm')
pixfrac = float(default=1.0)
kernel = string(default='square') # drizzle kernel
fillval = string(default='INDEF')
nlow = integer(default=0)
nhigh = integer(default=0)
maskpt = float(default=0.7)
snr = string(default='5.0 4.0')
scale = string(default='1.2 0.7')
backg = float(default=0.0)
kernel_size = string(default='7 7')
threshold_percent = float(default=99.8)
ifu_second_check = boolean(default=False)
save_intermediate_results = boolean(default=False)
resample_data = boolean(default=True)
good_bits = string(default="~DO_NOT_USE") # DQ flags to allow
scale_detection = boolean(default=False)
search_output_file = boolean(default=False)
allowed_memory = float(default=None) # Fraction of memory to use for the␣
→˓combined image
in_memory = boolean(default=False)

Methods Documentation

check_input()

Use this method to determine whether input is valid or not.

process(input_data)
Perform outlier detection processing on input data.

15.1. Package Index 427

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

OutlierDetectionScaledStep

class jwst.outlier_detection.OutlierDetectionScaledStep(name=None, parent=None,
config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

Flag outlier bad pixels and cosmic rays in DQ array of each input image.

Input images can listed in an input association file or already opened with a ModelContainer. DQ arrays are
modified in place.

Parameters
input (asn file or ModelContainer) – Single filename association table, or a datamod-
els.ModelContainer.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

spec

Methods Summary

process(input) Step interface to running outlier_detection.

428 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Documentation

class_alias = 'outlier_detection_scaled'

spec

weight_type = option('ivm','exptime',default='ivm')
pixfrac = float(default=1.0)
kernel = string(default='square') # drizzle kernel
fillval = string(default='INDEF')
nlow = integer(default=0)
nhigh = integer(default=0)
maskpt = float(default=0.7)
snr = string(default='4.0 3.0')
scale = string(default='0.5 0.4')
backg = float(default=0.0)
save_intermediate_results = boolean(default=False)
good_bits = string(default="~DO_NOT_USE") # DQ flags to allow

Methods Documentation

process(input)
Step interface to running outlier_detection.

OutlierDetectionStackStep

class jwst.outlier_detection.OutlierDetectionStackStep(name=None, parent=None,
config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

Class definition for stacked outlier detection.

Flag outlier bad pixels and cosmic rays in the DQ array of each input image of a stack of exposures, which in the
case of TSO data are from the same data cube.

Input images can listed in an input association file or already opened with a ModelContainer.

DQ arrays are modified in place.

By default, resampling has been disabled. The ‘resample_data’ attribute can be reset to ‘True’ to turn on resam-
pling if desired for the data.

Parameters
input (asn file or ModelContainer) – Single filename association table, or a datamod-
els.ModelContainer.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

15.1. Package Index 429

https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

spec

Methods Summary

process(input) Step interface for performing outlier_detection pro-
cessing.

Attributes Documentation

class_alias = 'outlier_detection_stack'

spec

weight_type = option('ivm','exptime',default='ivm')
pixfrac = float(default=1.0)
kernel = string(default='square') # drizzle kernel
fillval = string(default='INDEF')
nlow = integer(default=0)
nhigh = integer(default=0)
maskpt = float(default=0.7)
snr = string(default='4.0 3.0')
scale = string(default='0.5 0.4')
backg = float(default=0.0)
save_intermediate_results = boolean(default=False)
resample_data = boolean(default=False)
good_bits = string(default="~DO_NOT_USE") # DQ flags to allow

Methods Documentation

process(input)
Step interface for performing outlier_detection processing.

430 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Class Inheritance Diagram

JwstStep

OutlierDetectionScaledStep

OutlierDetectionStackStep

OutlierDetectionStep

Step

15.1.41 Pathloss Correction

Description

Class
jwst.pathloss.PathlossStep

Alias
pathloss

Overview

The pathloss step calculates and applies corrections that are needed to account for various types of signal loss in
spectroscopic data. The motivation behind the correction is different for the MIRI, NIRSpec, and NIRISS observing
modes. For MIRI LRS fixed slit, this correction simply accounts for light not passing through the aperture. For
NIRSpec, this correction accounts aperture losses as well as losses in the optical system due to light being scattered
outside the grating. For NIRISS SOSS data it corrects for the light that falls outside the detector subarray in use.

Background

The correction is applicable to MIRI LRS fixed-slit, NIRSpec IFU, MSA, and FIXEDSLIT, and NIRISS SOSS data.
The description of how the NIRSpec reference files were created and how they are to be applied to NIRSpec data is
given in ESA-JWST-SCI-NRS-TN-2016-004 (P. Ferruit: The correction of path losses for uniform and point sources).
The NIRISS algorithm was provided by Kevin Volk.

15.1. Package Index 431

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Algorithm

NIRSpec

This step calculates a 1-D correction array as a function of wavelength by interpolating in the pathloss reference file
cube at the position of a point source target. It creates 2 pairs of 1-D arrays, a wavelength array (calculated from
the WCS applied to the index of the plane in the wavelength direction) and a pathloss correction array calculated by
interpolating each plane of the pathloss cube at the position of the source (which is taken from the datamodel). Pairs
of these arrays are computed for both point source and uniform source data types. For the uniform source pathloss
calculation, there is no dependence on position in the aperture/slit.

Once the 1-D correction arrays have been computed, both forms of the correction (point and uniform) are interpolated,
as a function of wavelength, into the 2-D space of the slit or IFU data and attached to the output data model (extensions
“PATHLOSS_PS” and “PATHLOSS_UN”) as a record of what was computed. The form of the 2-D correction (point
or uniform) that’s appropriate for the data is divided into the SCI and ERR arrays and propagated into the variance
arrays of the science data.

The MSA reference file contains 2 entries: one for a 1x1 slit and one for a 1x3 slit. Each entry contains the pathloss
correction for point source and uniform sources. The former depends on the position of the target in the fiducial shutter
and wavelength, whereas the latter depends on wavelength only. The point source entry consists of a 3-d array, where
2 of the dimensions map to the location of the source (ranging from -0.5 to 0.5 in both X and Y), while the third
dimension carries the wavelength dependence. The 1x3 shutter is 3 times as large in Y as in X.

The entry to use for a point source target is determined by looking at the shutter_state attribute of the slit used. This is
a string with a length equal to the number of shutters that make up the slit, with 1 denoting an open shutter, 0 a closed
shutter and x the fiducial (target) shutter. The reference entry is determined by how many shutters next to the fiducial
shutter are open:

If both adjacent shutters are closed, the 1x1 entry is used. A matching shutter_state might be ‘x’ or ‘10x01’

If both adjacent shutters are open, the center region of the 1x3 entry is used. This would be the case for a slit with
shutter state ‘1x1’ or ‘1011x1’.

If one adjacent shutter is open and one closed, the 1x3 entry is used. If the shutter below the fiducial is open and the
shutter above closed, then the upper region of the 1x3 pathloss array is used. This is implemented by adding 1 to the
Y coordinate of the target position (bringing it into the range +0.5 to +1.5), moving it to the upper third of the pathloss
array. A matching shutter state might be ‘1x’ or ‘11x011’

Similarly, if the shutter below the fiducial is closed and that above is open, the lower third of the pathloss array is used
by subtracting 1 from the Y coordinate of the target position (bringing it into the range -1.5 to -0.5). A matching shutter
state could be ‘x111’ or ‘110x1’.

Once the X and Y coordinates of the source are mapped into a pixel location in the spatial dimensions of the pathloss
array using the WCS of the transformation of position to pixel location, the wavelength dependence is determined by
interpolating at that (fractional) pixel position in each wavelength plane, resulting in a pair of 1-d arrays of pathloss
correction and wavelength. These arrays are used to interpolate the correction for each pixel of the 2-d extracted science
array, since each pixel has a different wavelength, and the correction is applied to the science pixel array.

For uniform sources, there is no dependence of the pathloss correction on position, so the correction arrays are just 1-d
arrays of correction and wavelength. The correction depends only on the number of shutters in the slit:

If there is 1 shutter, the 1x1 entry is used

If there are 3 or more shutters, the 1x3 entry is used

If there are 2 shutters, the correction used is the average of the 1x1 and 1x3 entries.

Like for the point source case, the 1-d arrays of pathloss correction and wavelength are used to interpolate the correction
for each pixel in the science data, using the wavelength of each pixel to interpolate into the pathloss correction array.

432 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

MIRI LRS

The algorithm for MIRI LRS mode is largely the same as that for NIRSpec described above, with the exception of the
format in which the reference data are stored. First, the position of the target on the detector is estimated from the target
RA/Dec given in the exposure header (TARG_RA, TARG_DEC keywords). This position is then used to interpolate
within the pathloss reference data to compute a 1-D pathloss correction array. The 1-D pathloss correction is then
interpolated into the 2-D space of the data being corrected based on the wavelengths of each pixel in the science data.
The 2-D correction array is then applied to the science data and stored (as a record of what was applied) in the output
datamodel (“PATHLOSS_PS” extension).

If for any reason the source is determined to be outside of the slit, the correction defaults to the center of the slit.

The MIRI LRS correction is only applicable to point source data. The step is skipped if the SRCTYPE of the input
data does not indicate a point source.

NIRISS SOSS

The correction depends on column number in the science data and on the Pupil Wheel position (keyword PWCPOS).
It is provided in the reference file as a FITS image of 3 dimensions (to be compatible with the NIRSpec reference file
format). The first dimension is a dummy, while the second gives the dependence with row number, and the third with
Pupil Wheel position. For the SUBSTEP96 subarray, the reference file data has shape (1, 2040, 17).

The algorithm calculates the correction for each column by simply interpolating along the Pupil Wheel position dimen-
sion of the reference file using linear interpolation. The 1-D vector of correction vs. column number is interpolated, as
a function of wavelength, into the 2-D space of the science image and divided into the SCI and ERR arrays and propa-
gated into the variance arrays. The 2-D correction array is also attached to the datamodel (extension “PATHLOSS_PS”)
as a record of what was applied.

Error Propagation

As described above, the NIRSpec and NIRISS correction factors are divided into the SCI and ERR arrays of the science
data, and the square of the correction is divided into the variance arrays (VAR_RNOISE, VAR_POISSON, VAR_FLAT)
if they exist. For MIRI LRS, the correction factors are multiplicative, hence they are multiplied into the SCI and ERR
arrays, and the square of the correction is multiplied into the variance arrays.

Step Arguments

The pathloss step has the following optional arguments to control the behavior of the processing.

--inverse (boolean, default=False)
A flag to indicate whether the math operations used to apply the flat-field should be inverted (i.e. multiply the
pathloss into the science data, instead of the usual division).

--source_type (string, default=None)
Force the processing to use the given source type (POINT, EXTENDED), instead of using the information con-
tained in the input data. Only applicable to NIRSpec data.

--user_slit_loc (float, default=None)
Only applies to MIRI LRS fixed-slit exposures. Offset the target location along the dispersion direction of the
slit by this amount, in units of arcsec. By definition, the center of the slit is at 0, and the edges in the dispersion
direction are about +/-0.255 arcsec.

15.1. Package Index 433

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference File

The pathloss correction step uses a PATHLOSS reference file.

PATHLOSS Reference File

REFTYPE
PATHLOSS

Data model
PathlossModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.PathlossModel.html#jwst.datamodels.PathlossModel),
MirLrsPathlossModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirLrsPathlossModel.html#jwst.datamodels.MirLrsPathlossModel)

The PATHLOSS reference file contains correction factors as functions of source position in the aperture and wavelength.

Reference Selection Keywords for PATHLOSS

CRDS selects appropriate PATHLOSS references based on the following keywords. PATHLOSS is not applicable for
instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
MIRI INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRISS INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRSpec INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

434 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.PathlossModel.html#jwst.datamodels.PathlossModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirLrsPathlossModel.html#jwst.datamodels.MirLrsPathlossModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Type Specific Keywords for PATHLOSS

In addition to the standard reference file keywords listed above, the following keywords are required in PATHLOSS
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for PATHLOSS):

Keyword Data Model Name
EXP_TYPE model.meta.exposure.type

Reference File Format

The PATHLOSS reference files are FITS files with extensions for each of the aperture types. The FITS primary HDU
does not contain a data array.

MIRI LRS Fixed Slit

The MIRI LRS Fixed Slit reference file has the following FITS structure:

HDU EXTNAME XTENSION NAXIS Dimensions
1 PATHLOSS BinTable 2 3 columns x 388 rows

The PATHLOSS extension contains wavelength, pathloss correction, and pathloss uncertainty data. The table has the
following format:

Column Name Data Type Units Dimensions
WAVELENGTH float32 microns 388
PATHLOSS float32 N/A 388 x 50 x 20
PATHLOSS_ERR float32 N/A 388 x 50 x 20

The pathloss data in each table row are stored as a 2-D array, containing correction factors as a function of source posi-
tion (relative to the LRS slit reference point) in the spatial and spectral directions, respectively. Wavelength dependence
runs along the row axis of the table. The correction factors are multiplicative and hence get multiplied into the science
data being corrected.

NIRSpec IFU

The NIRSpec IFU PATHLOSS reference file just four extensions: one pair for point sources and one pair for uniform
sources. In each pair, there are either 3-D arrays for point sources, because the pathloss correction depends on the
position of the source in the aperture, or 1-D arrays for uniform sources. The pair of arrays are the pathloss correction
itself as a function of decenter in the aperture (pointsource only) and wavelength, and the variance on this measurement
(currently estimated). The data apply equally to all IFU slices. The structure of the FITS file is as follows:

HDU EXTNAME XTENSION Dimensions Data type
1 PS ImageHDU 21 x 21 x 21 float64
2 PSVAR ImageHDU 21 x 21 x 21 float64
3 UNI ImageHDU 21 float64
4 UNIVAR ImageHDU 21 float64

15.1. Package Index 435

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NIRSpec Fixed Slit

The NIRSpec Fixed Slit reference file has the following FITS structure:

HDU EXTNAME EXTVER XTENSION Dimensions Data type
1 PS 1 ImageHDU 21 x 21 x 21 float64
2 PSVAR 1 ImageHDU 21 x 21 x 21 float64
3 UNI 1 ImageHDU 21 float64
4 UNIVAR 1 ImageHDU 21 float64
5 PS 2 ImageHDU 21 x 21 x 21 float64
6 PSVAR 2 ImageHDU 21 x 21 x 21 float64
7 UNI 2 ImageHDU 21 float64
8 UNIVAR 2 ImageHDU 21 float64
9 PS 3 ImageHDU 21 x 21 x 21 float64
10 PSVAR 3 ImageHDU 21 x 21 x 21 float64
11 UNI 3 ImageHDU 21 float64
12 UNIVAR 3 ImageHDU 21 float64
13 PS 4 ImageHDU 21 x 21 x 21 float64
14 PSVAR 4 ImageHDU 21 x 21 x 21 float64
15 UNI 4 ImageHDU 21 float64
16 UNIVAR 4 ImageHDU 21 float64

HDU’s 1–4 are for the S200A1 aperture, 5–8 are for S200A2, 9–12 are for S200B1, and 13–16 are for S1600A1.
Currently there is no reference data for the S400A1 aperture.

NIRSpec MSASPEC

The NIRSpec MSASPEC reference file has 2 sets of 4 extensions: one set for the 1x1 aperture (slitlet) size and one set
for the 1x3 aperture (slitlet) size. Currently there is not any reference data for other aperture sizes. The FITS file has
the following structure:

HDU EXTNAME EXTVER XTENSION Dimensions Data type
1 PS 1 ImageHDU 21 x 63 x 21 float64
2 PSVAR 1 ImageHDU 21 x 63 x 21 float64
3 UNI 1 ImageHDU 21 float64
4 UNIVAR 1 ImageHDU 21 float64
5 PS 2 ImageHDU 21 x 63 x 21 float64
6 PSVAR 2 ImageHDU 21 x 63 x 21 float64
7 UNI 2 ImageHDU 21 float64
8 UNIVAR 2 ImageHDU 21 float64

436 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NIRISS SOSS

The NIRISS SOSS reference file has just 1 extension HDU. The structure of the FITS file is as follows:

HDU EXTNAME XTENSION Dimensions Data type
1 PS ImageHDU 17 x 2040 x 1 float32

The PS extension contains a 3-D array of correction values. The third dimension (length = 1) is a dummy to force the
array dimensionality to be the same as the NIRSpec reference file arrays. The other 2 dimensions refer to the number
of columns in the correction (the same as the number of columns in the science data) and the range of values for the
Pupil Wheel position (PWCPOS).

WCS Header Keywords

The headers of the pathloss extensions in all of the above reference files should contain WCS information that describes
what variables the correction depends on and how they relate to the dimensions of the correction array.

NIRSpec

For the NIRSpec reference files (IFU, Fixed Slit, and MSASPEC), the WCS keywords should have the values shown
in the tables below. Dimension 1 expresses the decenter along the dispersion direction for a point source:

Keyword Value Comment
CRPIX1 1.0 Reference pixel in fastest dimension
CRVAL1 -0.5 Coordinate value at this reference pixel
CDELT1 0.05 Change in coordinate value for unit change in index
CTYPE1 ‘UNITLESS’ Type of physical coordinate in this dimension

Dimension 2 expresses the decenter along the direction perpendicular to the dispersion for a point source:

CRPIX2 1.0 Reference pixel in fastest dimension
CRVAL2 -0.5 Coordinate value at this reference pixel
CDELT2 0.05 Change in coordinate value for unit change in index
CTYPE2 ‘UNITLESS’ Type of physical coordinate in this dimension

Dimension 3 expresses the change of correction as a function of wavelength:

CRPIX3 1.0 Reference pixel in fastest dimension
CRVAL3 6.0E-7 Coordinate value at this reference pixel
CDELT3 2.35E-7 Change in coordinate value for unit change in index
CTYPE3 ‘METER’ Type of physical coordinate in this dimension

15.1. Package Index 437

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NIRISS SOSS

The NIRISS SOSS reference file should also have WCS components, but their interpretation is different from those in
the NIRSpec reference file. Dimension 1 expresses the column number in the science data:

Keyword Value Comment
CRPIX1 5.0 Reference pixel in fastest dimension
CRVAL1 5.0 Coordinate value at this reference pixel
CDELT1 1.0 Change in coordinate value for unit change in index
CTYPE1 ‘PIXEL’ Type of physical coordinate in this dimension

Dimension 2 expresses the value of the PWCPOS keyword:

CRPIX2 9.0 Reference pixel in fastest dimension
CRVAL2 245.304 Coordinate value at this reference pixel
CDELT2 0.1 Change in coordinate value for unit change in index
CTYPE2 ‘Pupil Wheel Setting’ Type of physical coordinate in this dimension

Dimension 3 is a dummy axis for the NIRISS SOSS reference file:

CRPIX3 1.0 Reference pixel in fastest dimension
CRVAL3 1.0 Coordinate value at this reference pixel
CDELT3 1.0 Change in coordinate value for unit change in index
CTYPE3 ‘Dummy’ Type of physical coordinate in this dimension

MIRI LRS

For the MIRI LRS reference file, the WCS keywords should have the values shown in the tables below. Dimension 1
expresses the decenter of a point source in the spatial direction (perpendicular to dispersion):

Keyword Value Comment
CRPIX1 1.0 Reference pixel in the spatial direction
CRVAL1 -25.0 Coordinate value at this reference pixel
CDELT1 1.0 Change in coordinate value for unit change in index
CTYPE1 ‘UNITLESS’ Type of physical coordinate in this dimension

Dimension 2 expresses the decenter along the dispersion for a point source:

CRPIX2 1.0 Reference pixel in dispersion direction
CRVAL2 -5.0 Coordinate value at this reference pixel
CDELT2 0.5 Change in coordinate value for unit change in index
CTYPE2 ‘UNITLESS’ Type of physical coordinate in this dimension

Note that WCS keywords related to wavelength are not needed for the MIRI LRS reference file, because an array of
wavelength values is included in the table of reference data.

438 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.pathloss Package

Classes

PathLossStep([name, parent, config_file, ...]) PathLossStep: Apply the path loss correction to a sci-
ence exposure.

PathLossStep

class jwst.pathloss.PathLossStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

PathLossStep: Apply the path loss correction to a science exposure.

Pathloss depends on the centering of the source in the aperture if the source is a point source.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

15.1. Package Index 439

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'pathloss'

reference_file_types = ['pathloss']

spec

inverse = boolean(default=False) # Invert the operation
source_type = string(default=None) # Process as specified source type
user_slit_loc = float(default=None) # User-provided correction to MIRI LRS␣
→˓source location

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep PathLossStepStep

15.1.42 Persistence Correction

Description

Class
jwst.persistence.PersistenceStep

Alias
persistence

Based on a model, this step computes the number of traps that are expected to have captured or released a charge during
an exposure. The released charge is proportional to the persistence signal, and this will be subtracted (group by group)
from the science data. An image of the number of filled traps at the end of the exposure will be written as an output
file, in order to be used as input for correcting the persistence of a subsequent exposure.

440 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

There may be an input traps-filled file (defaults to 0), giving the number of traps that are filled in each pixel. There
is one plane of this 3-D image for each “trap family,” sets of traps having similar capture and decay parameters. The
traps-filled file is therefore coupled with the trappars reference table, which gives parameters family-by-family. There
are currently three trap families.

If an input traps-filled file was specified, the contents of that file will be updated (decreased) to account for trap decays
from the EXPEND of the traps-filled file to the EXPSTART of the current science file before starting the processing
of the science data.

When processing a science image, the traps-filled file is the basis for computing the number of trap decays, which are
computed group-by-group. On the other hand, the trap-density file is the basis for predicting trap captures, which are
computed at the end of each integration. The traps-filled file will be updated (decreased by the number of traps that
released a charge) after processing each group of the science image. The traps-filled file will then be increased by the
number of traps that were predicted to have captured a charge by the end of each integration.

There is often a reset at the beginning of each integration, and if so, that time (a frame time) will be included in the
trap capture for each integration, and it will be included for the tray decay for the first group of each integration.

The number of trap decays in a given time interval is computed as follows:

𝑛_𝑑𝑒𝑐𝑎𝑦𝑠 = 𝑡𝑟𝑎𝑝𝑠𝑓𝑖𝑙𝑙𝑒𝑑 · (1− 𝑒𝑥𝑝(−∆𝑡/𝜏))

where trapsfilled is the number of filled traps, i.e. the value of the traps-filled image at the beginning of the time interval,
for the current trap family and at the current pixel; ∆𝑡 is the time interval (seconds) over which the decay is computed;
and 𝜏 is the reciprocal of the absolute value of the decay parameter (column name “decay_param”) for the current trap
family. Since this is called for each group, the value of the traps-filled image must be updated at the end of each group.

For each pixel, the persistence in a group is the sum of the trap decays over all trap families. This persistence is
subtracted from the science data for the current group. Pixels that have large persistence values subtracted from them
are flagged in the DQ array, as information to the user (see the Step Arguments section).

Trap capture is more involved than is trap decay. The computation of trap capture is different for an impulse (e.g. a
cosmic-ray event) than for a ramp, and saturation also affects capture. Computing trap capture needs an estimate of the
ramp slope, and it needs the locations (pixel number and group number) of cosmic-ray jumps. At the time of writing,
the persistence step is run before the jump step, so the GROUPDQ array in the input to persistence does not
contain the information that is required to account for cosmic-ray events.

Because the persistence step is run before ramp_fit, the persistence step does not have the value of the slope, so the
step must compute its own estimate of the slope. The algorithm is as follows. First of all, the slope must be computed
before the loop over groups in which trap decay is computed and persistence is corrected, since that correction will in
general change the slope. Within an integration, the difference is taken between groups of the ramp. The difference is
set to a very large value if a group is saturated. (The “very large value” is the larger of 105 and twice the maximum
difference between groups.) The difference array is then sorted. All the differences affected by saturation will be at
the high end. Cosmic-ray affected differences should be just below, except for jumps that are smaller than some of the
noise. We can then ignore saturated values and jumps by knowing how many of them there are (which we know from
the GROUPDQ array). The average of the remaining differences is the slope. The slope is needed with two different
units. The grp_slope is the slope in units of DN (data numbers) per group. The slope is in units of (DN / persistence
saturation limit) / second, where “persistence saturation limit” is the (pixel-dependent) value (in DN) from the PERSAT
reference file.

The number of traps that capture charge is computed at the end of each integration. The number of captures is computed
in three phases: the portion of the ramp that is increasing smoothly from group to group; the saturated portion (if any)
of the ramp; the contribution from cosmic-ray events.

For the smoothly increasing portion of the ramp, the time interval over which traps capture charge is nominally 𝑛𝑟𝑒𝑠𝑒𝑡𝑠·
𝑡𝑓𝑟𝑎𝑚𝑒 + 𝑛𝑔𝑟𝑜𝑢𝑝𝑠 · 𝑡𝑔𝑟𝑜𝑢𝑝 where nresets is the number of resets at the beginning of the integration, tframe is the
frame time, and tgroup is the group time. However, this time must be reduced by the group time multiplied by the
number of groups for which the data value exceeds the persistence saturation limit. This reduced value is 𝐷𝑒𝑙𝑡𝑎𝑡 in the
expression below.

15.1. Package Index 441

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

The number of captures in each pixel during the integration is:

𝑡𝑟𝑎𝑝𝑠𝑓𝑖𝑙𝑙𝑒𝑑 = 2·(𝑡𝑟𝑎𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦 · 𝑠𝑙𝑜𝑝𝑒2

· (∆𝑡2 · (𝑝𝑎𝑟0 + 𝑝𝑎𝑟2)/2 + 𝑝𝑎𝑟0 · (∆𝑡 · 𝜏 + 𝜏2)

· 𝑒𝑥𝑝(−∆𝑡/𝜏)− 𝑝𝑎𝑟0 · 𝜏2))

where par0 and par2 are the values from columns “capture0” and “capture2” respectively, from the trappars reference
table, and 𝜏 is the reciprocal of the absolute value from column “capture1”, for the row corresponding to the current
trap family. trapdensity is the relative density of traps, normalized to a median of 1. ∆𝑡 is the time interval in seconds
over which the charge capture is to be computed, as described above. slope is the ramp slope (computed before the loop
over groups), in units of fraction of the persistence saturation limit per second. This returns the number of traps that
were predicted to be filled during the integration, due to the smoothly increasing portion of the ramp. This is passed
as input to the function that computes the additional traps that were filled due to the saturated portion of the ramp.

“Saturation” in this context means that the data value in a group exceeds the persistence saturation limit, i.e. the value
in the PERSAT reference file. filled_during_integration is (initially) the array of the number of pixels that were filled,
as returned by the function for the smoothly increasing portion of the ramp. In the function for computing decays
for the saturated part of the ramp, for pixels that are saturated in the first group, filled_during_integration is set to
𝑡𝑟𝑎𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦 · 𝑝𝑎𝑟2 (column “capture2”). This accounts for “instantaneous” traps, ones that fill over a negligible time
scale.

The number of “exponential” traps (as opposed to instantaneous) is:

𝑒𝑥𝑝_𝑓𝑖𝑙𝑙𝑒𝑑_𝑡𝑟𝑎𝑝𝑠 = 𝑓𝑖𝑙𝑙𝑒𝑑_𝑑𝑢𝑟𝑖𝑛𝑔_𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛− 𝑡𝑟𝑎𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦 · 𝑝𝑎𝑟2

and the number of traps that were empty and could be filled is:

𝑒𝑚𝑝𝑡𝑦_𝑡𝑟𝑎𝑝𝑠 = 𝑡𝑟𝑎𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦 · 𝑝𝑎𝑟0− 𝑒𝑥𝑝_𝑓𝑖𝑙𝑙𝑒𝑑_𝑡𝑟𝑎𝑝𝑠

so the traps that are filled depending on the exponential component is:

𝑛𝑒𝑤_𝑓𝑖𝑙𝑙𝑒𝑑_𝑡𝑟𝑎𝑝𝑠 = 𝑒𝑚𝑝𝑡𝑦_𝑡𝑟𝑎𝑝𝑠 · (1− 𝑒𝑥𝑝(−𝑠𝑎𝑡𝑡𝑖𝑚𝑒/𝜏))

where sattime is the duration in seconds over which the pixel was saturated.

Therefore, the total number of traps filled during the current integration is:

𝑓𝑖𝑙𝑙𝑒𝑑_𝑡𝑟𝑎𝑝𝑠 = 𝑓𝑖𝑙𝑙𝑒𝑑_𝑑𝑢𝑟𝑖𝑛𝑔_𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛+ 𝑛𝑒𝑤_𝑓𝑖𝑙𝑙𝑒𝑑_𝑡𝑟𝑎𝑝𝑠

This value is passed to the function that computes the additional traps that were filled due to cosmic-ray events.

The number of traps that will be filled due to a cosmic-ray event depends on the amount of time from the CR event to
the end of the integration. Thus, we must first find (via the flags in the GROUPDQ extension) which groups and which
pixels were affected by CR hits. This is handled by looping over group number, starting with the second group (since
we currently don’t flag CRs in the first group), and selecting all pixels with a jump. For these pixels, the amplitude of
the jump is computed to be the difference between the current and previous groups minus grp_slope (the slope in DN
per group). If a jump is negative, it will be set to zero.

If there was a cosmic-ray hit in group number k, then

∆𝑡 = (𝑛𝑔𝑟𝑜𝑢𝑝𝑠− 𝑘 − 0.5) · 𝑡𝑔𝑟𝑜𝑢𝑝

is the time from the CR-affected group to the end of the integration, with the approximation that the CR event was in
the middle (timewise) of the group. The number of traps filled as a result of this CR hit is:

𝑐𝑟𝑓𝑖𝑙𝑙𝑒𝑑 = 2 · 𝑡𝑟𝑎𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦 · 𝑗𝑢𝑚𝑝 · (𝑝𝑎𝑟0 · (1− 𝑒𝑥𝑝(−∆𝑡/𝜏)) + 𝑝𝑎𝑟2)

and the number of filled traps for the current pixel will be incremented by that amount.

442 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Input

The input science file is a RampModel.

A trapsfilled file (TrapsFilledModel) may optionally be passed as input as well. This normally would be specified unless
the previous exposure with the current detector was taken more than several hours previously, that is, so long ago that
persistence from that exposure could be ignored. If none is provided, an array filled with 0 will be used as the starting
point for computing new traps-filled information.

Output

The output science file is a RampModel, a persistence-corrected copy of the input data.

A second output file will be written, with suffix “_trapsfilled”. This is a TrapsFilledModel, the number of filled traps at
each pixel at the end of the exposure. This takes into account the capture of charge by traps due to the current science
exposure, as well as the release of charge from traps given in the input trapsfilled file, if one was specified. Note that
this file will always be written, even if no input_trapsfilled file was specified. This file should be passed as input to
the next run of the persistence step for data that used the same detector as the current run. Pass this file using the
input_trapsfilled argument.

If the user specifies save_persistence=True, a third output file will be written, with suffix “_output_pers”. This is
a RampModel matching the output science file, but this gives the persistence that was subtracted from each group in
each integration.

Step Arguments

The persistence step has three step-specific arguments.

• --input_trapsfilled

input_trapsfilled is the name of the most recent trapsfilled file for the current detector. If this is not specified, an
array of zeros will be used as an initial value. If this is specified, it will be used to predict persistence for the input
science file. The step writes an output trapsfilled file, and that could be used as input to the persistence step for a
subsequent exposure.

• --flag_pers_cutoff

If this floating-point value is specified, pixels that receive a persistence correction greater than or equal to
flag_pers_cutoff DN (the default is 40) are flagged in the PIXELDQ array of the output file with the DQ value
“PERSISTENCE”.

• --save_persistence

If this boolean parameter is specified and is True (the default is False), the persistence that was subtracted (group by
group, integration by integration) will be written to an output file with suffix “_output_pers”.

Reference Files

The persistence step uses TRAPDENSITY , PERSAT , and TRAPPARS reference files.

15.1. Package Index 443

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

TRAPDENSITY Reference File

REFTYPE
TRAPDENSITY

Data model
TrapDensityModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.TrapDensityModel.html#jwst.datamodels.TrapDensityModel)

The TRAPDENSITY reference file contains a pixel-by-pixel map of the trap density.

Reference Selection Keywords for TRAPDENSITY

CRDS selects appropriate TRAPDENSITY references based on the following keywords. TRAPDENSITY is not ap-
plicable for instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
FGS INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
NIRCam INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
NIRISS INSTRUME, DETECTOR, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

444 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.TrapDensityModel.html#jwst.datamodels.TrapDensityModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Type Specific Keywords for TRAPDENSITY

In addition to the standard reference file keywords listed above, the following keywords are required in TRAPDENSITY
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for TRAPDENSITY):

Keyword Data Model Name
DETECTOR model.meta.instrument.detector

Reference File Format

TRAPDENSITY reference files are FITS format, with 2 IMAGE extensions and 1 BINTABLE extension. The FITS
primary HDU does not contain a data array. The format and content of the file is as follows:

EXTNAME XTENSION NAXIS Dimensions Data type
SCI IMAGE 2 ncols x nrows float
DQ IMAGE 2 ncols x nrows int
DQ_DEF BINTABLE 2 TFIELDS = 4 N/A

The DQ_DEF extension contains the bit assignments used in the DQ array. It contains the following 4 columns:

TTYPE TFORM Description
BIT integer The bit number, starting at zero
VALUE integer The equivalent base-10 value of BIT
NAME string The mnemonic name of the data quality condition
DESCRIPTION string A description of the data quality condition

NOTE: For more information on standard bit definitions see: Data Quality Flags.

PERSAT Reference File

REFTYPE
PERSAT

Data model
PersistenceSatModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.PersistenceSatModel.html#jwst.datamodels.PersistenceSatModel)

The PERSAT reference file contains a pixel-by-pixel map of the persistence saturation (full well) threshold.

Reference Selection Keywords for PERSAT

CRDS selects appropriate PERSAT references based on the following keywords. PERSAT is not applicable for instru-
ments not in the table. All keywords used for file selection are required.

Instrument Keywords
FGS INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
NIRCam INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
NIRISS INSTRUME, DETECTOR, DATE-OBS, TIME-OBS

15.1. Package Index 445

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.PersistenceSatModel.html#jwst.datamodels.PersistenceSatModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for PERSAT

In addition to the standard reference file keywords listed above, the following keywords are required in PERSAT refer-
ence files, because they are used as CRDS selectors (see Reference Selection Keywords for PERSAT):

Keyword Data Model Name
DETECTOR model.meta.instrument.detector

Reference File Format

PERSAT reference files are FITS format, with 2 IMAGE extensions and 1 BINTABLE extension. The FITS primary
HDU does not contain a data array. The format and content of the file is as follows:

EXTNAME XTENSION NAXIS Dimensions Data type
SCI IMAGE 2 ncols x nrows float
DQ IMAGE 2 ncols x nrows int
DQ_DEF BINTABLE 2 TFIELDS = 4 N/A

The DQ_DEF extension contains the bit assignments used in the DQ array. It contains the following 4 columns:

TTYPE TFORM Description
BIT integer The bit number, starting at zero
VALUE integer The equivalent base-10 value of BIT
NAME string The mnemonic name of the data quality condition
DESCRIPTION string A description of the data quality condition

446 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NOTE: For more information on standard bit definitions see: Data Quality Flags.

TRAPPARS Reference File

REFTYPE
TRAPPARS

Data model
TrapParsModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.TrapParsModel.html#jwst.datamodels.TrapParsModel)

The TRAPPARS reference file contains default parameter values used in the persistence correction.

Reference Selection Keywords for TRAPPARS

CRDS selects appropriate TRAPPARS references based on the following keywords. TRAPPARS is not applicable for
instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
FGS INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
NIRCam INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
NIRISS INSTRUME, DETECTOR, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

15.1. Package Index 447

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.TrapParsModel.html#jwst.datamodels.TrapParsModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Type Specific Keywords for TRAPPARS

In addition to the standard reference file keywords listed above, the following keywords are required in TRAPPARS
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for TRAPPARS):

Keyword Data Model Name
DETECTOR model.meta.instrument.detector

Reference File Format

TRAPPARS reference files are FITS format, with 1 BINTABLE extension. The FITS primary HDU does not contain
a data array. The format and content of the file is as follows:

EXTNAME XTENSION Dimensions
TRAPPARS BINTABLE TFIELDS = 4

The format and contents of the table extension is as follows:

Column name Data type Description
capture0 float Coefficient of exponential capture term
capture1 float Minus the reciprocal of capture e-folding time
capture2 float The “instantaneous” capture coefficient
decay_param float Minus the reciprocal of decay e-folding time

At the present time, there are no persistence reference files for MIRI and NIRSpec. CRDS will return “N/A” for the
names of the reference files if the persistence step is run on MIRI or NIRSpec data, in which case the input will be
returned unchanged, except that the primary header keyword S_PERSIS will will have been set to ‘SKIPPED’.

jwst.persistence Package

Classes

PersistenceStep([name, parent, config_file, ...]) PersistenceStep: Correct a science image for persistence.

PersistenceStep

class jwst.persistence.PersistenceStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

PersistenceStep: Correct a science image for persistence.

Create a Step instance.

Parameters

448 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of
the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'persistence'

reference_file_types = ['trapdensity', 'trappars', 'persat']

spec

input_trapsfilled = string(default="") # Name of the most recent trapsfilled␣
→˓file for the current detector
flag_pers_cutoff = float(default=40.) # Pixels with persistence correction >=␣
→˓this value in DN will be flagged in the DQ
save_persistence = boolean(default=False) # Save subtracted persistence to an␣
→˓output file with suffix '_output_pers'
save_trapsfilled = boolean(default=True) # Save updated trapsfilled file with␣
→˓suffix '_trapsfilled'

15.1. Package Index 449

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep PersistenceStepStep

15.1.43 Photometric Calibration

Description

Class
jwst.photom.PhotomStep

Alias
photom

The photom step applies flux (photometric) calibrations to a data product to convert the data from units of countrate
to surface brightness (or, in some cases described below, to units of flux density). The calibration information is read
from a photometric reference file. The exact nature of the calibration information loaded from the reference file and
applied to the science data depends on the instrument mode, as described below.

This step relies on having wavelength information available when working on spectroscopic data and therefore the
assign_wcs step must be applied before executing the photom step. Pixels with wavelengths that are outside of the
range covered by the calibration reference data are set to zero and flagged in the DQ array as “DO_NOT_USE.” Some
spectroscopic modes also rely on knowing whether the target is a point or extended source and therefore the srctype
step must be applied before executing the photom step.

Upon successful completion of this step, the status keyword S_PHOTOM will be set to “COMPLETE”. Furthermore,
the BUNIT keyword value in the SCI and ERR extension headers of the science product are updated to reflect the
change in units.

Imaging and non-IFU Spectroscopy

Photom Data

For these instrument modes the PHOTOM reference file contains a table of exposure parameters that define various
instrument configurations and the flux conversion data for each of those configurations. The table contains one row for
each allowed combination of exposure parameters, such as detector, filter, pupil, and grating. The photom step searches
the table for the row that matches the parameters of the science exposure and then loads the calibration information
from that row of the table. Note that for NIRSpec fixed-slit mode, the step will search the table for each slit in use in
the exposure, using the table row that corresponds to each slit.

450 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

For these table-based PHOTOM reference files, the calibration information in each row includes a scalar flux conversion
constant, as well as optional arrays of wavelength and relative response (as a function of wavelength). For spectroscopic
data, if the photom step finds that the wavelength and relative response arrays in the reference table row are populated,
it loads those 1-D arrays and interpolates the response values into the 2-D space of the science image based on the
wavelength at each pixel.

For NIRSpec spectroscopic and NIRISS SOSS data, the conversion factors in the PHOTOM reference file give results
in flux density (MJy). For point sources, the output of the photom step will be in these units. For extended sources,
however, the values will be divided by the average solid angle of a pixel to give results in surface brightness (MJy/sr).
The photom step determines whether the target is a point or extended source from the SRCTYPE keyword value, which
is set by the srctype step. If the SRCTYPE keyword is not present or is set to “UNKNOWN”, the default behavior is to
treat it as a uniform/extended source.

The combination of the scalar conversion factor and the 2-D response values are then applied to the science data,
including the SCI and ERR arrays, as well as the variance (VAR_POISSON, VAR_RNOISE, and VAR_FLAT) arrays.
The correction values are multiplied into the SCI and ERR arrays, and the square of the correction values are multiplied
into the variance arrays.

The scalar conversion constant is copied to the header keyword PHOTMJSR, which gives the conversion from DN/s
to megaJy/steradian (or to megajanskys, for NIRSpec and NIRISS SOSS point sources, as described above) that was
applied to the data. The step also computes the equivalent conversion factor to units of microJy/square-arcsecond (or
microjanskys) and stores it in the header keyword PHOTUJA2.

MIRI Imaging

For MIRI imaging mode, the reference file can optionally contain a table of coefficients that are used to apply time-
dependent corrections to the scalar conversion factor. If the time-dependent coefficients are present in the reference
file, the photom step will apply the correction based on the observation date of the exposure being processed.

NIRSpec Fixed-Slit Primary Slit

The primary slit in a NIRSpec fixed-slit exposure receives special handling. If the primary slit, as given by the
“FXD_SLIT” keyword value, contains a point source, as given by the “SRCTYPE” keyword, it is necessary to know
the photometric conversion factors for both a point source and a uniform source for use later in the master background
step in Stage 3 processing. The point source version of the photometric correction is applied to the slit data, but that
correction is not appropriate for the background signal contained in the slit, and hence corrections must be applied later
in the master background step.

So in this case the photom step will compute 2D arrays of conversion factors that are appropriate for a uniform source
and for a point source, and store those correction factors in the “PHOTOM_UN” and “PHOTOM_PS” extensions,
respectively, of the output data product. The point source correction array is also applied to the slit data.

Note that this special handling is only needed when the slit contains a point source, because in that case corrections to the
wavelength grid are applied by the wavecorr step to account for any source mis-centering in the slit and the photometric
conversion factors are wavelength-dependent. A uniform source does not require wavelength corrections and hence the
photometric conversions will differ for point and uniform sources. Any secondary slits that may be included in a fixed-
slit exposure do not have source centering information available, so the wavecorr step is not applied, and hence there’s
no difference between the point source and uniform source photometric conversions for those slits.

15.1. Package Index 451

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Pixel Area Data

For all instrument modes other than NIRSpec the photom step loads a 2-D pixel area map when an AREA reference
file is available and appends it to the science data product. The pixel area map is copied into an image extension called
“AREA” in the science data product.

The step also populates the keywords PIXAR_SR and PIXAR_A2 in the science data product, which give the average
pixel area in units of steradians and square arcseconds, respectively. For most instrument modes, the average pixel area
values are copied from the primary header of the AREA reference file, when this file is available. Otherwise the pixel
area values are copied from the primary header of the PHOTOM reference file. For NIRSpec, however, the pixel area
values are copied from a binary table extension in the AREA reference file.

NIRSpec IFU

The photom step uses the same type of tabular PHOTOM reference file for NIRSpec IFU exposures as discussed above
for other modes, where there is a single table row that corresponds to a given exposure’s filter and grating settings. It
retrieves the scalar conversion constant, as well as the 1-D wavelength and relative response arrays, from that row. It
also loads the IFU pixel area data from the AREA reference file.

It then uses the scalar conversion constant, the 1-D wavelength and relative response, and pixel area data to compute a 2-
D sensitivity map (pixel-by-pixel) for the entire science image. The 2-D SCI and ERR arrays in the science exposure are
multiplied by the 2D sensitivity map, which converts the science pixels from countrate to surface brightness. Variance
arrays are multiplied by the square of the conversion factors.

MIRI MRS

For the MIRI MRS mode, the PHOTOM reference file contains 2-D arrays of sensitivity factors and pixel sizes that are
loaded into the step. As with NIRSpec IFU, the sensitivity and pixel size data are used to compute a 2-D sensitivity
map (pixel-by-pixel) for the entire science image. This is multiplied into both the SCI and ERR arrays of the science
exposure, which converts the pixel values from countrate to surface brightness. Variance arrays are multiplied by the
square of the conversion factors.

MIRI MRS data have a time-variable photometric response that is significant at long wavelengths. A correction has
been derived from observations of calibration standard stars. The form of the correction uses an exponential function
that asymptotically approaches a constant value in each wavelength band. A plot of the count rate loss in each MRS
band, as a function of time, is shown in Figure 1.

452 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Figure 1: Time-dependent decrease in the observed MRS count rate as measured from internal flat-field exposures.
Solid points illustrate measurements at the central wavelength of each of the 12 MRS bands; curves represent the best
fit models used for correction in the pipeline.

The MRS photom reference file contains a table of correction coefficients for each band in which a correction has been
determined. If the time-dependent coefficients are present in the reference file for a given band, the photom step will
apply the correction to the exposure being processed.

Arguments

The photom step has the following optional arguments.

--inverse (boolean, default=False)
A flag to indicate whether the math operations used to apply the correction should be inverted (i.e. divide the
calibration data into the science data, instead of the usual multiplication).

--source_type (string, default=None)
Force the processing to use the given source type (POINT, EXTENDED), instead of using the information con-
tained in the input data.

--mrs_time_correction (boolean, default=True)
A flag to indicate whether to turn on the time and wavelength dependent correction for MIRI MRS data.

Reference Files

The photom step uses PHOTOM and pixel AREA reference files. The AREA reference file is only used when processing
imaging and NIRSpec IFU observations.

PHOTOM Reference File

REFTYPE
PHOTOM

The PHOTOM reference file contains conversion factors for putting pixel values into physical units.

Reference Selection Keywords for PHOTOM

CRDS selects appropriate PHOTOM references based on the following keywords. PHOTOM is not applicable for
instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
FGS INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
MIRI INSTRUME, DETECTOR, BAND, DATE-OBS, TIME-OBS
NIRCam INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
NIRISS INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
NIRSpec INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS

15.1. Package Index 453

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for PHOTOM

In addition to the standard reference file keywords listed above, the following keywords are required in PHOTOM
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for PHOTOM):

Keyword Data Model Name Instruments
DETECTOR model.meta.instrument.detector FGS, MIRI, NIRCam, NIRISS
EXP_TYPE model.meta.exposure.type All
BAND model.meta.instrument.band MIRI

Tabular PHOTOM Reference File Format

PHOTOM reference files are FITS format. For all modes except MIRI MRS, the PHOTOM file contains tabular data
in a BINTABLE extension with EXTNAME = ‘PHOTOM’. The FITS primary HDU does not contain a data array. The
contents of the table extension vary a bit for different instrument modes, as shown in the tables below.

Data model
FgsImgPhotomModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.FgsImgPhotomModel.html#jwst.datamodels.FgsImgPhotomModel)

Instrument Mode Column name Data type Dimensions Units
FGS Image photmjsr float scalar MJy/steradian/(DN/sec)

uncertainty float scalar MJy/steradian/(DN/sec)

Data model
MirImgPhotomModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirImgPhotomModel.html#jwst.datamodels.MirImgPhotomModel)

454 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.FgsImgPhotomModel.html#jwst.datamodels.FgsImgPhotomModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirImgPhotomModel.html#jwst.datamodels.MirImgPhotomModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Instrument Mode Column name Data type Dimensions Units
MIRI Image filter string 12 N/A

subarray string 15 N/A
photmjsr float scalar MJy/steradian/(DN/sec)
uncertainty float scalar MJy/steradian/(DN/sec)

The MIRI Imager PHOTOM reference file can contain an optional BINTABLE extension named “TIMECOEFF”,
containing coefficients for an time-dependent correction. The format of this additional table extension is as follows:

EXTNAME XTENSION NAXIS Dimensions Data type
TIMECOEFF BINTABLE 2 TFIELDS = 3 float32

Data model
MirLrsPhotomModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirLrsPhotomModel.html#jwst.datamodels.MirLrsPhotomModel)

Instrument Mode Column name Data type Dimensions Units
MIRI LRS filter string 12 N/A

subarray string 15 N/A
photmjsr float scalar MJy/steradian/(DN/sec)
uncertainty float scalar MJy/steradian/(DN/sec)
nelem integer scalar N/A
wavelength float array microns
relresponse float array unitless
reluncertainty float array unitless

Data model
NrcImgPhotomModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrcImgPhotomModel.html#jwst.datamodels.NrcImgPhotomModel)

Instrument Mode Column name Data type Dimensions Units
NIRCam Image filter string 12 N/A

pupil string 12 N/A
photmjsr float scalar MJy/steradian/(DN/sec)
uncertainty float scalar MJy/steradian/(DN/sec)

Data model
NrcWfssPhotomModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrcWfssPhotomModel.html#jwst.datamodels.NrcWfssPhotomModel)

Instrument Mode Column name Data type Dimensions Units
NIRCam WFSS filter string 12 N/A

pupil string 15 N/A
order integer scalar N/A
photmjsr float scalar MJy/steradian/(DN/sec)
uncertainty float scalar MJy/steradian/(DN/sec)
nelem integer scalar N/A
wavelength float array microns
relresponse float array unitless
reluncertainty float array unitless

15.1. Package Index 455

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirLrsPhotomModel.html#jwst.datamodels.MirLrsPhotomModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrcImgPhotomModel.html#jwst.datamodels.NrcImgPhotomModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrcWfssPhotomModel.html#jwst.datamodels.NrcWfssPhotomModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Data model
NisImgPhotomModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NisImgPhotomModel.html#jwst.datamodels.NisImgPhotomModel)

Instrument Mode Column name Data type Dimensions Units
NIRISS Image filter string 12 N/A

pupil string 12 N/A
photmjsr float scalar MJy/steradian/(DN/sec)
uncertainty float scalar MJy/steradian/(DN/sec)

Data model
NisSossPhotomModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NisSossPhotomModel.html#jwst.datamodels.NisSossPhotomModel)

Instrument Mode Column name Data type Dimensions Units
NIRISS SOSS filter string 12 N/A

pupil string 15 N/A
order integer scalar N/A
photmj float scalar MJy/(DN/sec)
uncertainty float scalar MJy/(DN/sec)
nelem integer scalar N/A
wavelength float array microns
relresponse float array unitless
reluncertainty float array unitless

Data model
NisWfssPhotomModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NisWfssPhotomModel.html#jwst.datamodels.NisWfssPhotomModel)

Instrument Mode Column name Data type Dimensions Units
NIRISS WFSS filter string 12 N/A

pupil string 15 N/A
order integer scalar N/A
photmjsr float scalar MJy/steradian/(DN/sec)
uncertainty float scalar MJy/steradian/(DN/sec)
nelem integer scalar N/A
wavelength float array microns
relresponse float array unitless
reluncertainty float array unitless

Data model
NrsFsPhotomModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrsFsPhotomModel.html#jwst.datamodels.NrsFsPhotomModel)

Instrument Mode Column name Data type Dimensions Units
NIRSpec Fixed

Slit
filter string 12 N/A
grating string 15 N/A
slit string 15 N/A
photmj float scalar MJy/(DN/sec)
uncertainty float scalar MJy/(DN/sec)
nelem integer scalar N/A
wavelength float array microns
relresponse float array unitless
reluncertainty float array unitless

456 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NisImgPhotomModel.html#jwst.datamodels.NisImgPhotomModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NisSossPhotomModel.html#jwst.datamodels.NisSossPhotomModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NisWfssPhotomModel.html#jwst.datamodels.NisWfssPhotomModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrsFsPhotomModel.html#jwst.datamodels.NrsFsPhotomModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Data model
NrsMosPhotomModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrsMosPhotomModel.html#jwst.datamodels.NrsMosPhotomModel)

Instrument Mode Column name Data type Dimensions Units
NIRSpec MOS

and
IFU

filter string 12 N/A
grating string 15 N/A
photmj float scalar MJy/(DN/sec)
uncertainty float scalar MJy/(DN/sec)
nelem integer scalar N/A
wavelength float array microns
relresponse float array unitless
reluncertainty float array unitless

Row Selection

A row of data within the table is selected by the photom step based on the optical elements in use for the exposure. The
selection attributes are always contained in the first few columns of the table. The remaining columns contain the data
needed for photometric conversion. The row selection criteria for each instrument/mode are:

•FGS:
– No selection criteria (table contains a single row)

•MIRI:
– Imager and LRS: Filter and Subarray

– MRS: Does not use table-based reference file (see below)

•NIRCam:
– All: Filter and Pupil

•NIRISS:
– Imaging: Filter and Pupil

– Spectroscopic: Filter, Pupil, and Order number

•NIRSpec:
– IFU and MOS: Filter and Grating

– Fixed Slits: Filter, Grating, and Slit name

Note: For spectroscopic data the Nelem column should be present. Its value must be greater than 0, and Nelem entries
are read from each of the Wavelength and Relresponse arrays. Nelem is not used for imaging data because there are no
columns containing arrays.

The primary header of the tabular PHOTOM reference files contains the keywords PIXAR_SR and PIXAR_A2, which
give the average pixel area in units of steradians and square arcseconds, respectively.

15.1. Package Index 457

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrsMosPhotomModel.html#jwst.datamodels.NrsMosPhotomModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

MIRI MRS Photom Reference File Format

Data model
MirMrsPhotomModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirMrsPhotomModel.html#jwst.datamodels.MirMrsPhotomModel)

For MIRI MRS, the PHOTOM file contains 2-D arrays of conversion factors in IMAGE extensions. The FITS primary
HDU does not contain a data array. The format and content of the MIRI MRS PHOTOM reference file is as follows:

EXTNAME XTENSION NAXIS Dimensions Data type
SCI IMAGE 2 1032 x 1024 float
ERR IMAGE 2 1032 x 1024 float
DQ IMAGE 2 1032 x 1024 integer
PIXSIZ IMAGE 2 1032 x 1024 float
DQ_DEF BINTABLE 2 TFIELDS = 4 N/A
TIMECOEFF_CH11 BINTABLE 2 TFIELDS = 5 N/A
TIMECOEFF_CH21 BINTABLE 2 TFIELDS = 5 N/A
TIMECOEFF_CH31 BINTABLE 2 TFIELDS = 5 N/A
TIMECOEFF_CH41 BINTABLE 2 TFIELDS = 5 N/A

The SCI extension contains a 2D array of inverse sensitivity factors corresponding to each pixel in a 2D MRS slice
image. The sensitivity factors are in units of (MJy/pixel)/(DN/sec). The ERR extension contains a 2D array of uncer-
tainties for the SCI values, in the same units. The DQ extension contains a 2D array of bit-encoded data quality flags
for the SCI values. The DQ_DEF extension contains a table listing the definitions of the values used in the DQ array.
The PIXSIZ extension contains a 2D array of pixel sizes (i.e. solid angles), in units of square-arcsec.

The SCI and PIXSIZ array values are both divided into the science product SCI and ERR arrays, yielding surface
brightness in units of mJy/sq-arcsec.

Scalar PHOTMJSR and PHOTUJA2 values are stored in primary header keywords in the MIRI MRS PHOTOM refer-
ence files and are copied into the science product header by the photom step.

The TIMECOEFF_CH tables contain the parameters to correct the MRS time-dependent throughput loss. If these
tables do not exist in the reference file, then the MIRI MRS time-dependent correction is skipped.

Constructing a PHOTOM Reference File

The most straight-forward way to construct a tabular PHOTOM reference file is to populate a data model within python
and then save the data model to a FITS file. Each instrument mode has its own photom data model, as listed above,
which contains the columns of information unique to that instrument.

A NIRCam WFSS photom reference file, for example, could be constructed as follows from within the python environ-
ment:

>>> import numpy as np
>>> from stdatamodels.jwst import datamodels
>>> filter = np.array(['GR150C', 'GR150R'])
>>> pupil = np.array(['F140M', 'F200W'])
>>> order = np.array([1, 1], dtype=np.int16)
>>> photf = np.array([1.e-15, 3.e-15], dtype=np.float32)
>>> uncer = np.array([1.e-17, 3.e-17], dtype=np.float32)
>>> nrows = len(filter)
>>> nx = 437

(continues on next page)

1 Optional extension. If present, the MRS time-dependent throughput correction can be applied.

458 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirMrsPhotomModel.html#jwst.datamodels.MirMrsPhotomModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

>>> nelem = np.zeros(nrows, dtype=np.int16) + nx
>>> temp_wl = np.linspace(1.0, 5.0, nx, dtype=np.float32).reshape(1, nx)
>>> wave = np.zeros((nrows, nx), np.float32)
>>> wave[:] = temp_wl.copy()
>>> resp = np.ones((nrows, nx), dtype=np.float32)
>>> resp_unc = np.zeros((nrows, nx), dtype=np.float32)
>>> data_list = [(filter[i], pupil[i], order[i], photf[i], uncer[i], nelem[i],
... wave[i], resp[i], resp_unc[i]) for i in range(nrows)]
>>> data = np.array(data_list,
... dtype=[('filter', 'S12'),
... ('pupil', 'S15'),
... ('order', '<i2'),
... ('photmjsr', '<f4'),
... ('uncertainty', '<f4'),
... ('nelem', '<i2'),
... ('wavelength', '<f4', (nx,)),
... ('relresponse', '<f4', (nx,)),
... ('reluncertainty', '<f4', (nx,))])
>>> output = datamodels.NrcWfssPhotomModel(phot_table=data)
>>> output.save('nircam_photom_0001.fits')
'nircam_photom_0001.fits'

AREA Reference File

REFTYPE
AREA

The AREA reference file contains pixel area information for a given instrument mode.

Reference Selection Keywords for AREA

CRDS selects appropriate AREA references based on the following keywords. AREA is not applicable for instruments
not in the table. All keywords used for file selection are required.

Instrument Keywords
FGS INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
MIRI INSTRUME, DETECTOR, FILTER, EXP_TYPE, DATE-OBS, TIME-OBS
NIRCam INSTRUME, DETECTOR, FILTER, PUPIL, EXP_TYPE, DATE-OBS, TIME-OBS
NIRISS INSTRUME, DETECTOR, FILTER, PUPIL, EXP_TYPE, DATE-OBS, TIME-OBS
NIRSpec INSTRUME, DETECTOR, FILTER, GRATING, EXP_TYPE, DATE-OBS, TIME-OBS

15.1. Package Index 459

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for AREA

In addition to the standard reference file keywords listed above, the following keywords are required in AREA reference
files, because they are used as CRDS selectors (see Reference Selection Keywords for AREA):

Keyword Data Model Name Instrument
DETECTOR model.meta.instrument.detector All
EXP_TYPE model.meta.exposure.type MIRI, NIRCam, NIRISS, NIRSpec
FILTER model.meta.instrument.filter MIRI, NIRCam, NIRISS, NIRSpec
PUPIL model.meta.instrument.pupil NIRCam, NIRISS
GRATING model.meta.instrument.grating NIRSpec

460 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference File Format

AREA reference files are FITS format. For imaging modes (FGS, MIRI, NIRCam, and NIRISS) the AREA refer-
ence files contain 1 IMAGE extension, while reference files for NIRSpec spectroscopic modes contain 1 BINTABLE
extension. The FITS primary HDU does not contain a data array.

Imaging Modes

Data model
PixelAreaModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.PixelAreaModel.html#jwst.datamodels.PixelAreaModel)

The format of imaging mode AREA reference files is as follows:

EXTNAME XTENSION NAXIS Dimensions Data type
SCI IMAGE 2 ncols x nrows float

The SCI extension data array contains a 2-D pixel-by-pixel map of relative pixel areas, normalized to a value of 1.0.
The absolute value of the nominal pixel area is given in the primary header keywords PIXAR_SR and PIXAR_A2, in
units of steradians and square arcseconds, respectively. These keywords should have the same values as the PIXAR_SR
and PIXAR_A2 keywords in the header of the corresponding PHOTOM reference file.

NIRSpec Fixed-Slit Mode

Data model
NirspecSlitAreaModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecSlitAreaModel.html#jwst.datamodels.NirspecSlitAreaModel)

The BINTABLE extension has EXTNAME=’AREA’ and has column characteristics shown below. There is one row
for each of the 5 fixed slits, with slit_id values of “S200A1”, “S200A2”, “S400A1”, “S200B1”, and “S1600A1”.
The pixel area values are in units of square arcseconds and represent the nominal area of any pixel illuminated by the
slit.

Column name Data type
slit_id char*15
pixarea float

NIRSpec MOS Mode

Data model
NirspecMosAreaModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecMosAreaModel.html#jwst.datamodels.NirspecMosAreaModel)

The BINTABLE extension has EXTNAME=’AREA’ and has column characteristics shown below. There is one row
for each shutter in each MSA quadrant. The quadrant and shutter values are 1-indexed. The pixel area values are in
units of square arcseconds and represent the nominal area of any pixel illuminated by a given MSA shutter.

Column name Data type
quadrant integer
shutter_x integer
shutter_y integer
pixarea float

15.1. Package Index 461

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.PixelAreaModel.html#jwst.datamodels.PixelAreaModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecSlitAreaModel.html#jwst.datamodels.NirspecSlitAreaModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecMosAreaModel.html#jwst.datamodels.NirspecMosAreaModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NIRSpec IFU Mode

Data model
NirspecIfuAreaModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecIfuAreaModel.html#jwst.datamodels.NirspecIfuAreaModel)

The BINTABLE extension has EXTNAME=’AREA’ and has column characteristics shown below. There is one row
for each of the 30 IFU slices, with the slice_id values being 0-indexed (i.e. range from 0 to 29). The pixel area values
are in units of square arcseconds and represent the nominal area of any pixel illuminated by a given IFU slice.

Column name Data type
slice_id integer
pixarea float

jwst.photom Package

Classes

PhotomStep([name, parent, config_file, ...]) PhotomStep: Module for loading photometric conver-
sion information from

PhotomStep

class jwst.photom.PhotomStep(name=None, parent=None, config_file=None, _validate_kwds=True, **kws)
Bases: JwstStep

PhotomStep: Module for loading photometric conversion information from
reference files and attaching or applying them to the input science data model

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

462 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NirspecIfuAreaModel.html#jwst.datamodels.NirspecIfuAreaModel
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'photom'

reference_file_types = ['photom', 'area']

spec

inverse = boolean(default=False) # Invert the operation
source_type = string(default=None) # Process as specified source type.
mrs_time_correction = boolean(default=True) # Apply the MIRI MRS time dependent␣
→˓correction

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep PhotomStepStep

15.1. Package Index 463

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

15.1.44 Pipeline Modules

Pipeline Stages

End-to-end calibration of JWST data is divided into 3 main stages of processing:

• Stage 1 consists of detector-level corrections that are performed on a group-by-group basis, followed by ramp
fitting. The output of stage 1 processing is a countrate image per exposure, or per integration for some modes.
Details of this pipeline can be found at:

– calwebb_detector1: Stage 1 Detector Processing

• Stage 2 processing consists of additional instrument-level and observing-mode corrections and calibrations to
produce fully calibrated exposures. The details differ for imaging and spectroscopic exposures, and there are
some corrections that are unique to certain instruments or modes. Details are at:

– calwebb_image2: Stage 2 Imaging Processing

– calwebb_spec2: Stage 2 Spectroscopic Processing

• Stage 3 processing consists of routines that work with multiple exposures and in most cases produce some kind
of combined product. There are unique pipeline modules for stage 3 processing of imaging, spectroscopic,
coronagraphic, AMI, and TSO observations. Details of each are available at:

– calwebb_image3: Stage 3 Imaging Processing

– calwebb_spec3: Stage 3 Spectroscopic Processing

– calwebb_coron3: Stage 3 Coronagraphic Processing

– calwebb_ami3: Stage 3 Aperture Masking Interferometry (AMI) Processing

– calwebb_tso3: Stage 3 Time-Series Observation(TSO) Processing

In addition, there are several pipeline modules designed for special instrument or observing modes, including:

• calwebb_dark for processing dark exposures

• calwebb_guider for calibrating FGS guide star data

• calwebb_wfs-image3 for stage 3 WFS&C processing

The table below represents the same information as described above, but alphabetically ordered by pipeline class.

Pipeline Class Alias Used For
Ami3Pipeline calwebb_ami3 Stage 3: NIRISS AMI mode
Coron3Pipeline calwebb_coron3 Stage 3: Coronagraphic mode
DarkPipeline calwebb_dark Stage 1: darks
Detector1Pipeline calwebb_detector1 Stage 1: all modes
GuiderPipeline calwebb_guider Stage 1+2: FGS guiding modes
Image2Pipeline calwebb_image2 Stage 2: imaging modes
Image3Pipeline calwebb_image3 Stage 3: imaging modes
Spec2Pipeline calwebb_spec2 Stage 2: spectroscopy modes
Spec3Pipeline calwebb_spec3 Stage 3: spectroscopy modes
Tso3Pipeline calwebb_tso3 Stage 3: TSO modes
WfsCombineStep calwebb_wfs-image3 Stage 3: WFS&C imaging

464 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Pipelines vs. Exposure Type

The data from different observing modes needs to be processed with different combinations of the pipeline stages
listed above. The proper pipeline selection is usually based solely on the exposure type (EXP_TYPE keyword value).
Some modes, however, require additional selection criteria, such as whether the data are to be treated as Time-Series
Observations (TSO). Some EXP_TYPEs are exclusively TSO, while others depend on the value of the TSOVISIT
keyword. The following table lists the pipeline modules that should get applied to various observing modes, based on
these selectors. Exposure types that do not allow TSO mode are marked as “N/A” in the TSOVISIT column.

EXP_TYPE
TSOVISIT Stage 1

Pipeline
Stage 2 Pipeline Stage 3

Pipeline

FGS_DARK
N/A calwebb_dark N/A N/A

FGS_SKYFLAT
FGS_INTFLAT

N/A cal-
webb_detector1

N/A N/A

FGS_FOCUS
N/A cal-

webb_detector1
calwebb_image2 N/A

FGS_IMAGE
N/A cal-

webb_detector1
calwebb_image2 cal-

webb_image3

FGS_ID-
STACK
FGS_ID-
IMAGE
FGS_ACQ1
FGS_ACQ2
FGS_TRACK

FGS_FINEGUIDE

N/A calwebb_guider N/A N/A

MIR_DARKIMG

MIR_DARKMRS

N/A calwebb_dark N/A N/A

continues on next page

15.1. Package Index 465

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Table 3 – continued from previous page

EXP_TYPE
TSOVISIT Stage 1

Pipeline
Stage 2 Pipeline Stage 3

Pipeline

MIR_FLATIMAGE

MIR_FLATIMAGE-
EXT

MIR_FLATMRS

MIR_FLATMRS-
EXT

N/A cal-
webb_detector1

N/A N/A

MIR_TACQ
N/A cal-

webb_detector1
calwebb_image2 N/A

MIR_CORONCAL

N/A cal-
webb_detector1

calwebb_image2 N/A

MIR_IMAGE False cal-
webb_detector1

calwebb_image2 cal-
webb_image3

True cal-
webb_detector1

calwebb_image2 calwebb_tso3

MIR_LRS-
FIXEDSLIT

N/A cal-
webb_detector1

calwebb_spec2 calwebb_spec3

MIR_LRS-
SLITLESS

True cal-
webb_detector1

calwebb_spec2 calwebb_tso3

False cal-
webb_detector1

calwebb_spec2 N/A

MIR_MRS
N/A cal-

webb_detector1
calwebb_spec2 calwebb_spec3

MIR_LYOT
MIR_4QPM

N/A cal-
webb_detector1

calwebb_image2 calwebb_coron3

NRC_DARK
N/A calwebb_dark N/A N/A

NRC_FLAT
NRC_LED
NRC_GRISM

N/A cal-
webb_detector1

N/A N/A

continues on next page

466 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Table 3 – continued from previous page

EXP_TYPE
TSOVISIT Stage 1

Pipeline
Stage 2 Pipeline Stage 3

Pipeline

NRC_TACQ

NRC_TACONFIRM
NRC_FOCUS

N/A cal-
webb_detector1

calwebb_image2 N/A

NRC_IMAGE
N/A cal-

webb_detector1
calwebb_image2 cal-

webb_image3

NRC_CORON
N/A cal-

webb_detector1
calwebb_image2 calwebb_coron3

NRC_WFSS
N/A cal-

webb_detector1
calwebb_spec2 calwebb_spec3

NRC_TSIMAGE

True cal-
webb_detector1

calwebb_image2 calwebb_tso3

NRC_TSGRISM

True cal-
webb_detector1

calwebb_spec2 calwebb_tso3

NIS_DARK
N/A calwebb_dark N/A N/A

NIS_LAMP
NIS_EXTCAL

N/A cal-
webb_detector1

N/A N/A

NIS_TACQ

NIS_TACONFIRM
NIS_FOCUS

N/A cal-
webb_detector1

calwebb_image2 N/A

NIS_IMAGE
N/A cal-

webb_detector1
calwebb_image2 cal-

webb_image3

NIS_AMI
N/A cal-

webb_detector1
calwebb_image2 calwebb_ami3

NIS_WFSS
N/A cal-

webb_detector1
calwebb_spec2 calwebb_spec3

NIS_SOSS True cal-
webb_detector1

calwebb_spec2 calwebb_tso3

continues on next page

15.1. Package Index 467

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Table 3 – continued from previous page

EXP_TYPE
TSOVISIT Stage 1

Pipeline
Stage 2 Pipeline Stage 3

Pipeline

False cal-
webb_detector1

calwebb_spec2 calwebb_spec3

NRS_DARK
N/A calwebb_dark N/A N/A

NRS_AUTOWAVE

NRS_AUTOFLAT
NRS_LAMP

N/A cal-
webb_detector1

calwebb_spec2 N/A

NRS_IMAGE
NRS_WATA
NRS_MSATA

NRS_TACONFIRM

NRS_CONFIRM
NRS_FOCUS
NRS_MIMF

N/A cal-
webb_detector1

calwebb_image2 N/A

NRS_FIXEDSLIT
NRS_IFU

NRS_MSASPEC

N/A cal-
webb_detector1

calwebb_spec2 calwebb_spec3

NRS_BRIGHTOBJ

True cal-
webb_detector1

calwebb_spec2 calwebb_tso3

Wavefront Sensing and Control Images

Exposures obtained by any instrument for the purpose of WaveFront Sensing and Control (WFS&C) use a dedicated
processing flow through the pipeline stages.

• Stage 1: WFS&C exposures use the same calwebb_detector1 pipeline processing and steps as regular images.

• Stage 2: WFS&C exposures use the same calwebb_image2 pipeline processing and steps as regular images.
CRDS reftype pars-image2pipeline has a specific parameter reference for WFS&C processing. The pro-
cessing is identical with other image processing except for the omission of the resample step.

• Stage 3: The ASN generator identifies pairs of dithered WFS&C images to be combined via the “PATTTYPE”

468 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

keyword value “WFSC”. The resulting ASN uses the calwebb_wfs-image3 pipeline for stage 3 processing. This
pipeline consists of the single step wfs_combine.

Configuration File Deprecation

Up to version 1.1.0, the primary way specific pipelines were referred to was by their configuration file name, i.e.
calwebb_detector1.cfg. These configuration files were delivered as part of the JWST calibration package. Below
is the table that matched configuration file to observing mode it was intended to be used with.

Post-1.1.0, configuration files are no longer the primary identifier of pipelines. Instead, pipelines are identi-
fied by their full class name, i.e. jwst.pipeline.Detector1Pipeline, or by their simple name, or alias, i.e.
calwebb_detector1. How a pipeline is run is determined by the input data and what parameter reference file
in CRDS is selected by that data. The reftype for each pipeline, or step, is determined by appending the class
name of the step to the string pars-. For example, the reftype for jwst.pipeline.Detector1Pipeline is
pars-detector1pipeline. Which specific reference file for a reftype is then determined by the data, just as with
any other reference file.

As a result, there are a few pipelines that no longer exist explicitly by name, because they were only a configuration
file for an already existing pipeline class. The pipelines continue to operate correctly for the specific cases, because the
parameter references pulled from CRDS will have the correct configuration. The following table lists the deprecated
configuration files and what pipeline should now be referred to.

Deprecated CFG Pipeline Class Alias
calwebb_nrslamp-spec2.cfg jwst.pipeline.Spec2Pipeline calwebb_spec2
calwebb_tso1.cfg jwst.pipeline.Detector1Pipeline calwebb_detector1
calwebb_tso-image2.cfg jwst.pipeline.Image2Pipeline calwebb_image2
calwebb_tso-spec2.cfg jwst.pipeline.Spec2Pipeline calwebb_spec2
calwebb_wfs-image2.cfg jwst.pipeline.Image2Pipeline calwebb_image2

The deprecated configuration to mode mapping up to version 1.1.0 is in the table below. This table is given only as
historical reference for software and documentation that used this terminology.

Pipeline Class Configuration File Used For
Detector1Pipeline calwebb_detector1.cfg Stage 1: all non-TSO modes

calwebb_tso1.cfg Stage 1: all TSO modes
DarkPipeline calwebb_dark.cfg Stage 1: darks
GuiderPipeline calwebb_guider.cfg Stage 1+2: FGS guiding modes
Image2Pipeline calwebb_image2.cfg Stage 2: imaging modes

calwebb_tso-image2.cfg Stage 2: TSO imaging modes
calwebb_wfs-image2.cfg Stage 2: WFS&C imaging

Spec2Pipeline calwebb_spec2.cfg Stage 2: spectroscopy modes
calwebb_tso-spec2.cfg Stage 2: TSO spectral modes
calwebb_nrslamp-spec2.cfg Stage 2: NIRSpec lamps

Image3Pipeline calwebb_image3.cfg Stage 3: imaging modes
WfsCombineStep calwebb_wfs-image3.cfg Stage 3: WFS&C imaging
Spec3Pipeline calwebb_spec3.cfg Stage 3: spectroscopy modes
Ami3Pipeline calwebb_ami3.cfg Stage 3: NIRISS AMI mode
Coron3Pipeline calwebb_coron3.cfg Stage 3: Coronagraphic mode
Tso3Pipeline calwebb_tso3.cfg Stage 3: TSO modes

15.1. Package Index 469

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

calwebb_detector1: Stage 1 Detector Processing

Class
jwst.pipeline.Detector1Pipeline

Alias
calwebb_detector1

The Detector1Pipeline applies basic detector-level corrections to all exposure types (imaging, spectroscopic, coro-
nagraphic, etc.). It is applied to one exposure at a time. It is sometimes referred to as “ramps-to-slopes” processing,
because the input raw data are in the form of one or more ramps (integrations) containing accumulating counts from
the non-destructive detector readouts and the output is a corrected countrate (slope) image.

There are two general configurations for this pipeline, depending on whether the data are to be treated as a Time Series
Observation (TSO). The configuration is provided by CRDS and the reftype pars-detector1pipeline. In general,
for Non-TSO exposures, all applicable steps are applied to the data. For TSO exposures, some steps are set to be
skipped by default (see the list of steps in the table below).

The list of steps applied by the Detector1Pipeline pipeline is shown in the table below. Note that MIRI exposures use
some instrument-specific steps and some of the steps are applied in a different order than for Near-IR (NIR) instrument
exposures.

Several steps in this pipeline include special handling for NIRCam “Frame 0” data. The NIRCam instrument has the
ability to downlink the image from the initial readout that follows the detector reset at the start of each integration in an
exposure. These images are distinct from the first group of each integration when on-board frame averaging is done.
In these cases, the first group contains data from multiple frames, while frame zero is always composed of just the first
frame following the reset. It can be used to recover an estimated slope for pixels that go into saturation already in the
first group (see more details on that process in the ramp_fitting step). In order for the frame zero image to be utilized
during ramp fitting, it must have all of the same calibrations and corrections applied as the first group in the various
Detector1Pipeline steps. This includes the saturation, superbias, refpix, and linearity steps. Other steps do not
have a direct effect on either the first group or frame zero pixel values.

Near-IR MIRI
Step Non-TSO TSO Step Non-TSO TSO
group_scale ✓ ✓ group_scale ✓ ✓
dq_init ✓ ✓ dq_init ✓ ✓

emicorr ✓ ✓
saturation ✓ ✓ saturation ✓ ✓
ipc1 ipc
superbias ✓ ✓ firstframe ✓
refpix ✓ ✓ lastframe ✓

reset ✓ ✓
linearity ✓ ✓ linearity ✓ ✓
persistence2 ✓ rscd ✓
dark_current ✓ ✓ dark_current ✓ ✓

refpix ✓ ✓
charge_migration3 ✓
jump ✓ ✓ jump ✓ ✓
ramp_fitting ✓ ✓ ramp_fitting ✓ ✓
gain_scale ✓ ✓ gain_scale ✓ ✓

1 By default, the parameter reference pars-detector1pipeline retrieved from CRDS will skip the ipc step for all instruments.
2 The persistence step is currently hardwired to be skipped in the Detector1Pipeline module for all NIRSpec exposures.
3 By default, the charge_migration step is skipped in the Detector1Pipeline module for all instruments.

470 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Arguments

The calwebb_detector1 pipeline has one optional argument:

--save_calibrated_ramp boolean default=False

If set to True, the pipeline will save intermediate data to a file as it exists at the end of the jump step. The data at this
stage of the pipeline are still in the form of the original 4D ramps (ncols x nrows x ngroups x nints) and have had all of
the detector-level correction steps applied to it, including the detection and flagging of Cosmic-Ray (CR) hits within
each ramp (integration). If created, the name of the intermediate file will be constructed from the root name of the input
file, with the new product type suffix “_ramp” appended, e.g. “jw80600012001_02101_00003_mirimage_ramp.fits”.

Inputs

4D raw data

Data model
RampModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel)

File suffix
_uncal

The input to Detector1Pipeline is a single raw exposure, e.g. “jw80600012001_02101_00003_mirimage_uncal.fits”,
which contains the original raw data from all of the detector readouts in the exposure (ncols x nrows x ngroups x
nintegrations).

Note that in the operational environment, the input will be in the form of a Level1bModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.Level1bModel.html#jwst.datamodels.Level1bModel),
which only contains the 4D array of detector pixel values, along with some optional exten-
sions. When such a file is loaded into the pipeline, it is immediately converted into a RampModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel),
and has all additional data arrays for errors and Data Quality flags created and initialized to zero.

The input can also contain a 3D cube of NIRCam “Frame 0” data, where each image plane in the 3D cube is the initial
frame for each integration in the exposure. Only present when the option to downlink the frame zero data was selected
in the observing program.

Outputs

4D corrected ramp

Data model
RampModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel)

File suffix
_ramp

Result of applying all pipeline steps up through the jump step, to produce corrected and CR-flagged 4D ramp data,
which will have the same data dimensions as the input raw 4D data (ncols x nrows x ngroups x nints). Only created
when the pipeline argument --save_calibrated_ramp is set to True (default is False).

15.1. Package Index 471

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.Level1bModel.html#jwst.datamodels.Level1bModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

2D countrate product

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)
or IFUImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel)

File suffix
_rate

All types of inputs result in a 2D countrate product, based on averaging over all of the integrations within the
exposure. The output file will be of type “_rate”, e.g. “jw80600012001_02101_00003_mirimage_rate.fits”. The
2D “_rate” product is passed along to subsequent pipeline modules for all non-TSO and non-Coronagraphic
exposures. For MIRI MRS and NIRSpec IFU exposures, the output data model will be IFUImageModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel),
while all others will be ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel).

3D countrate product

Data model
CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_rateints

A 3D countrate product is created that contains the individual results of each integration. The 2D countrate images for
each integration are stacked along the 3rd axis of the data cubes (ncols x nrows x nints). This output file will be of type
“_rateints”. The 3D “_rateints” product is passed along to subsequent pipeline modules for all TSO and Coronagraphic
exposures.

PARS-DETECTOR1PIPELINE Parameter Reference File

REFTYPE
PARS-DETECTOR1PIPELINE

Data model
N/A

Reference Selection Keywords

CRDS selects appropriate pars-detector1pipeline references based on the following keywords.

Instrument Keywords
FGS TSOVISIT
MIRI TSOVISIT
NIRCAM TSOVISIT
NIRISS TSOVISIT
NIRSPEC TSOVISIT

472 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

calwebb_image2: Stage 2 Imaging Processing

Class
jwst.pipeline.Image2Pipeline

Alias
calwebb_image2

Stage 2 imaging processing applies additional instrumental corrections and calibrations that result in a fully calibrated
individual exposure. There are two parameter references used to control this pipeline, depending on whether the data
are to be treated as Time Series Observation (TSO). The parameter reference is provided by CRDS and the reftype
pars-image2pipeline. In general, for non-TSO exposures, all applicable steps are applied to the data. For TSO
exposures, some steps are set to be skipped by default (see the list of steps in the table below).

The list of steps applied by the Image2Pipeline pipeline is shown in the table below.

Step Non-TSO TSO
background ✓
assign_wcs ✓ ✓
flat_field ✓ ✓
photom ✓ ✓
resample1 ✓

1 Resampling is only performed for exposure types “MIR_IMAGE”, “NRC_IMAGE”, and “NIS_IMAGE”.

15.1. Package Index 473

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Arguments

The calwebb_image2 pipeline has one optional argument:

--save_bsub boolean default=False

If set to True, the results of the background subtraction step will be saved to an intermediate file, using a product type
of “_bsub” or “_bsubints”, depending on whether the data are 2D (averaged over integrations) or 3D (per-integration
results).

Inputs

2D or 3D countrate data

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)
or CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_rate or _rateints

The input to Image2Pipeline is a countrate exposure, in the form of either “_rate” or “_rateints” data. A single input
file can be processed or an ASN file listing multiple inputs can be used, in which case the processing steps will be
applied to each input exposure, one at a time. If “_rateints” products are used as input, each step applies its algorithm
to each integration in the exposure, where appropriate.

TSO and coronagraphic exposures are expected to use 3D data as input, to be processed on a per-integration basis.

Outputs

2D or 3D background-subtracted data

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)
or CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_bsub or _bsubints

This is an intermediate product that is only created if “–save_bsub” is set to True and will contain the data as output
from the background step. If the input is a “_rate” product, this will be a “_bsub” product, while “_rateints” inputs will
be saved as “_bsubints.”

2D or 3D calibrated data

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)
or CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_cal or _calints

The output is a fully calibrated, but unrectified, exposure, using the product type suffix “_cal” or “_calints”, depending
on the type of input, e.g. “jw80600012001_02101_00003_mirimage_cal.fits”.

474 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

2D resampled image

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)

File suffix
_i2d

This is the output of the resample step and is only created for regular direct imaging observations (not
for TSO or coronagraphy 3D data sets). The output file will use the “_i2d” product type suffix, e.g.
“jw80600012001_02101_00003_mirimage_i2d.fits”. Note that this product is intended for quick-look use only and
is not passed along as input to Stage 3 processing. Calibrated, but unrectified (_cal) products are used as input to Stage
3.

PARS-IMAGE2PIPELINE Parameter Reference File

REFTYPE
PARS-IMAGE2PIPELINE

Data model
N/A

Reference Selection Keywords

CRDS selects appropriate pars-image2pipeline references based on the following keywords.

Instrument Keywords
FGS EXP_TYPE, TSOVISIT, VISITYPE
MIRI EXP_TYPE, TSOVISIT, VISITYPE
NIRCAM EXP_TYPE, TSOVISIT, VISITYPE
NIRISS EXP_TYPE, TSOVISIT, VISITYPE
NIRSPEC EXP_TYPE, TSOVISIT, VISITYPE

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

15.1. Package Index 475

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

calwebb_spec2: Stage 2 Spectroscopic Processing

Class
jwst.pipeline.Spec2Pipeline

Alias
calwebb_spec2

The Spec2Pipeline applies additional instrumental corrections and calibrations to countrate products that result in a
fully calibrated individual exposure. There are two general configurations for this pipeline, depending on whether the
data are to be treated as Time Series Observation (TSO). In general, for non-TSO exposures, all applicable steps are
applied to the data. For TSO exposures, some steps are set to be skipped by default (see the list of steps in the table
below).

The Spec2Pipeline is the “Swiss army knife” of pipeline modules, containing many steps that are only applied to
certain instruments or instrument modes. The logic for determining which steps are appropriate is built into the pipeline
module itself and determined by the CRDS pars-spec2pipeline parameter reference file. Logic is mostly based on
either the instrument name or the exposure type (EXP_TYPE keyword) of the data.

Science Exposures

The list of steps shown in the table below indicates which steps are applied to various spectroscopic modes for JWST
science exposures, including TSO exposures. The instrument mode abbreviations used in the table are as follows:

• NIRSpec FS = Fixed Slit

• NIRSpec MOS = Multi-Object Spectroscopy

• NIRSpec IFU = Integral Field Unit

• MIRI FS = LRS Fixed Slit

• MIRI SL = LRS Slitless

• MIRI MRS = Medium Resolution Spectroscopy (IFU)

• NIRISS SOSS = Single Object Slitless Spectroscopy

• NIRISS and NIRCam WFSS = Wide-Field Slitless Spectroscopy

476 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Instrument/Mode NIRSpec MIRI NIRISS NIRCam All
Step FS MOS IFU FS SL MRS SOSS WFSS WFSS TSO
assign_wcs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
msaflagopen ✓ ✓
nsclean ✓ ✓ ✓
imprint ✓ ✓
background ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
extract_2d1 ✓ ✓ ✓ ✓ ✓
srctype1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
master_background ✓
wavecorr ✓ ✓
straylight ✓
flat_field1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
fringe ✓
pathloss ✓ ✓ ✓ ✓ ✓
barshadow ✓
wfss_contam ✓ ✓
photom ✓ ✓ ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓
residual_fringe 2 ✓
pixel_replace 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓
resample_spec ✓ ✓ ✓
cube_build ✓ ✓
extract_1d ✓ ✓ ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓

1The exact order of the extract_2d, srctype, and flat_field steps depends on the observing mode. For NIRISS and
NIRCam WFSS, as well as NIRCam TSO grism exposures, the order is flat_field, extract_2d, and srctype (no wavecorr).
For all other modes the order is extract_2d, srctype, wavecorr, and flat_field.
2By default this step is skipped in the calwebb_spec2 pipeline, but is enabled for some modes via overrides provided
in parameter reference files.
3NIRISS SOSS can have multiple spectral orders contribute flux to one pixel; because photometric correction values
depend on the spectral order assigned to a pixel, the order of photom and extract_1d is swapped for NIRISS SOSS
exposures. This allows the ATOCA algorithm to disentangle the spectral orders, such that photometric corrections can
be applied to each spectrum separately.

Notice that NIRSpec MOS is the only mode to receive master background subtraction in the calwebb_spec2 pipeline.
All other spectral modes have master background subtraction applied in the calwebb_spec3 pipeline.

The resample_spec step produces a resampled/rectified product for non-IFU modes of some spectroscopic exposures.
If the resample_spec step is not applied to a given exposure, the extract_1d operation will be performed on the original
(unresampled) data. The cube_build step produces a resampled/rectified cube for IFU exposures, which is then used
as input to the extract_1d step.

15.1. Package Index 477

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NIRSpec Lamp Exposures

The Spec2Pipeline works slightly differently for NIRSpec lamp exposures. These are identified by the EXP_TYPE
values of NRS_LAMP, NRS_AUTOWAVE or NRS_AUTOFLAT. Using the EXP_TYPE keyword in this way means
that another keyword is needed to specify whether the data are Fixed Slit, MOS, IFU or Brightobj. This is the OPMODE
keyword, which maps to the jwst.datamodel attribute .meta.instrument.lamp_mode. This keyword can take the
following values in exposures that undergo Spec2Pipeline processing:

• BRIGHTOBJ = Bright Object mode (uses fixed slits)

• FIXEDSLIT = Fixed slit mode

• IFU = Integral Field Unit mode

• MSASPEC = Multi-Object Spectrograph Mode

OPMODE can also take the values of GRATING-ONLY and NONE, but only in some engineering-only situations, and
can take the value of IMAGE for imaging data. None of these values will trigger the execution of the Spec2Pipeline.

NIRSpec calibration lamps are identified by the LAMP keyword, which maps to the jwst.datamodel attribute .
meta.instrument.lamp_state. The lamps are either line lamps, used for wavelength calibration, or continuum
lamps, which are used for flatfielding. Each is paired with a specific grating:

Lamp name Wavelength range (micron) Used with grating
FLAT1 1.0 - 1.8 G140M, G140H
FLAT2 1.7 - 3.0 G235M, G235H
FLAT3 2.9 - 5.0 G395M, G395H
FLAT4 0.7 - 1.4 G140M, G140H
FLAT5 1.0 - 5.0 PRISM
LINE1 1.0 - 1.8 G140M, G140H
LINE2 1.7 - 3.0 G235M, G235H
LINE3 2.9 - 5.0 G395M, G395H
LINE4 0.6 - 5.0 PRISM
REF 1.3 - 1.7 G140M, G140H

The pairing comes because the calibration unit lightpath doesn’t pass through the filter wheel, so each lamp has its own
filter identical to those in the filter wheel.

The list of Spec2Pipeline steps to be run for NIRSpec lamp exposures is shown in the table below and indicates
which steps are applied to various spectroscopic modes. The instrument mode abbreviations used in the table are as
follows:

• NIRSpec FS = Fixed Slit (also Brightobj)

• NIRSpec MOS = Multi-Object Spectroscopy

• NIRSpec IFU = Integral Field Unit

478 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Pipeline Step NRS_LAMP NRS_AUTOWAVE NRS_AUTOFLAT
(MOS
only)LINE FLAT

assign_wcs ALL ALL ALL ALL
msaflagopen MOS, IFU MOS, IFU MOS, IFU MOS
nsclean NONE NONE NONE NONE
imprint NONE IFU NONE NONE
background NONE NONE NONE NONE
extract_2d MOS, FS MOS, FS MOS, FS MOS
srctype NONE NONE NONE NONE
wavecorr ALL ALL ALL ALL
flat_field NONE

• D-FLAT
ALL ALL ALL

• S-FLAT
ALL NONE ALL

• F-FLAT
NONE NONE NONE

pathloss NONE NONE NONE NONE
barshadow NONE NONE NONE NONE
photom NONE NONE NONE NONE
resample_spec MOS, FS NONE MOS, FS NONE
cube_build IFU NONE IFU NONE
extract_1d ALL NONE ALL NONE

In the resample_spec and cube_build steps, the spectra are transformed to a space of (wavelength, offset along the slit)
without applying a tangent plane projection.

Arguments

The calwebb_spec2 pipeline has two optional arguments.

--save_bsub (boolean, default=False)
If set to True, the results of the background subtraction step will be saved to an intermediate file, using a product
type of “_bsub” or “_bsubints”, depending on whether the data are 2D (averaged over integrations) or 3D (per-
integration results).

--save_wfss_esec (boolean, default=False)
If set to True, an intermediate image product is created for WFSS exposures that is in units of electrons/sec,
instead of the normal DN/sec units that are used throughout the rest of processing. This product can be useful for
doing off-line specialized processing of WFSS images. This product is created after the background and flat-field
steps have been applied, but before the extract_2d step, so that it is the full WFSS image. The conversion to units
of electrons/sec is accomplished by loading the GAIN reference file, computing the mean gain across all pixels
(excluding reference pixels), and multiplying the WFSS image by the mean gain. The intermediate file will have
a product type of “_esec”. Only applies to WFSS exposures.

15.1. Package Index 479

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Inputs

2D or 3D countrate data

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel),
IFUImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel),
or CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_rate or _rateints

The input to the Spec2Pipeline pipeline is a countrate exposure, in the form of either “_rate” or “_rateints” data. A
single input file can be processed or an ASN file listing multiple inputs can be used, in which case the processing steps
will be applied to each input exposure, one at a time.

If “_rateints” products are used as input, for modes other than NIRSpec Fixed Slit, each step applies its algorithm to each
integration in the exposure, where appropriate. For the NIRSpec Fixed Slit mode the calwebb_spec2 pipeline will
currently skip both the resample_spec step and the extract_1d step, because neither step supports multiple integration
input products for this mode.

Note that the steps background and imprint can only be executed when the pipeline is given an ASN file as input,
because they rely on multiple, associated exposures to perform their tasks. The ASN file must list not only the input
science exposure(s), but must also list the exposures to be used as background or imprint.

Background subtraction for Wide-Field Slitless Spectroscopy (WFSS) exposures, on the other hand, is accomplished
by scaling and subtracting a master background image contained in a CRDS reference file and hence does not require
an ASN as input.

The input data model type IFUImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel)
is only used for MIRI MRS and NIRSpec IFU exposures.

Outputs

2D or 3D background-subtracted data

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel),
IFUImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel),
or CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_bsub or _bsubints

This is an intermediate product that is only created if “–save_bsub” is set to True and will contain the data as output
from the background step. If the input is a “_rate” product, this will be a “_bsub” product, while “_rateints” inputs will
be saved as “_bsubints.”

480 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

2D or 3D calibrated data

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel),
IFUImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel),
CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel),
SlitModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.SlitModel.html#jwst.datamodels.SlitModel),
or MultiSlitModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel)

File suffix
_cal or _calints

The output is a fully calibrated, but unrectified, exposure, using the product type suffix “_cal” or “_calints”, depending
on the type of input, e.g. “jw80600012001_02101_00003_mirimage_cal.fits.” This is the output of the photom step, or
whichever step is performed last before applying either resample_spec, cube_build, or extract_1d.

The output data model type can be any of the 4 listed above and is completely dependent on the type of input data and
the observing mode. For data sets that do not go through extract_2d processing, the output will be either a ImageModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel),
IFUImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel),
or CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel),
matching the corresponding input data type.

Of the data types that do go through extract_2d processing, the output type will consist of either a single slit model or
a multi-slit model:

• NIRSpec Bright-Object and NIRCam TSO Grism: SlitModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.SlitModel.html#jwst.datamodels.SlitModel)

• NIRSpec Fixed Slit and MOS, as well as WFSS: MultiSlitModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel)

The multi-slit model is simply an array of multiple slit models, each one containing the
data and relevant meta data for a particular extracted slit or source. A MultiSlitModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel)
product will contain multiple tuples of SCI, ERR, DQ, WAVELENGTH, etc. arrays; one for each of the extracted
slits/sources.

2D resampled data

Data model
SlitModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.SlitModel.html#jwst.datamodels.SlitModel)
or MultiSlitModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel)

File suffix
_s2d

If the input is a 2D exposure type that gets resampled/rectified by the resample_spec step, the rectified 2D spectral
product is saved as a “_s2d” file. This image is intended for use as a quick-look product only and is not used in
subsequent processing. The 2D unresampled, calibrated (“_cal”) products are passed along as input to subsequent
Stage 3 processing.

If the input to the resample_spec step is a MultiSlitModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel),
then the resampled output will be in the form of a MultiSlitModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel),
which contains an array of individual models, one per slit. Otherwise the output will be a single SlitModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.SlitModel.html#jwst.datamodels.SlitModel).

15.1. Package Index 481

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.SlitModel.html#jwst.datamodels.SlitModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.SlitModel.html#jwst.datamodels.SlitModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.SlitModel.html#jwst.datamodels.SlitModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.SlitModel.html#jwst.datamodels.SlitModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

3D resampled (IFU cube) data

Data model
IFUCubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUCubeModel.html#jwst.datamodels.IFUCubeModel)

File suffix
_s3d

If the data are NIRSpec IFU or MIRI MRS, the result of the cube_build step will be 3D IFU spectroscopic cube saved
to a “_s3d” file. The IFU cube is built from the data contained in a single exposure and is intended for use as a quick-
look product only. The 2D unresampled, calibrated (“_cal”) products are passed along as input to subsequent Stage 3
processing.

1D extracted spectral data

Data model
MultiSpecModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSpecModel.html#jwst.datamodels.MultiSpecModel)

File suffix
_x1d or _x1dints

All types of inputs result in a 1D extracted spectral data product, which is saved as a “_x1d” or “_x1dints” file, depending
on the input type. Observing modes such as MIRI LRS fixed slit and MRS, NIRCam and NIRISS WFSS, and NIRSpec
fixed slit, MOS, and IFU result in an “_x1d” product containing extracted spectral data for one or more slits/sources.
TSO modes, such as MIRI LRS slitless, NIRCam TSO grism, NIRISS SOSS, and NIRSpec Bright Object, for which the
data are 3D stacks of integrations, result in “_x1dints” products containing extracted spectral data for each integration
with the exposure.

PARS-SPEC2PIPELINE Parameter Reference File

REFTYPE
PARS-SPEC2PIPELINE

Data model
N/A

Reference Selection Keywords

CRDS selects appropriate pars-spec2pipeline references based on the following keywords.

Instrument Keywords
MIRI TSOVISIT
NIRCAM CROWDFLD, EXP_TYPE, TSOVISIT
NIRISS CROWDFLD, EXP_TYPE, TSOVISIT
NIRSPEC EXP_TYPE, LAMP, OPMODE, TSOVISIT

482 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUCubeModel.html#jwst.datamodels.IFUCubeModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSpecModel.html#jwst.datamodels.MultiSpecModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

calwebb_image3: Stage 3 Imaging Processing

Class
jwst.pipeline.Image3Pipeline

Alias
calwebb_image3

Stage 3 processing for direct-imaging observations is intended for combining the calibrated data from multiple expo-
sures (e.g. a dither or mosaic pattern) into a single rectified (distortion corrected) product. Before being combined, the
exposures receive additional corrections for the purpose of astrometric alignment, background matching, and outlier
rejection. The steps applied by the calwebb_image3 pipeline are shown below. This pipeline is intended for non-TSO
imaging only. TSO imaging data should be processed using the calwebb_tso3 pipeline.

calwebb_image3
assign_mtwcs
tweakreg
skymatch
outlier_detection
resample
source_catalog

15.1. Package Index 483

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Arguments

The calwebb_image3 pipeline does not have any optional arguments.

Inputs

2D calibrated images

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)

File suffix
_cal

The inputs to the calwebb_image3 pipeline are one or more calwebb_image2 calibrated (“_cal”) image products.
In order to process and combine multiple images, an ASN file must be used as input, listing the exposures to be
processed. It is also possible use a single “_cal” file as input to calwebb_image3, in which case only the resample
and source_catalog steps will be applied.

Outputs

CR-flagged exposures

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)

File suffix
_crf

If the outlier_detection step is applied, a new version of each input calibrated exposure is created, in which the
DQ array has been updated to flag pixels detected as outliers. These files use the “_crf” (CR-Flagged) product
type suffix and also includes the association candidate ID as a new field in the original product root name, e.g.
“jw96090001001_03101_00001_nrca2_o001_crf.fits.”

Resampled and combined 2D image

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)

File suffix
_i2d

A resampled 2D image product of type “_i2d” is created containing the combined, rectified association of exposures,
which is the direct output of the resample step.

484 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Source catalog

Data model
N/A

File suffix
_cat

The source catalog produced by the source_catalog step from the “_i2d” product is saved as an ASCII file in ecsv
format, with a product type of “_cat.”

Segmentation map

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)

File suffix
_segm

A 2D image segmentation map produced by the source_catalog step from the “_i2d” product, saved as a FITS file with
a single image extension and a product type suffix of “_segm.”

calwebb_spec3: Stage 3 Spectroscopic Processing

Class
jwst.pipeline.Spec3Pipeline

Alias
calwebb_spec3

Stage 3 processing for spectroscopic observations is intended for combining the calibrated data from multiple exposures
(e.g. a dither/nod pattern) into a single combined 2D or 3D spectral product and a combined 1D spectrum. Before being
combined, the exposures may receive additional corrections for the purpose of background matching and subtraction, as
well as outlier rejection. The steps applied by the calwebb_spec3 pipeline are shown below. This pipeline is intended
for non-TSO spectra only. TSO spectral data should be processed using the calwebb_tso3 pipeline.

Instrument/Mode NIRSpec MIRI NIRISS NIRCam
Step FS MOS IFU FS MRS SOSS WFSS WFSS
assign_mtwcs1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
master_background2 ✓ ✓ ✓ ✓
exp_to_source ✓ ✓ ✓ ✓
mrs_imatch ✓
outlier_detection ✓ ✓ ✓ ✓ ✓
resample_spec ✓ ✓ ✓
cube_build ✓ ✓
extract_1d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
spectral_leak ✓
combine_1d ✓ ✓ ✓

1The assign_mtwcs step is only applied to observations of a moving target (TARGTYPE=’moving’).
2The master background subtraction step is applied to NIRSpec MOS exposures in the calwebb_spec2 pipeline.

Notice that NIRCam and NIRISS WFSS, as well as NIRISS SOSS data, receive only minimal processing by
calwebb_spec3. WFSS 2D input data are reorganized into source-based products by the exp_to_source step (see

15.1. Package Index 485

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

below), have 1D extracted spectra produced for each source, and then the 1D spectra for each source are combined
into a final 1D spectrum. NIRISS SOSS inputs do not go through the exp_to_source step, because they contain data
for a single source. Hence the only processing that they receive is to extract a 1D spectrum from each input and then
combine those spectra into a final 1D spectrum. This type of processing is intended only for NIRISS SOSS exposures
that are not obtained in TSO mode. TSO mode NIRISS SOSS exposures should be processed with the calwebb_tso3
pipeline.

Arguments

The calwebb_spec3 pipeline does not have any optional arguments.

Inputs

2D calibrated data

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel),
IFUImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel),
SlitModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.SlitModel.html#jwst.datamodels.SlitModel),
or MultiSlitModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel)

File suffix
_cal

The inputs to calwebb_spec3 should be in the form of an ASN file that lists the multiple exposures to be processed into
combined output products. The individual exposures should be calibrated the (“_cal”) products from calwebb_spec2
processing.

The member list for each product in the ASN file can also contain exposures of dedicated background targets, which
are intended for use in the master_background step. These input exposures must be the “x1d” products (extracted 1-D
spectra) of the background target(s) and are usually the “x1d” files produced by the calwebb_spec2 pipeline. They
must be listed in the ASN file with “exptype” values of “background” in order to be correctly identified as background
exposures. See the master_background for more details.

Outputs

Source-based calibrated data

Data model
MultiExposureModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiExposureModel.html#jwst.datamodels.MultiExposureModel)

File suffix
_cal

For NIRSpec fixed-slit, NIRSpec MOS, and NIRCam and NIRISS WFSS, which have a defined set of slits or sources,
the data from the input calibrated exposures is reorganized by the exp_to_source step so that all of the instances of
data for a particular source/slit are contained in a single product. These are referred to as “source-based” prod-
ucts, as opposed to the input exposure-based products. The source-based collections of data are saved in interme-
diate files, one per source/slit. The root names of the source-based files contain the source ID as an identifier and
use the same “_cal” suffix as the input calibrated exposure files. An example source-based file name is “jw00042-
o001_s0002_niriss_gr150r_f150w_cal.fits”, where “s0002” is the source id.

The reorganized sets of data are sent to subsequent steps to process and combine all the data for one source at a time.

486 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.SlitModel.html#jwst.datamodels.SlitModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiExposureModel.html#jwst.datamodels.MultiExposureModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

CR-flagged exposures

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)

File suffix
_crf

If the outlier_detection step is applied, a new version of each input calibrated exposure is created, in which the
DQ array has been updated to flag pixels detected as outliers. These files use the “_crf” (CR-Flagged) product
type suffix and also includes the association candidate ID as a new field in the original product root name, e.g.
“jw96090001001_03101_00001_nrs2_o001_crf.fits.”

2D resampled and combined spectral data

Data model
SlitModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.SlitModel.html#jwst.datamodels.SlitModel)

File suffix
_s2d

When processing non-IFU modes, a resampled/rectified 2D product of type “_s2d” is created containing the rectified
and combined data for a given slit/source, which is the output of the resample_spec step.

3D resampled and combined spectral data

Data model
IFUCubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUCubeModel.html#jwst.datamodels.IFUCubeModel)

File suffix
_s3d

When processing IFU exposures, a resampled and combined 3D IFU cube product created by the cube_build step is
saved as an “_s3d” file.

1D extracted spectral data

Data model
MultiSpecModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSpecModel.html#jwst.datamodels.MultiSpecModel)

File suffix
_x1d

All types of inputs result in a 1D extracted spectral data product, which is saved as a “_x1d” file, and is normally the
result of performing the extract_1d step on the combined “_s2d” or “_s3d” product.

For NIRCam and NIRISS WFSS, as well as NIRISS SOSS data, the extract_1d is performed on the individual unresam-
pled 2D cutout images, resulting in multiple 1-D spectra per source in a “_x1d” product. Those spectra are combined
using the subsequent combine_1d step (see below).

15.1. Package Index 487

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.SlitModel.html#jwst.datamodels.SlitModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUCubeModel.html#jwst.datamodels.IFUCubeModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSpecModel.html#jwst.datamodels.MultiSpecModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

1D combined spectral data

Data model
CombinedSpecModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CombinedSpecModel.html#jwst.datamodels.CombinedSpecModel)

File suffix
_c1d

For NIRCam and NIRISS WFSS, as well as NIRISS SOSS data, the combine_1d combines the multiple 1-D spectra
for a given source into a final spectrum, which is saved as a “_c1d” product.

calwebb_ami3: Stage 3 Aperture Masking Interferometry (AMI) Processing

Class
jwst.pipeline.Ami3Pipeline

Alias
calwebb_ami3

The stage 3 AMI pipeline is applied to associations of calibrated NIRISS AMI exposures. It computes fringe parameters
for individual exposures, averages the fringe results from multiple exposures, and, optionally, corrects science target
fringe parameters using the fringe results from reference PSF targets. The steps applied by the calwebb_ami3 pipeline
are shown below.

calwebb_ami3
ami_analyze
ami_average
ami_normalize

When given an association file as input, which lists multiple science target and reference PSF exposures, the pipeline
will:

1. apply the ami_analyze step to each input exposure independently, computing fringe parameters for each

2. apply the ami_average step to compute the average of the ami_analyze results for all of the science target expo-
sures, and the average for all of the reference PSF results (if present)

3. apply the ami_normalize step to correct the average science target results using the average reference PSF results
(if present)

If no reference PSF target exposures are present in the input ASN file, the ami_normalize step is skipped.

Arguments

The calwebb_ami3 pipeline has one optional argument:

--save_averages boolean default=False

If set to True, the results of the ami_average step will be saved to a file. If not, the results of the ami_average step are
passed along in memory to the ami_normalize step.

488 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CombinedSpecModel.html#jwst.datamodels.CombinedSpecModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Inputs

2D calibrated images

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)

File suffix
_cal

The inputs to calwebb_ami3 need to be in the form of an ASN file that lists multiple science target exposures, and
optionally reference PSF exposures as well. The individual exposures must be in the form of calibrated (“_cal”) products
from calwebb_image2 processing.

An example ASN file containing 2 science target and 2 reference PSF target exposures is shown below. Only 1 product
is defined, corresponding to the science target, with members consisting of exposures for both the science target and
the reference PSF target, as indicated by the “exptype” values for each.

{"asn_type": "ami3",
"asn_rule": "discover_Asn_AMI",
"program": "10005",
"asn_id": "a3001",
"target": "t001",
"asn_pool": "jw10005_001_01_pool",
"products": [

{"name": "jw10005-a3001_t001_niriss_f277w-nrm",
"members": [

{"expname": "jw10005007001_02102_00001_nis_cal.fits",
"exptype": "psf"
},
{"expname": "jw10005027001_02102_00001_nis_cal.fits",
"exptype": "psf"
},
{"expname": "jw10005004001_02102_00001_nis_cal.fits",
"exptype": "science"
},
{"expname": "jw10005001001_02102_00001_nis_cal.fits",
"exptype": "science"
}

]
}

]
}

Outputs

Fringe parameter tables

Data model
AmiLgModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel)

File suffix
_ami

15.1. Package Index 489

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

For every input exposure, the fringe parameters and closure phases calculated by the ami_analyze step are saved to an
“_ami” product file, which is a FITS table containing the fringe parameters and closure phases. Product names use
the input “_cal” exposure-based file name, with the association candidate ID included and the product type changed to
“_ami”, e.g. “jw93210001001_03101_00001_nis_a0003_ami.fits.”

Averaged fringe parameters table

Data model
AmiLgModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel)

File suffix
_amiavg or _psf-amiavg

If multiple target or reference PSF exposures are used as input and the “–save_averages” parameter is set to True,
the ami_average step will save averaged results for the target in an “_amiavg” product and for the reference PSF in a
“_psf-amiavg” product. The file name root will use the source-based output product name given in the ASN file. These
files are the same FITS table format as the “_ami” products.

Normalized fringe parameters table

Data model
AmiLgModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel)

File suffix
_aminorm

If reference PSF exposures are included in the input ASN, the averaged AMI results for the target will be normalized
by the averaged AMI results for the reference PSF, via the ami_normalize step, and will be saved to an “_aminorm”
product file. This file has the same FITS table format as the “_ami” products. The file name root uses the source-based
output product name given in the ASN file, e.g. “jw93210-a0003_t001_niriss_f480m-nrm_aminorm.fits.”

calwebb_coron3: Stage 3 Coronagraphic Processing

Class
jwst.pipeline.Coron3Pipeline

Alias
calwebb_coron3

The stage 3 coronagraphic pipeline is to be applied to associations of calibrated NIRCam coronagraphic and MIRI Lyot
and 4QPM exposures, and is used to produce PSF-subtracted, resampled, combined images of the source object.

The steps applied by the calwebb_coron3 pipeline are shown in the table below.

calwebb_coron3
outlier_detection
stack_refs
align_refs
klip
resample

The high-level processing provided by these steps is:

1) CR-flag all PSF and science target exposures

490 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.AmiLgModel.html#jwst.datamodels.AmiLgModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

2) Accumulate all reference PSF images into a single product

3) Align every PSF image to every science target image

4) Compute an optimal PSF fit and subtract it from every science target image

5) Combine the PSF-subtracted and CR-flagged images into a single resampled image

Currently the individual steps shown above can only be run in a convenient way by running the calwebb_coron3
pipeline on an association (ASN) file that lists the various science target and reference PSF exposures to be processed.

Arguments

The calwebb_coron3 pipeline does not have any optional arguments.

Inputs

3D calibrated images

Data model
CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_calints

The input to calwebb_coron3 must be in the form of an ASN file that lists one or more exposures of a science target
and one or more reference PSF targets. The individual target and reference PSF exposures should be in the form of 3D
calibrated (“_calints”) products from calwebb_image2 processing. Each pipeline step will loop over the 3D stack of
per-integration images contained in each exposure.

An example ASN file containing 2 science target and 1 reference PSF target exposures is shown below. Only 1 product
is defined, corresponding to the science target, with members consisting of exposures of both the science target and the
reference PSF target, as indicated by the “exptype” values for each:

{"asn_type": "coron3",
"asn_rule": "candidate_Asn_Coron",
"program": "10005",
"asn_id": "c1001",
"target": "t001",
"asn_pool": "jw10005_20181020T033546_pool",
"products": [

{"name": "jw10005-c1001_t001_nircam_f430m-maskrnd-sub320a430r",
"members": [

{"expname": "jw10005009001_02102_00001_nrcalong_calints.fits",
"exptype": "psf"
},
{"expname": "jw10005006001_02102_00001_nrcalong_calints.fits",
"exptype": "science"
},
{"expname": "jw10005003001_02102_00001_nrcalong_calints.fits",
"exptype": "science"
}

]
}

(continues on next page)

15.1. Package Index 491

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

]
}

Outputs

CR-flagged images

Data model
CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_crfints

If the outlier_detection step is applied, a new version of each exposure is created, in which the DQ array is updated
to flag pixels detected as outliers. These files use the “_crfints” (CR-Flagged per integration) product type suffix and
include the association candidate ID, e.g. “jw8607342001_02102_00001_nrcb3_a3001_crfints.fits.”

3D stacked PSF images

Data model
CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_psfstack

The data from each input PSF reference exposure are concatenated into a single combined 3D stack by the stack_refs
step, for use by subsequent steps. The stacked PSF data get written to disk in the form of a “_psfstack” prod-
uct. The output file name is source-based, using the product name specified in the ASN file, e.g. “jw86073-
a3001_t001_nircam_f140m-maskbar_psfstack.fits.”

4D aligned PSF images

Data model
QuadModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.QuadModel.html#jwst.datamodels.QuadModel)

File suffix
_psfalign

For each science target exposure, all of the reference PSF images in the “_psfstack” product are aligned to each science
target integration and saved to a 4D “_psfalign” product by the align_refs step. The output file name is exposure-based,
with the addition of the associated candidate ID, e.g. “jw8607342001_02102_00001_nrcb3_a3001_psfalign.fits.”

492 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.QuadModel.html#jwst.datamodels.QuadModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

3D PSF-subtracted images

Data model
CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_psfsub

For each science target exposure, the klip step applies PSF fitting and subtraction for each integration, resulting in a
3D stack of PSF-subtracted images. The data for each science target exposure are saved to a “_psfsub” product, using
exposure-based file names, e.g. “jw8607342001_02102_00001_nrcb3_a3001_psfsub.fits.”

2D resampled image

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)

File suffix
_i2d

The resample step is applied to the CR-flagged products to create a single resampled and combined product for the
science target. The file name is source-based, using the product name specified in the ASN file, e.g. “jw86073-
a3001_t001_nircam_f140m-maskbar_i2d.fits.”

calwebb_tso3: Stage 3 Time-Series Observation(TSO) Processing

Class
jwst.pipeline.Tso3Pipeline

Alias
calwebb_tso3

The stage 3 TSO pipeline is to be applied to associations of calibrated TSO exposures (e.g. NIRCam TS imaging,
NIRCam TS grism, NIRISS SOSS, NIRSpec BrightObj, MIRI LRS Slitless) and is used to produce calibrated time-
series photometry or spectra of the source object.

The steps applied by the calwebb_tso3 pipeline for Imaging and Spectroscopic TSO exposures are shown below:

calwebb_tso3 Imaging Spectroscopy
outlier_detection ✓ ✓
tso_photometry ✓
extract_1d ✓
white_light ✓

The logic that decides whether to apply the imaging or spectroscopy steps is based on the EXP_TYPE and TSOVISIT
keyword values of the input data. Imaging steps are applied if either of the following is true:

• EXP_TYPE = ‘NRC_TSIMAGE’

• EXP_TYPE = ‘MIR_IMAGE’ and TSOVISIT = True

The spectroscopy steps will be applied in all other cases.

15.1. Package Index 493

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Inputs

3D calibrated images

Data model
CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_calints

The input to calwebb_tso3 is in the form of an ASN file that lists multiple exposures or exposure segments of a science
target. The individual inputs should be in the form of 3D calibrated (“_calints”) products from either calwebb_image2
or calwebb_spec2 processing. These products contain 3D stacks of per-integration images. Each pipeline step will
loop over all of the integrations in each input.

Many TSO exposures may contain a sufficiently large number of integrations (NINTS) so as to make their individ-
ual exposure products too large (in terms of file size on disk) to be able to handle conveniently. In these cases, the
uncalibrated raw data for a given exposure are split into multiple “segmented” products, each of which is identified
with a segment number (see segmented products). The calwebb_tso3 input ASN file includes all “_calints” exposure
segments. The outlier_detection step will process a single segment at a time, creating one output “_crfints” product
per segment. The remaining calwebb_tso3 steps, will process each segment and concatenate the results into a single
output product, containing the results for all exposures and segments listed in the ASN.

Outputs

3D CR-flagged images

Data model
CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_crfints

If the outlier_detection step is applied, a new version of each input calibrated product is created, which contains a DQ
array that has been updated to flag pixels detected as outliers. This updated product is known as a CR-flagged product
and is saved as a “_crfints” product type.

Imaging photometry

Data model
N/A

File suffix
_phot

For imaging TS observations, the tso_photometry step produces a source catalog containing photometry results from
all of the “_crfints” products, organized as a function of integration time stamps. This file is saved in ASCII “ecsv”
format, with a product type of “_phot.” The file naming is source-based, using the output product name specified in the
ASN file, e.g. “jw93065-a3001_t1_nircam_f150w-wlp8_phot.ecsv.”

494 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

1D extracted spectral data

Data model
MultiSpecModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSpecModel.html#jwst.datamodels.MultiSpecModel)

File suffix
_x1dints

For spectroscopic TS observations, the extract_1d step is applied to all “_crfints” products, to create a single “_x1dints”
product that contains 1D extracted spectral data for all integrations contained in the input exposures. The file name
is source-based, using the output product name specified in the ASN file, e.g. “jw87600-a3001_t001_niriss_clear-
gr700xd_x1dints.fits.”

Spectroscopic white-light photometry

Data model
N/A

File suffix
_whtlt

For spectroscopic TS observations, the white_light step is applied to all of the 1D extracted spectral data in the
“_x1dints” product, to produce an ASCII catalog in ecsv format containing the wavelength-integrated white-light
photometry of the source. The catalog lists the integrated white-light flux as a function of time, based on the inte-
gration time stamps. The file name is source-based, using the output product name specified in the ASN file, e.g.
“jw87600-a3001_t001_niriss_clear-gr700xd_whtlt.ecsv.”

calwebb_dark: Dark Processing

Class
jwst.pipeline.DarkPipeline

Alias
calwebb_dark

The DarkPipeline applies basic detector-level corrections to all dark exposures. It is identical to the cal-
webb_detector1 pipeline, except that it stops processing immediately before the dark_current step. The list of steps is
shown below. As with the calwebb_detector1 pipeline, the order of steps is a bit different for MIRI exposures.

Near-IR MIRI
group_scale group_scale
dq_init dq_init

emicorr
saturation saturation
ipc1 ipc
superbias firstframe
refpix lastframe
linearity reset

linearity
rscd

1 By default, the parameter reference pars-darkpipeline retrieved from CRDS will skip the ipc step.

15.1. Package Index 495

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSpecModel.html#jwst.datamodels.MultiSpecModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Arguments

The calwebb_dark pipeline has no optional arguments.

Inputs

4D raw data

Data model
RampModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel)

File suffix
_uncal

The input to DarkPipeline is a single raw dark exposure, which contains the original raw data from all of the detector
readouts in the exposure (ncols x nrows x ngroups x nintegrations).

Outputs

4D corrected ramp

Data model
RampModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel)

File suffix
_dark

Result of applying all pipeline steps listed above. Will have the same data dimensions as the input raw 4D data (ncols
x nints x ngroups x nints).

PARS-DARKPIPELINE Reference File

REFTYPE
PARS-DARKPIPELINE

Data model
N/A

Reference Selection Keywords

CRDS selects appropriate pars-whitelightstep references based on the following keywords.

Instrument Keywords
FGS INSTRUME
MIRI INSTRUME
NIRCAM INSTRUME
NIRISS INSTRUME
NIRSPEC INSTRUME

496 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RampModel.html#jwst.datamodels.RampModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

calwebb_guider: Guide Star Processing

Class
jwst.pipeline.GuiderPipeline

Alias
calwebb_guider

The guider pipeline is only for use with data resulting from the FGS guiding functions: Identification (ID), Acquisition
(ACQ1 and ACQ2), Track, and Fine Guide. The pipeline applies three detector-level correction and calibration steps
to uncalibrated guider data, as listed in the table below.

calwebb_guider
dq_init
guider_cds
flat_field

Arguments

The calwebb_guider pipeline does not have any optional arguments.

15.1. Package Index 497

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Inputs

4D raw data

Data model
GuiderRawModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.GuiderRawModel.html#jwst.datamodels.GuiderRawModel)

File suffix
_uncal

The input to calwebb_guider is a single raw guide-mode data file, which contains the original raw data from all of
the detector readouts performed during the guider mode episode. The organization of the 4D data array is analogous
to that of 4D raw science data, having dimensions of ncols x nrows x ngroups x nintegrations.

Outputs

3D calibrated data

Data model
GuiderCalModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.GuiderCalModel.html#jwst.datamodels.GuiderCalModel)

File suffix
_cal

The output is a 3D (ncols x nrows x nints) countrate product that has been flat-fielded and has bad pixels flagged. For
ID mode data, there is only 1 countrate image produced by the guider_cds step, therefore the length of the 3rd array axis
is 1. For all other modes, there will be a stack of multiple countrate images, one per integration. See the guider_cds
step information for details on how the countrate images are produced for each mode.

calwebb_wfs-image2: Stage 2 WFS&C Processing

Deprecated post-1.1.0
The operation of the pipeline is no longer dependent on built-in configuration files. How
jwst.pipeline.Image2Pipeline processes WFS&C data is determined by the CRDS reftype
pars-image2pipeline. The version of calwebb_wfs-image2.cfg delivered with the software
is devoid of any configuration and will be removed in a future version.

Config
calwebb_wfs-image2.cfg

Class
jwst.pipeline.Image2Pipeline

Stage 2 processing of Wavefront Sensing and Control (WFS&C) images duplicates the processing applied to regular
science imaging, with the exception of image resampling. The calwebb_wfs-image2.cfg configuration utilizes the
regular Image2Pipeline module, with the resample step set to be skipped, because the analysis of WFS&C data must
be done in the original unrectified image space. The list of steps is shown in the table below.

calwebb_image2 calwebb_wfs-image2
background ✓
assign_wcs ✓
flat_field ✓
photom ✓
resample

498 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.GuiderRawModel.html#jwst.datamodels.GuiderRawModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.GuiderCalModel.html#jwst.datamodels.GuiderCalModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Arguments

The calwebb_wfs-image2 pipeline does not have any optional arguments.

Inputs

2D countrate data

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)

File suffix
_rate

The input to Image2Pipeline is a countrate exposure, in the form of “_rate” data. A single input file can be processed
or an ASN file listing multiple inputs can be used, in which case the processing steps will be applied to each input
exposure, one at a time.

Outputs

2D calibrated data

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)

File suffix
_cal

The output is a fully calibrated, but unrectified, exposure, using the product type suffix “_cal.”

calwebb_wfs-image3: Stage 3 WFS&C Processing

Class
jwst.wfs_combine.WfsCombineStep

Alias
calwebb_wfs-image3

Stage 3 processing of Wavefront Sensing and Control (WFS&C) images is only performed for dithered pairs of WFS&C
exposures. The processing applied is not truly a “pipeline”, but consists only of the single wfs_combine step. The
calwebb_wfs-image3 alias exists only for consistency and compatibility with stage 3 processing of other observing
modes. The same result could be obtained by just running the wfs_combine step directly.

15.1. Package Index 499

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Arguments

The calwebb_wfs-image3 pipeline has one optional argument:

--do_refine boolean default=False

If set to True, offsets between the dithered images computed from the WCS will be refined empirically using a cross-
correlation technique. See wfs_combine for details.

Inputs

2D calibrated images

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)

File suffix
_cal

The input to calwebb_wfs-image3 is a pair of calibrated (“_cal”) exposures, specified via an ASN file.

Outputs

2D combined image

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)

File suffix
_wfscmb

The output is a combined image, using the product type suffix “_wfscmb.” See wfs_combine for details on how this
combined image is produced.

500 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.pipeline Package

Classes

Ami3Pipeline(*args, **kwargs) Ami3Pipeline: Apply all level-3 calibration steps to an
association of level-2b AMI exposures.

Coron3Pipeline(*args, **kwargs) Class for defining Coron3Pipeline.
DarkPipeline(*args, **kwargs) DarkPipeline: Apply detector-level calibration steps to

raw JWST dark ramp to produce a corrected 4-D ramp
product.

Detector1Pipeline(*args, **kwargs) Detector1Pipeline: Apply all calibration steps to raw
JWST ramps to produce a 2-D slope product.

GuiderPipeline(*args, **kwargs) GuiderPipeline: For FGS observations, apply all cali-
bration steps to raw JWST ramps to produce a 3-D slope
product.

Image2Pipeline(*args, **kwargs) Image2Pipeline: Processes JWST imaging-mode slope
data from Level-2a to Level-2b.

Image3Pipeline(*args, **kwargs) Image3Pipeline: Applies level 3 processing to imaging-
mode data from

Spec2Pipeline(*args, **kwargs) Spec2Pipeline: Processes JWST spectroscopic expo-
sures from Level 2a to 2b.

Spec3Pipeline(*args, **kwargs) Spec3Pipeline: Processes JWST spectroscopic expo-
sures from Level 2b to 3.

Tso3Pipeline(*args, **kwargs) TSO3Pipeline: Applies level 3 processing to TSO-mode
data from

Ami3Pipeline

class jwst.pipeline.Ami3Pipeline(*args, **kwargs)
Bases: JwstPipeline

Ami3Pipeline: Apply all level-3 calibration steps to an association of level-2b AMI exposures. Included steps
are: ami_analyze (fringe detection) ami_average (average results of fringe detection) ami_normalize (normalize
results by reference target)

See Step.__init__ for the parameters.

Attributes Summary

class_alias

spec

step_defs

15.1. Package Index 501

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'calwebb_ami3'

spec

save_averages = boolean(default=True)

step_defs = {'ami_analyze': <class 'jwst.ami.ami_analyze_step.AmiAnalyzeStep'>,
'ami_average': <class 'jwst.ami.ami_average_step.AmiAverageStep'>, 'ami_normalize':
<class 'jwst.ami.ami_normalize_step.AmiNormalizeStep'>}

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Coron3Pipeline

class jwst.pipeline.Coron3Pipeline(*args, **kwargs)
Bases: JwstPipeline

Class for defining Coron3Pipeline.

Coron3Pipeline: Apply all level-3 calibration steps to a coronagraphic association of exposures. Included steps
are:

1. stack_refs (assemble reference PSF inputs)

2. align_refs (align reference PSFs to target images)

3. klip (PSF subtraction using the KLIP algorithm)

4. outlier_detection (flag outliers)

5. resample (image combination and resampling)

See Step.__init__ for the parameters.

502 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

prefetch_references

spec

step_defs

Methods Summary

process(user_input) Primary method for performing pipeline.

Attributes Documentation

class_alias = 'calwebb_coron3'

prefetch_references = False

spec

suffix = string(default='i2d')

step_defs = {'align_refs': <class 'jwst.coron.align_refs_step.AlignRefsStep'>,
'klip': <class 'jwst.coron.klip_step.KlipStep'>, 'outlier_detection': <class
'jwst.outlier_detection.outlier_detection_step.OutlierDetectionStep'>, 'resample':
<class 'jwst.resample.resample_step.ResampleStep'>, 'stack_refs': <class
'jwst.coron.stack_refs_step.StackRefsStep'>}

Methods Documentation

process(user_input)
Primary method for performing pipeline.

Parameters
user_input (str (https://docs.python.org/3/library/stdtypes.html#str), Level3
Association, or JwstDataModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel))
– The exposure or association of exposures to process

15.1. Package Index 503

https://docs.python.org/3/library/stdtypes.html#str
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

DarkPipeline

class jwst.pipeline.DarkPipeline(*args, **kwargs)
Bases: JwstPipeline

DarkPipeline: Apply detector-level calibration steps to raw JWST dark ramp to produce a corrected 4-D ramp
product. Included steps are: group_scale, dq_init, saturation, ipc, superbias, refpix, rscd, lastframe, and linearity.

See Step.__init__ for the parameters.

Attributes Summary

class_alias

step_defs

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'calwebb_dark'

step_defs = {'dq_init': <class 'jwst.dq_init.dq_init_step.DQInitStep'>, 'emicorr':
<class 'jwst.emicorr.emicorr_step.EmiCorrStep'>, 'firstframe': <class
'jwst.firstframe.firstframe_step.FirstFrameStep'>, 'group_scale': <class
'jwst.group_scale.group_scale_step.GroupScaleStep'>, 'ipc': <class
'jwst.ipc.ipc_step.IPCStep'>, 'lastframe': <class
'jwst.lastframe.lastframe_step.LastFrameStep'>, 'linearity': <class
'jwst.linearity.linearity_step.LinearityStep'>, 'refpix': <class
'jwst.refpix.refpix_step.RefPixStep'>, 'reset': <class
'jwst.reset.reset_step.ResetStep'>, 'rscd': <class 'jwst.rscd.rscd_step.RscdStep'>,
'saturation': <class 'jwst.saturation.saturation_step.SaturationStep'>,
'superbias': <class 'jwst.superbias.superbias_step.SuperBiasStep'>}

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

504 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Detector1Pipeline

class jwst.pipeline.Detector1Pipeline(*args, **kwargs)
Bases: JwstPipeline

Detector1Pipeline: Apply all calibration steps to raw JWST ramps to produce a 2-D slope product. Included steps
are: group_scale, dq_init, saturation, ipc, superbias, refpix, rscd, lastframe, linearity, dark_current, persistence,
jump detection, ramp_fit, and gain_scale.

See Step.__init__ for the parameters.

Attributes Summary

class_alias

spec

step_defs

Methods Summary

process(input) This is where real work happens.
setup_output(input)

Attributes Documentation

class_alias = 'calwebb_detector1'

spec

save_calibrated_ramp = boolean(default=False)

step_defs = {'charge_migration': <class
'jwst.charge_migration.charge_migration_step.ChargeMigrationStep'>, 'dark_current':
<class 'jwst.dark_current.dark_current_step.DarkCurrentStep'>, 'dq_init': <class
'jwst.dq_init.dq_init_step.DQInitStep'>, 'emicorr': <class
'jwst.emicorr.emicorr_step.EmiCorrStep'>, 'firstframe': <class
'jwst.firstframe.firstframe_step.FirstFrameStep'>, 'gain_scale': <class
'jwst.gain_scale.gain_scale_step.GainScaleStep'>, 'group_scale': <class
'jwst.group_scale.group_scale_step.GroupScaleStep'>, 'ipc': <class
'jwst.ipc.ipc_step.IPCStep'>, 'jump': <class 'jwst.jump.jump_step.JumpStep'>,
'lastframe': <class 'jwst.lastframe.lastframe_step.LastFrameStep'>, 'linearity':
<class 'jwst.linearity.linearity_step.LinearityStep'>, 'persistence': <class
'jwst.persistence.persistence_step.PersistenceStep'>, 'ramp_fit': <class
'jwst.ramp_fitting.ramp_fit_step.RampFitStep'>, 'refpix': <class
'jwst.refpix.refpix_step.RefPixStep'>, 'reset': <class
'jwst.reset.reset_step.ResetStep'>, 'rscd': <class 'jwst.rscd.rscd_step.RscdStep'>,
'saturation': <class 'jwst.saturation.saturation_step.SaturationStep'>,
'superbias': <class 'jwst.superbias.superbias_step.SuperBiasStep'>}

15.1. Package Index 505

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

setup_output(input)

GuiderPipeline

class jwst.pipeline.GuiderPipeline(*args, **kwargs)
Bases: JwstPipeline

GuiderPipeline: For FGS observations, apply all calibration steps to raw JWST ramps to produce a 3-D slope
product. Included steps are: dq_init, guider_cds, and flat_field.

See Step.__init__ for the parameters.

Attributes Summary

class_alias

step_defs

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'calwebb_guider'

step_defs = {'dq_init': <class 'jwst.dq_init.dq_init_step.DQInitStep'>,
'flat_field': <class 'jwst.flatfield.flat_field_step.FlatFieldStep'>, 'guider_cds':
<class 'jwst.guider_cds.guider_cds_step.GuiderCdsStep'>}

506 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Image2Pipeline

class jwst.pipeline.Image2Pipeline(*args, **kwargs)
Bases: JwstPipeline

Image2Pipeline: Processes JWST imaging-mode slope data from Level-2a to Level-2b.

Included steps are: background_subtraction, assign_wcs, flat_field, photom and resample.

See Step.__init__ for the parameters.

Attributes Summary

class_alias

image_exptypes

spec

step_defs

Methods Summary

process(input) This is where real work happens.
process_exposure_product(exp_product[, ...]) Process an exposure found in the association product

Attributes Documentation

class_alias = 'calwebb_image2'

image_exptypes = ['MIR_IMAGE', 'NRC_IMAGE', 'NIS_IMAGE', 'FGS_IMAGE']

spec

save_bsub = boolean(default=False) # Save background-subtracted science

step_defs = {'assign_wcs': <class 'jwst.assign_wcs.assign_wcs_step.AssignWcsStep'>,
'bkg_subtract': <class 'jwst.background.background_step.BackgroundStep'>,
'flat_field': <class 'jwst.flatfield.flat_field_step.FlatFieldStep'>, 'photom':
<class 'jwst.photom.photom_step.PhotomStep'>, 'resample': <class
'jwst.resample.resample_step.ResampleStep'>}

15.1. Package Index 507

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

process_exposure_product(exp_product, pool_name=' ', asn_file=' ')
Process an exposure found in the association product

Parameters
• exp_product (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – A Level2b

association product.

• pool_name (str (https://docs.python.org/3/library/stdtypes.html#str)) – The pool file
name. Used for recording purposes only.

• asn_file (str (https://docs.python.org/3/library/stdtypes.html#str)) – The name of the
association file. Used for recording purposes only.

Image3Pipeline

class jwst.pipeline.Image3Pipeline(*args, **kwargs)
Bases: JwstPipeline

Image3Pipeline: Applies level 3 processing to imaging-mode data from
any JWST instrument.

Included steps are:
assign_mtwcs tweakreg skymatch outlier_detection resample source_catalog

See Step.__init__ for the parameters.

Attributes Summary

class_alias

spec

step_defs

Methods Summary

process(input_data) Run the Image3Pipeline

508 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Documentation

class_alias = 'calwebb_image3'

spec

step_defs = {'assign_mtwcs': <class
'jwst.assign_mtwcs.assign_mtwcs_step.AssignMTWcsStep'>, 'outlier_detection': <class
'jwst.outlier_detection.outlier_detection_step.OutlierDetectionStep'>, 'resample':
<class 'jwst.resample.resample_step.ResampleStep'>, 'skymatch': <class
'jwst.skymatch.skymatch_step.SkyMatchStep'>, 'source_catalog': <class
'jwst.source_catalog.source_catalog_step.SourceCatalogStep'>, 'tweakreg': <class
'jwst.tweakreg.tweakreg_step.TweakRegStep'>}

Methods Documentation

process(input_data)
Run the Image3Pipeline

Parameters
input_data (Level3 Association, or ModelContainer) – The exposures to process

Spec2Pipeline

class jwst.pipeline.Spec2Pipeline(*args, **kwargs)
Bases: JwstPipeline

Spec2Pipeline: Processes JWST spectroscopic exposures from Level 2a to 2b. Accepts a single exposure or an
association as input.

Included steps are: assign_wcs, NIRSpec MSA bad shutter flagging, nsclean, background subtraction, NIRSpec
MSA imprint subtraction, 2-D subwindow extraction, flat field, source type decision, straylight, fringe, resid-
ual_fringe, pathloss, barshadow, photom, resample_spec, cube_build, and extract_1d.

See Step.__init__ for the parameters.

Attributes Summary

class_alias

spec

step_defs

15.1. Package Index 509

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

process(data) Entrypoint for this pipeline
process_exposure_product(exp_product[, ...]) Process an exposure found in the association product

Attributes Documentation

class_alias = 'calwebb_spec2'

spec

save_bsub = boolean(default=False) # Save background-subtracted science
fail_on_exception = boolean(default=True) # Fail if any product fails.
save_wfss_esec = boolean(default=False) # Save WFSS e-/sec image

step_defs = {'assign_wcs': <class 'jwst.assign_wcs.assign_wcs_step.AssignWcsStep'>,
'barshadow': <class 'jwst.barshadow.barshadow_step.BarShadowStep'>, 'bkg_subtract':
<class 'jwst.background.background_step.BackgroundStep'>, 'cube_build': <class
'jwst.cube_build.cube_build_step.CubeBuildStep'>, 'extract_1d': <class
'jwst.extract_1d.extract_1d_step.Extract1dStep'>, 'extract_2d': <class
'jwst.extract_2d.extract_2d_step.Extract2dStep'>, 'flat_field': <class
'jwst.flatfield.flat_field_step.FlatFieldStep'>, 'fringe': <class
'jwst.fringe.fringe_step.FringeStep'>, 'imprint_subtract': <class
'jwst.imprint.imprint_step.ImprintStep'>, 'master_background_mos': <class
'jwst.master_background.master_background_mos_step.MasterBackgroundMosStep'>,
'msa_flagging': <class 'jwst.msaflagopen.msaflagopen_step.MSAFlagOpenStep'>,
'nsclean': <class 'jwst.nsclean.nsclean_step.NSCleanStep'>, 'pathloss': <class
'jwst.pathloss.pathloss_step.PathLossStep'>, 'photom': <class
'jwst.photom.photom_step.PhotomStep'>, 'pixel_replace': <class
'jwst.pixel_replace.pixel_replace_step.PixelReplaceStep'>, 'resample_spec': <class
'jwst.resample.resample_spec_step.ResampleSpecStep'>, 'residual_fringe': <class
'jwst.residual_fringe.residual_fringe_step.ResidualFringeStep'>, 'srctype': <class
'jwst.srctype.srctype_step.SourceTypeStep'>, 'straylight': <class
'jwst.straylight.straylight_step.StraylightStep'>, 'wavecorr': <class
'jwst.wavecorr.wavecorr_step.WavecorrStep'>, 'wfss_contam': <class
'jwst.wfss_contam.wfss_contam_step.WfssContamStep'>}

Methods Documentation

process(data)
Entrypoint for this pipeline

Parameters
input (str (https://docs.python.org/3/library/stdtypes.html#str), Level2 Association,
or JwstDataModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel))
– The exposure or association of exposures to process

process_exposure_product(exp_product, pool_name=' ', asn_file=' ')
Process an exposure found in the association product

510 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Parameters
exp_product (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – A Level2b as-
sociation product.

Spec3Pipeline

class jwst.pipeline.Spec3Pipeline(*args, **kwargs)
Bases: JwstPipeline

Spec3Pipeline: Processes JWST spectroscopic exposures from Level 2b to 3.

Included steps are: assign moving target wcs (assign_mtwcs) master background subtraction (mas-
ter_background) MIRI MRS background matching (mrs_imatch) outlier detection (outlier_detection) 2-D spec-
troscopic resampling (resample_spec) 3-D spectroscopic resampling (cube_build) 1-D spectral extraction (ex-
tract_1d) Absolute Photometric Calibration (photom) 1-D spectral combination (combine_1d)

See Step.__init__ for the parameters.

Attributes Summary

class_alias

spec

step_defs

Methods Summary

process(input) Entrypoint for this pipeline

Attributes Documentation

class_alias = 'calwebb_spec3'

spec

step_defs = {'assign_mtwcs': <class
'jwst.assign_mtwcs.assign_mtwcs_step.AssignMTWcsStep'>, 'combine_1d': <class
'jwst.combine_1d.combine_1d_step.Combine1dStep'>, 'cube_build': <class
'jwst.cube_build.cube_build_step.CubeBuildStep'>, 'extract_1d': <class
'jwst.extract_1d.extract_1d_step.Extract1dStep'>, 'master_background': <class
'jwst.master_background.master_background_step.MasterBackgroundStep'>, 'mrs_imatch':
<class 'jwst.mrs_imatch.mrs_imatch_step.MRSIMatchStep'>, 'outlier_detection':
<class 'jwst.outlier_detection.outlier_detection_step.OutlierDetectionStep'>,
'photom': <class 'jwst.photom.photom_step.PhotomStep'>, 'resample_spec': <class
'jwst.resample.resample_spec_step.ResampleSpecStep'>, 'spectral_leak': <class
'jwst.spectral_leak.spectral_leak_step.SpectralLeakStep'>}

15.1. Package Index 511

https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

process(input)
Entrypoint for this pipeline

Parameters
input (str (https://docs.python.org/3/library/stdtypes.html#str), Level3 Association,
or JwstDataModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel))
– The exposure or association of exposures to process

Tso3Pipeline

class jwst.pipeline.Tso3Pipeline(*args, **kwargs)
Bases: JwstPipeline

TSO3Pipeline: Applies level 3 processing to TSO-mode data from
any JWST instrument.

Included steps are:

• outlier_detection

• tso_photometry

• extract_1d

• photom

• white_light

See Step.__init__ for the parameters.

Attributes Summary

class_alias

reference_file_types

spec

step_defs

Methods Summary

process(input) Run the TSO3Pipeline

512 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Documentation

class_alias = 'calwebb_tso3'

reference_file_types = ['gain', 'readnoise']

spec

scale_detection = boolean(default=False)

step_defs = {'extract_1d': <class 'jwst.extract_1d.extract_1d_step.Extract1dStep'>,
'outlier_detection': <class
'jwst.outlier_detection.outlier_detection_step.OutlierDetectionStep'>, 'photom':
<class 'jwst.photom.photom_step.PhotomStep'>, 'tso_photometry': <class
'jwst.tso_photometry.tso_photometry_step.TSOPhotometryStep'>, 'white_light': <class
'jwst.white_light.white_light_step.WhiteLightStep'>}

Methods Documentation

process(input)
Run the TSO3Pipeline

Parameters
input (Level3 Association, json format) – The exposures to process

15.1. Package Index 513

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Class Inheritance Diagram

Ami3Pipeline

JwstPipeline

Coron3Pipeline

DarkPipeline

Detector1Pipeline

GuiderPipeline

Image2Pipeline

Image3Pipeline

Spec2Pipeline

Spec3Pipeline

Tso3Pipeline

Pipeline

JwstStep

Step

15.1.45 Pixel Replacement

Description

Classes
jwst.pixel_replace.PixelReplaceStep

Alias
pixel_replace

During 1-D spectral extraction (extract_1d step), pixels flagged as bad are ignored in the summation process. If a bad
pixel is part of the point-spread function (PSF) at a given wavelength, the absence of the signal in the flagged pixel will
lead to a hollow space at that wavelength in the extracted spectrum.

514 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

To avoid this defect in the 1-D spectrum, this step estimates the flux values of pixels flagged as DO_NOT_USE in 2-
D extracted spectra using interpolation methods, prior to rectification in the resample_spec step. pixel_replace
inserts these estimates into the 2-D data array, unsets the DO_NOT_USE flag, and sets the FLUX_ESTIMATED flag for
each affected pixel.

This step is provided as a cosmetic feature and, for that reason, should be used with caution.

Algorithms

Adjacent Profile Approximation

This is the default (and most extensively tested) algorithm for most spectroscopic modes.

First, the input 2-D spectral cutout is scanned across the dispersion axis to determine which cross-dispersion vectors
(column or row, depending on dispersion direction) contain at least one flagged pixel. Next, for each affected vector, a
median normalized profile is created.

The adjacent arrays (the number of which is set by the step argument n_adjacent_cols) are individually normalized.
Next, each pixel in the profile is set to the median of the normalized values. This results in a median of normalized
values filling the vector.

Finally, this profile is scaled to the vector containing a missing pixel, and the value is estimated from the scaled profile.

Minimum Gradient Estimator

In the case of the MIRI MRS, NaN-valued pixels are partially compensated during the IFU cube building process using
the overlap between detector pixels and output cube voxels. The effects of NaN values are thus not as severe as for slit
spectra, but can manifest as small dips in the extracted spectrum when a NaN value lands atop the peak of a spectral
trace and cube building interpolates from lower-flux adjacent values.

Pixel replacement can thus be useful in some science cases for the MIRI MRS as well, but undersampling combined
with the curvature of spectral traces on the detector can lead the model-based adjacent profile estimator to derive
incorrect values in the vicinity of emission lines. The minimum gradient estimator is thus another optional algorithm
that uses entirely local information to fill in the missing pixel values.

This method tests the gradient along the spatial and spectral axes using immediately adjacent pixels. It chooses
whichever dimension has the minimum absolute gradient and replaces the missing pixel with the average of the two
adjacent pixels along that dimension. Near point sources this will thus favor replacement along the spectral axis due to
spatial undersampling of the PSF profile, while near bright extended emission lines it will favor replacement along the
spatial axis due to the steep spectral profile. No replacement is attempted if a NaN value is bordered by another NaN
value along a given axis.

Step Arguments

The pixel_replace step has the following step-specific arguments:

--algorithm (str, default=’fit_profile’)
This sets the method used to estimate flux values for bad pixels. The default ‘fit_profile’ uses a profile fit to
adjacent column values. The minimum gradient (‘mingrad’) method is also available for the MIRI MRS.

--n_adjacent_cols (int, default=3)
Number of adjacent columns (on either side of column containing a bad pixel) to use in creation of the source
profile, in cross-dispersion direction. The total number of columns used in the profile will be twice this num-
ber; on array edges, the total number of columns contributing to the source profile will be less than 2 *
n_adjacent_cols.

15.1. Package Index 515

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference File

This step does not use any reference file.

jwst.pixel_replace Package

Classes

PixelReplaceStep([name, parent, ...]) PixelReplaceStep: Module for replacing flagged bad
pixels with an estimate of their flux, prior to spectral ex-
traction.

PixelReplaceStep

class jwst.pixel_replace.PixelReplaceStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

PixelReplaceStep: Module for replacing flagged bad pixels with an estimate of their flux, prior to spectral ex-
traction.

algorithm

Method used to estimate flux values for bad pixels. Currently only one option is implemented, using a
profile fit to adjacent column values.

Type
str (https://docs.python.org/3/library/stdtypes.html#str)

n_adjacent_cols

Number of adjacent columns (on either side of column containing a bad pixel) to use in creation of source
profile, in cross-dispersion direction. The total number of columns used in the profile will be twice this
number; on array edges, take adjacent columns until this number is reached.

Type
int (https://docs.python.org/3/library/functions.html#int)

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

516 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

spec

Methods Summary

process(input) Execute the step.

Attributes Documentation

class_alias = 'pixel_replace'

spec

algorithm = option("fit_profile", "mingrad", "N/A", default="fit_profile")
n_adjacent_cols = integer(default=3) # Number of adjacent columns to use in␣
→˓creation of profile
skip = boolean(default=True) # Step must be turned on by parameter reference or␣
→˓user

Methods Documentation

process(input)
Execute the step.

Parameters
input (JWST DataModel) –

Returns
This will be input (https://docs.python.org/3/library/functions.html#input) if the step was
skipped; otherwise, it will be a model containing data arrays with estimated fluxes for any
bad pixels, now flagged as TO-BE-DETERMINED (DQ bit 7?).

Return type
JWST DataModel

15.1. Package Index 517

https://docs.python.org/3/library/functions.html#input

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Class Inheritance Diagram

JwstStep PixelReplaceStepStep

15.1.46 Ramp Fitting

Description

Class
jwst.ramp_fitting.RampFitStep

Alias
ramp_fit

This step determines the mean count rate, in units of counts per second, for each pixel by performing a linear fit to the
“up the ramp” data in the input file. All fitting is done using the “ordinary least squares” (OLS) method. The fit is
performed independently for each pixel. Bad values flagged via DQ flags are rejected from the fits.

The input to the step is assumed to be the fully-corrected and flagged 4-D data resulting from applying all previous
steps of the calwebb_detector1 pipeline and will nominally be the output from the jump detection step. It is in fact
vital that all anomalies such as saturation, non-linearity, and CR jumps be corrected or appropriately flagged in order
to obtain useful results from ramp fitting.

The count rate for each pixel is determined by a linear fit to the cosmic-ray-free and saturation-free ramp intervals for
each pixel, with any intervening groups flagged as “DO_NOT_USE” excluded from the fits. Hereafter such intervals
will be referred to as a ramp “segment.” The fitting algorithm uses an ‘optimal’ weighting scheme, as described by
Fixsen et al 2000 (https://ui.adsabs.harvard.edu/abs/2000PASP..112.1350F/abstract).

Segments are determined using the 4-D GROUPDQ array of the input data set, under the assumption that the saturation
detection and jump detection steps have already been applied, in order to flag occurrences of both saturation and cosmic-
ray (CR) hits. A ramp segment is a set of contiguous groups that have no non-zero DQ values assigned. The one
exception to this rule is the occurrence of a “JUMP_DET” (jump detected) flag: a group with this flag will be used
as the first group of the next segment. Any occurences of a “DO_NOT_USE” flag will be excluded from a segment.
When a “SATURATION” flag is found, the segment is terminated at the preceding group and all subsequent groups
are rejected. Any segment containing only one good group is ignored if there is any other segment of length greater
than one. Once all segments have been determined, slopes and variances are determined for each one.

Pixels are processed simultaneously in blocks using the array-based functionality of numpy. The size of the block
depends on the image size and the number of groups per integration.

The main algorithms for this step are called from the external package stcal. This package is an STScI effort to unify
common calibration processing algorithms for use by multiple observatories. Therefore the majority of the remainder of
this document links to the relevant sections of information in the stcal package. JWST-specific features are described
later within this document.

Upon successful completion of this step, the status keyword S_RAMP will be set to “COMPLETE”.

518 Chapter 15. Package Documentation

https://ui.adsabs.harvard.edu/abs/2000PASP..112.1350F/abstract

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Multiprocessing

This step has the option of running in multiprocessing mode. In that mode it will split the input data into a number of
slices based on the number of available cores on the host computer and the value of the maximum_cores step parameter.
By default the step runs on a single processor. At the other extreme, if maxiumum_cores is set to ‘all’, it will use all
available cores (real and virtual). Testing has shown a reduction in the elapsed time for the step proportional to the
number of real cores used. Using the virtual cores also reduces the elapsed time, but at a slightly lower rate than the real
cores. Because the data are sliced based on the number of rows, if the number of cores requested for multiprocessing
is greater than the number of rows, the number of cores actually used will be no more than the number of rows. This
prevents any additional cores from operating on empty datasets, which would cause errors during ramp fitting.

Output Products (https://stcal.readthedocs.io/en/latest/stcal/ramp_fitting/description.html#ramp-
output-products)

Special Cases (https://stcal.readthedocs.io/en/latest/stcal/ramp_fitting/description.html#ramp-
special-cases)

NIRCam Frame Zero

The NIRCam instrument has the ability to downlink data resulting from the initial frame of each integration (known as
“frame zero”) when on-board frame averaging is in use for a given exposure. If the frame zero data were downlinked,
they will appear in a 3-D data cube in the raw data products with a label of “ZEROFRAME”. The data from frame
zero can be used to recover a slope estimate for a pixel in the event the pixel saturates already somewhere within the
first group of an integration.

If all groups in an integration are flagged as SATURATED for a given pixel, the frame zero data array is examined to
determine whether or not it is also saturated. Saturated elements of the frame zero array are set to zero by the preceding
saturation step in the pipeline. Unsaturated elements will have non-zero values in the frame zero array. If frame zero
is not saturated, then it’s value will be divided by the frame time for the exposure in order to compute a slope for the
pixel in that integration. This is analagous to the situation in which only the first group in an integration is unsaturated
and used by itself to compute a slope.

Note that the computation of slopes from either a single group or the single frame zero value is disabled when the step
parameter suppress_one_group is set to True. In this case the slope value for such a pixel will be set to zero.

Detailed Algorithms (https://stcal.readthedocs.io/en/latest/stcal/ramp_fitting/description.html#ramp-
slopes-and-variances)

Error Propagation (https://stcal.readthedocs.io/en/latest/stcal/ramp_fitting/description.html#ramp-
error-propagation)

Data Quality Propagation (https://stcal.readthedocs.io/en/latest/stcal/ramp_fitting/description.html#ramp-
dq-propagation)

Charge Migration Special Case

If the charge migration step has been performed prior to ramp fitting, any group whose value exceeds the
signal_threshold parameter value in that step will have been flagged with the CHARGELOSS and DO_NOT_USE
DQ flags. Due to the presence of the DO_NOT_USE flags, such groups are excluded from all slope calculations.

15.1. Package Index 519

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

It is still desired, however, to have a read noise variance value for such pixels that is similar to pixels unaffected by
charge migration, so an additional type of variance is calculated, in which the groups flagged with CHARGELOSS are
still included, despite the fact that those groups do not get included in slope calculations. This version of the readnoise
variance is the one stored in the VAR_RNOISE extension of the various output products from the step, so that it will be
the one used later in the pipeline flow in the resample step, if that step is executed using Inverse Variance Map (IVM)
weighting in the resampling process.

The original version of readnoise variance described earlier, where all groups flagged with DO_NOT_USE are not
included, is still used internally in all other calculations involving readnoise variance.

Arguments

The ramp fitting step has the following optional arguments that can be set by the user:

• --save_opt: A True/False value that specifies whether to write the optional output product. Default is False.

• --opt_name: A string that can be used to override the default name for the optional output product.

• --int_name: A string that can be used to override the default name for the per-integration product.

• --suppress_one_group: A boolean to suppress computations for saturated ramps with only one good (unsat-
urated) sample. The default is set to True to suppress these computations, which will compute all values for the
ramp the same as if the entire ramp were saturated.

• --maximum_cores: The number of available cores that will be used for multi-processing in this step. The default
value is ‘1’, which results in no multi-processing. Other options are either an integer, ‘quarter’, ‘half’, and ‘all’.
Note that these fractions refer to the total available cores and on most CPUs these include physical and virtual
cores. The clock time for the step is reduced almost linearly by the number of physical cores used on all machines.
For example, on an Intel CPU with six real cores and six virtual cores, setting maximum_cores to ‘half’ results
in a decrease of a factor of six in the clock time for the step to run. Depending on the system, the clock time
can also decrease even more with maximum_cores set to ‘all’. Setting the number of cores to an integer can be
useful when running on machines with a large number of cores where the user is limited in how many cores they
can use.

Reference Files

The ramp_fit step uses two reference file types: GAIN and READNOISE. During ramp fitting, the GAIN values are
used to temporarily convert the pixel values from units of DN to electrons, and convert the results of ramp fitting back
to DN. The READNOISE values are used as part of the noise estimate for each pixel. Both are necessary for proper
computation of noise estimates.

GAIN

READNOISE

Appendix

The derivation of the segment-specific readnoise variance (𝑣𝑎𝑟𝑅𝑠) is shown here. This pertains to both the ‘conven-
tional’ and ‘weighted’ readnoise variances - the only difference being the number of groups in the segment. This
derivation follows the standard procedure for fitting data to a straight line, such as in chapter 15 of Numerical Recipes.
The segment-specific variance from read noise corresponds to 𝜎2

𝑏 in section 15.2.

For read noise R, weight w = 1/𝑅2, which is a constant.

n = number of groups (ngroups in the text)

t = group time (tgroup in the text)

520 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

x = starting time for each group, = (1, 2, 3, ...𝑛+ 1) · 𝑡

𝑆1 =
∑︀𝑛

𝑘=1 𝑤

𝑆𝑥 =
∑︀𝑛

𝑘=1(𝑤 · 𝑥𝑘)𝑡

Sxx =
∑︀𝑛

𝑘=1(𝑤 · 𝑥𝑘)
2𝑡2

D = 𝑆1 · 𝑆xx- 𝑆2
𝑥

Summations needed:∑︀𝑛
𝑘=1 𝑘 = 𝑛 · (𝑛+ 1)/2 = 𝑛2/2 + 𝑛/2∑︀𝑛
𝑘=1 𝑘

2 = 𝑛 · (𝑛+ 1) · (2 · 𝑛+ 1)/6 = 𝑛3/3 + 𝑛2/2 + 𝑛/6

The variance due to read noise = 𝑣𝑎𝑟𝑅𝑠 = 𝑆1/𝐷 = 𝑆1/(𝑆1 · 𝑆𝑥𝑥 − 𝑆2
𝑥)

=
𝑤 · 𝑛

[𝑤 · 𝑛 ·
∑︀𝑛

𝑘=1(𝑤 · 𝑥2
𝑘 · 𝑡2)]− [

∑︀𝑛
𝑘=1(𝑤 · 𝑥𝑘 · 𝑡)]2

=
𝑛

𝑤 · 𝑡2 · [𝑛 · (𝑛3/3 + 𝑛2/2 + 𝑛/6)− (𝑛2/2 + 𝑛/2)2]

=
1

(𝑛3/12− 𝑛/12) · 𝑤 · 𝑡2

=
12 ·𝑅2

(𝑛3 − 𝑛) · 𝑡2

This is the equation used in the step code and listed in the segment-specific computations section of the step Description.

jwst.ramp_fitting Package

Classes

RampFitStep([name, parent, config_file, ...]) This step fits a straight line to the value of counts vs.

RampFitStep

class jwst.ramp_fitting.RampFitStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

This step fits a straight line to the value of counts vs. time to determine the mean count rate for each pixel.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

15.1. Package Index 521

https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

algorithm

class_alias

reference_file_types

spec

weighting

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

algorithm = 'ols'

class_alias = 'ramp_fit'

reference_file_types = ['readnoise', 'gain']

spec

int_name = string(default='')
save_opt = boolean(default=False) # Save optional output
opt_name = string(default='')
suppress_one_group = boolean(default=True) # Suppress saturated ramps with␣
→˓good 0th group
maximum_cores = string(default='1') # cores for multiprocessing. Can be an␣
→˓integer, 'half', 'quarter', or 'all'

weighting = 'optimal'

522 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep RampFitStepStep

15.1.47 Reference File Information

Introduction

This document is intended to be a core reference guide to the formats, naming convention and data quality flags used
by the reference files for pipeline steps requiring them, and is not intended to be a detailed description of each of those
pipeline steps. It also does not give details on pipeline steps that do not use reference files. The present manual is
referred to by several other documentation pages, such as the JWST pipeline and JDocs.

Reference File Naming Convention

Before reference files are ingested into CRDS, they are renamed following a convention used by the pipeline. As with
any other changes undergone by the reference files, the previous names are kept in header keywords, so the Instrument
Teams can easily track which delivered file is being used by the pipeline in each step.

The naming of reference files uses the following syntax:

jwst_<instrument>_<reftype>_<version>.<extension>

where

• instrument is one of “fgs”, “miri”, “nircam”, “niriss”, and “nirspec”

• reftype is one of the type names listed in the table below

• version is a 4-digit version number (e.g. 0042)

• extension gives the file format, such as “fits” or “asdf”

An example NIRCam GAIN reference file name would be “jwst_nircam_gain_0042.fits”.

The HISTORY header keyword of each reference file includes details on specific processing undergone by the files
before being ingested in CRDS.

15.1. Package Index 523

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference File Types

Most reference files have a one-to-one relationship with calibration steps, e.g. there is one step that uses one type of
reference file. Some steps, however, use several types of reference files and some reference file types are used by more
than one step. The tables below show the correspondence between pipeline steps and reference file types. The first
table is ordered by pipeline step, while the second is ordered by reference file type. Links to the reference file types
provide detailed documentation on each reference file.

Pipeline Step Reference File Type (REFTYPE)
align_refs PSFMASK
ami_analyze THROUGHPUT
assign_wcs CAMERA

COLLIMATOR
DISPERSER
DISTORTION
FILTEROFFSET
FORE
FPA
IFUFORE
IFUPOST
IFUSLICER
MSA
OTE
SPECWCS
REGIONS
WAVELENGTHRANGE

background WFSSBKG
WAVELENGTHRANGE

barshadow BARSHADOW
cube_build CUBEPAR
dark_current DARK
dq_init MASK
emicorr EMICORR
extract_1d EXTRACT1D

APCORR
SPECKERNEL (NIRISS SOSS ATOCA only)
SPECPROFILE (NIRISS SOSS ATOCA only)
SPECTRACE (NIRISS SOSS ATOCA only)
WAVEMAP (NIRISS SOSS ATOCA only)

extract_2d WAVECORR
WAVELENGTHRANGE

flatfield FLAT
DFLAT
FFLAT
SFLAT

fringe FRINGE
gain_scale GAIN
ipc IPC
jump GAIN

READNOISE
linearity LINEARITY
msaflagopen MSAOPER

continues on next page

524 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Table 4 – continued from previous page
Pipeline Step Reference File Type (REFTYPE)
pathloss PATHLOSS
persistence PERSAT

TRAPDENSITY
TRAPPARS

photom PHOTOM
AREA

ramp_fitting GAIN
READNOISE

refpix REFPIX
resample DRIZPARS
reset RESET
residual_fringe FRINGEFREQ

REGIONS
rscd RSCD
saturation SATURATION
source_catalog APCORR

ABVEGAOFFSET
straylight MRSXARTCORR
spectral_leak MRSPTCORR
superbias SUPERBIAS
tso_photometry TSOPHOT
wavecorr WAVECORR

Reference File Type (REFTYPE) Pipeline Step
ABVEGAOFFSET source_catalog
APCORR extract_1d

source_catalog
AREA photom
BARSHADOW barshadow
CAMERA assign_wcs
COLLIMATOR assign_wcs
CUBEPAR cube_build
DARK dark_current
DFLAT flatfield
DISPERSER assign_wcs
DISTORTION assign_wcs
DRIZPARS resample
EMICORR emicorr
EXTRACT1D extract_1d
FFLAT flatfield
FILTEROFFSET assign_wcs
FLAT flatfield
FORE assign_wcs
FPA assign_wcs
FRINGE fringe
FRINGEFREQ residual_fringe
GAIN gain_scale

jump
continues on next page

15.1. Package Index 525

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Table 5 – continued from previous page
Reference File Type (REFTYPE) Pipeline Step

ramp_fitting
IFUFORE assign_wcs
IFUPOST assign_wcs
IFUSLICER assign_wcs
IPC ipc
LINEARITY linearity
MASK dq_init
MRSPTCORR spectral_leak
MRSXARTCORR straylight
MSA assign_wcs
MSAOPER msaflagopen
OTE assign_wcs
PATHLOSS pathloss
PERSAT persistence
PHOTOM photom
PSFMASK align_refs
READNOISE jump

ramp_fitting
REFPIX refpix
REGIONS assign_wcs

residual_fringe
RESET reset
RSCD rscd
SATURATION saturation
SFLAT flatfield
SPECWCS assign_wcs
SUPERBIAS superbias
THROUGHPUT ami_analyze
TRAPDENSITY persistence
TRAPPARS persistence
TSOPHOT tso_photometry
WAVELENGTHRANGE assign_wcs

background
extract_2d

WAVECORR wavecorr
WFSSBKG background

Step Parameters Reference Types

When each Step is instantiated, a CRDS look-up, based on the Step class name and input data, is made to retrieve
a parameter file. The reftype for such parameter files is pars-<class name>. For example, for the step jwst.
persistence.PersistenceStep, the reftype would be pars-persistencestep.

For more information, see Parameter Files.

526 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Standard Required Keywords

At present, most JWST science and reference files are FITS files with image or table extensions. The FITS primary
data unit is always empty. The primary header contains all keywords not specific to individual extensions. Keywords
specific to a particular extension are contained in the header of that extension.

The required Keywords Documenting Contents of Reference Files are:

Key-
word

Comment

REFTYPEWFSSBKG Required values are listed in the discussion of each pipeline step.
DE-
SCRIP

Summary of file content and/or reason for delivery

AU-
THOR

Fred Jones Person(s) who created the file

USE-
AFTER

YYYY-MM-DDThh:mm:ss Date and time after the reference files will be used. The
T is required. Time string may NOT be omitted; use T00:00:00 if no meaningful
value is available.

PEDI-
GREE

Options are 'SIMULATION' 'GROUND' 'DUMMY' 'INFLIGHT YYYY-MM-DD YYYY-MM-DD'

HIS-
TORY

Description of Reference File Creation

HIS-
TORY

DOCUMENT: Name of document describing the strategy and algorithms used to create
file.

HIS-
TORY

SOFTWARE: Description, version number, location of software used to create file.

HIS-
TORY

DATA USED: Data used to create file

HIS-
TORY

DIFFERENCES: How is this version different from the one that it replaces?

HIS-
TORY

If your text spills over to the next line, begin it with another HISTORY
keyword, as in this example.

TELE-
SCOP

JWST Name of the telescope/project.

IN-
STRUME

FGS Instrument name. Allowed values: FGS, NIRCAM, NIRISS, NIRSPEC, MIRI

SUB-
AR-
RAY

FULL, GENERIC, SUBS200A1, ... (XXX abstract technical description of SUBARRAY)

SUB-
STRT1

1 Starting pixel index along axis 1 (1-indexed)

SUB-
SIZE1

2048 Size of subarray along axis 1

SUB-
STRT2

1 Starting pixel index along axis 2 (1-indexed)

SUB-
SIZE2

2048 Size of subarray along axis 2

FAS-
TAXIS

1 Fast readout direction relative to image axes for Amplifier #1 (1 = +x axis, 2
= +y axis, -1 = -x axis, -2 = -y axis) SEE NOTE BELOW.

SLOWAXIS2 Slow readout direction relative to image axes for all amplifiers (1 = +x axis,
2 = +y axis, -1 = -x axis, -2 = -y axis)

15.1. Package Index 527

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Observing Mode Keywords

A pipeline module may require separate reference files for each instrument, detector, filter, observation date, etc. The
values of these parameters must be included in the reference file header. The observing-mode keyword values are vital
to the process of ingesting reference files into CRDS, as they are used to establish the mapping between observing
modes and specific reference files. Some observing-mode keywords are also used in the pipeline processing steps. If
an observing-mode keyword is irrelevant to a particular observing mode (such as GRATING for the MIRI imager mode
or the NIRCam and NIRISS instruments), then it may be omitted from the file header.

The Keywords Documenting the Observing Mode are:

528 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Key-
word

Sam-
ple
Value

Comment

PUPILNRM Pupil wheel element. Required only for NIRCam and NIRISS. NIRCam allowed values: CLEAR,
F162M, F164N, F323N, F405N, F466N, F470N, GRISMV2, GRISMV3 NIRISS allowed values:
CLEARP, F090W, F115W, F140M, F150W, F158M, F200W, GR700XD, NRM

FIL-
TER

F2100WFilter wheel element. Allowed values: too many to list here

GRAT-
ING

G395MRequired only for NIRSpec.
NIRSpec allowed values: G140M, G235M, G395M, G140H, G235H, G395H, PRISM, MIRROR

EXP_TYPEMIR_MRSExposure type.
FGS allowed values: FGS_IMAGE, FGS_FOCUS, FGS_SKYFLAT, FGS_INTFLAT, FGS_DARK
MIRI allowed values: MIR_IMAGE, MIR_TACQ, MIR_LYOT, MIR_4QPM, MIR_LRS-
FIXEDSLIT, MIR_LRS-SLITLESS, MIR_MRS, MIR_DARK, MIR_FLATIMAGE,
MIR_FLATMRS, MIR_CORONCAL
NIRCam allowed values: NRC_IMAGE, NRC_GRISM, NRC_TACQ, NRC_TACONFIRM,
NRC_CORON, NRC_TSIMAGE, NRC_TSGRISM, NRC_FOCUS, NRC_DARK, NRC_FLAT,
NRC_LED
NIRISS allowed values: NIS_IMAGE, NIS_TACQ, NIS_TACONFIRM, NIS_WFSS, NIS_SOSS,
NIS_AMI, NIS_FOCUS, NIS_DARK, NIS_LAMP
NIRSpec allowed values: NRS_TASLIT, NRS_TACQ, NRS_TACONFIRM, NRS_CONFIRM,
NRS_FIXEDSLIT, NRS_AUTOWAVE, NRS_IFU, NRS_MSASPEC, NRS_AUTOFLAT,
NRS_IMAGE, NRS_FOCUS, NRS_DARK, NRS_LAMP, NRS_BOTA, NRS_BRIGHTOBJ,
NRS_MIMF

DE-
TEC-
TOR

MIR-
I-
FU-
LONG

Allowed values: GUIDER1, GUIDER2
NIS
NRCA1, NRCA2, NRCA3, NRCA4, NRCB1, NRCB2, NRCB3, NRCB4, NRCALONG, NRCB-
LONG
NRS1, NRS2
MIRIFULONG, MIRIFUSHORT, MIRIMAGE

CHAN-
NEL

12 MIRI MRS (IFU) channel. Allowed values: 1, 2, 3, 4, 12, 34 SHORT NIRCam channel. Allowed
values: SHORT, LONG

BANDMEDIUMIFU band. Required only for MIRI. Allowed values are SHORT, MEDIUM, LONG, and N/A, as well
as any allowable combination of two values (SHORT-MEDIUM, LONG-SHORT, etc.). (Also used as
a header keyword for selection of all MIRI Flat files, Imager included.)

READ-
PATT

FAST Name of the readout pattern used for the exposure. Each pattern represents a particular combination
of parameters like nframes and groups. For MIRI, FAST and SLOW refer to the rate at which the
detector is read.
MIRI allowed values: SLOW, FAST, FASTGRPAVG, FASTINTAVG
NIRCam allowed values: DEEP8, DEEP2, MEDIUM8, MEDIUM2, SHALLOW4, SHALLOW2,
BRIGHT2, BRIGHT1, RAPID
NIRSpec allowed values: NRSRAPID, NRS, NRSN16R4, NRSIRS2RAPID
NIRISS allowed values: NIS, NISRAPID
FGS allowed values: ID, ACQ1, ACQ2, TRACK, FINEGUIDE, FGS60, FGS840, FGS7850,
FGSRAPID, FGS

NRS_NORM16 Required only for NIRSpec.
NRS_REF4 Required only for NIRSpec.
P_XXXXXXP_READPApattern keywords used by CRDS for JWST to describe the intended uses of a reference file using or’ed

combinations of values. Only a subset of P_pattern keywords are supported.

Note: For the NIR detectors, the fast readout direction changes sign from one amplifier to the next. It is +1, -1, +1, and
-1, for amps 1, 2, 3, and 4, respectively. The keyword FASTAXIS refers specifically to amp 1. That way, it is entirely

15.1. Package Index 529

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

correct for single-amp readouts and correct at the origin for 4-amp readouts. For MIRI, FASTAXIS is always +1.

Tracking Pipeline Progress

As each pipeline step is applied to a science data product, it will record a status indicator in a header keyword of
the science data product. The current list of step status keyword names is given in the following table. These status
keywords may be included in the primary header of reference files, in order to maintain a history of the data that went
into creating the reference file. Allowed values for the status keywords are ‘COMPLETE’ and ‘SKIPPED’. Absence of
a particular keyword is understood to mean that step was not even attempted.

Table 1. Keywords Documenting Which Pipeline Steps Have Been Performed.

S_AMIANA AMI fringe analysis
S_AMIAVG AMI fringe averaging
S_AMINOR AMI fringe normalization
S_BARSHA Bar shadow correction
S_BKDSUB Background subtraction
S_COMB1D 1-D spectral combination
S_DARK Dark subtraction
S_DQINIT DQ initialization
S_EXTR1D 1-D spectral extraction
S_EXTR2D 2-D spectral extraction
S_FLAT Flat field correction
S_FRINGE Fringe correction
S_FRSTFR MIRI first frame correction
S_GANSCL Gain scale correction
S_GRPSCL Group scale correction
S_GUICDS Guide mode CDS computation
S_IFUCUB IFU cube creation
S_IMPRNT NIRSpec MSA imprint subtraction
S_IPC IPC correction
S_JUMP Jump detection
S_KLIP Coronagraphic PSF subtraction
S_LASTFR MIRI last frame correction
S_LINEAR Linearity correction
S_MIREMI MIRI EMI correction
S_MRSMAT MIRI MRS background matching
S_MSAFLG NIRSpec MSA failed shutter flagging
S_OUTLIR Outlier detection
S_PERSIS Persistence correction
S_PHOTOM Photometric (absolute flux) calibration
S_PSFALI Coronagraphic PSF alignment
S_PSFSTK Coronagraphic PSF stacking
S_PTHLOS Pathloss correction
S_RAMP Ramp fitting
S_REFPIX Reference pixel correction
S_RESAMP Resampling (drizzling)
S_RESET MIRI reset correction
S_RSCD MIRI RSCD correction
S_SATURA Saturation check
S_SKYMAT Sky matching
S_SRCCAT Source catalog creation

continues on next page

530 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Table 6 – continued from previous page
S_SRCTYP Source type determination
S_STRAY Straylight correction
S_SUPERB Superbias subtraction
S_TELEMI Telescope emission correction
S_TSPHOT TSO imaging photometry
S_TWKREG Tweakreg image alignment
S_WCS WCS assignment
S_WFSCOM Wavefront sensing image combination
S_WHTLIT TSO white-light curve generation

Orientation of Detector Image

All steps in the pipeline assume the data are in the DMS (science) orientation, not the native readout orientation. The
pipeline does NOT check or correct for the orientation of the reference data. It assumes that all files ingested into
CRDS have been put into the science orientation. All header keywords documenting the observing mode (Table 2)
should likewise be transformed into the DMS orientation. For square data array dimensions it’s not possible to infer
the actual orientation directly so reference file authors must manage orientation carefully.

Table 2. Correct values for FASTAXIS and SLOWAXIS for each detector.

DETECTOR FASTAXIS SLOWAXIS
MIRIMAGE 1 2
MIRIFULONG 1 2
MIRIFUSHORT 1 2
NRCA1 -1 2
NRCA2 1 -2
NRCA3 -1 2
NRCA4 1 -2
NRCALONG -1 2
NRCB1 1 -2
NRCB2 -1 2
NRCB3 1 -2
NRCB4 -1 2
NRCBLONG 1 -2
NRS1 2 1
NRS2 -2 -1
NIS -2 -1
GUIDER1 -2 -1
GUIDER2 2 -1

Differing values for these keywords will be taken as an indicator that neither the keyword value nor the array orientation
are correct.

15.1. Package Index 531

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

P_pattern keywords

P_ pattern keywords used by CRDS for JWST to describe the intended uses of a reference file using or’ed combinations

For example, if the same NIRISS SUPERBIAS should be used for

READPATT=NIS

or

READPATT=NISRAPID

the definition of READPATT in the calibration s/w datamodels schema does not allow it. READPATT can specify one
or the other but not both.

To support expressing combinations of values, CRDS and the CAL s/w have added “pattern keywords” which nomi-
nally begin with P_ followed by the ordinary keyword, truncated as needed to 8 characters. In this case, P_READPA
corresponds to READPATT.

Pattern keywords override the corresponding ordinary keyword for the purposes of automatically updating CRDS
rmaps. Pattern keywords describe intended use.

In this example, the pattern keyword:

P_READPA = NIS | NISRAPID |

can be used to specify the intent “use for NIS or for NISRAPID”.

Only or-ed combinations of the values used in ordinary keywords are valid for pattern keywords.

Patterns appear in a slightly different form in rmaps than they do in P_ keywords. The value of a P_ keyword always
ends with a trailing or-bar. In rmaps, no trailing or-bar is used so the equivalent of the above in an rmap is:

‘NIS|NISRAPID’

From a CRDS perspective, the P_ pattern keywords and their corresponding datamodels paths currently
supported can be found in the JWST Pattern Keywords section of the CRDS documentation. (https://jwst-
crds.stsci.edu/static/users_guide/reference_conventions.html#id2)

Currently all P_ keywords correspond to basic keywords found only in the primary headers of reference files and are
typically only valid for FITS format..

The translation from these P_ pattern keywords are completely generic in CRDS and can apply to any reference file type
so they should be assumed to be reserved whether a particular type uses them or not. Defining non-pattern keywords
with the prefix P_ is strongly discouraged.

Data Quality Flags

Within science data files, the PIXELDQ flags are stored as 32-bit integers; the GROUPDQ flags are 8-bit integers. The
meaning of each bit is specified in a separate binary table extension called DQ_DEF. The binary table has the format
presented in Table 3, which represents the master list of DQ flags. Only the first eight entries in the table below are
relevant to the GROUPDQ array. All calibrated data from a particular instrument and observing mode have the same
set of DQ flags in the same (bit) order. For Build 7, this master list will be used to impose this uniformity. We may
eventually use different master lists for different instruments or observing modes.

Within reference files for some steps, the Data Quality arrays for some steps are stored as 8-bit integers to conserve
memory. Only the flags actually used by a reference file are included in its DQ array. The meaning of each bit in the
DQ array is stored in the DQ_DEF extension, which is a binary table having the following fields: Bit, Value, Name,
and Description.

Table 3. Flags for the DQ, PIXELDQ, and GROUPDQ Arrays (Format of DQ_DEF Extension).

532 Chapter 15. Package Documentation

https://jwst-crds.stsci.edu/static/users_guide/reference_conventions.html#id2

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Bit Value Name Description
0 1 DO_NOT_USE Bad pixel. Do not use.
1 2 SATURATED Pixel saturated during exposure
2 4 JUMP_DET Jump detected during exposure
3 8 DROPOUT Data lost in transmission
4 16 OUTLIER Flagged by outlier detection
5 32 PERSISTENCE High persistence
6 64 AD_FLOOR Below A/D floor
7 128 CHARGELOSS Charge Migration
8 256 UNRELIABLE_ERROR Uncertainty exceeds quoted error
9 512 NON_SCIENCE Pixel not on science portion of detector
10 1024 DEAD Dead pixel
11 2048 HOT Hot pixel
12 4096 WARM Warm pixel
13 8192 LOW_QE Low quantum efficiency
14 16384 RC RC pixel
15 32768 TELEGRAPH Telegraph pixel
16 65536 NONLINEAR Pixel highly nonlinear
17 131072 BAD_REF_PIXEL Reference pixel cannot be used
18 262144 NO_FLAT_FIELD Flat field cannot be measured
19 524288 NO_GAIN_VALUE Gain cannot be measured
20 1048576 NO_LIN_CORR Linearity correction not available
21 2097152 NO_SAT_CHECK Saturation check not available
22 4194304 UNRELIABLE_BIAS Bias variance large
23 8388608 UNRELIABLE_DARK Dark variance large
24 16777216 UNRELIABLE_SLOPE Slope variance large (i.e., noisy pixel)
25 33554432 UNRELIABLE_FLAT Flat variance large
26 67108864 OPEN Open pixel (counts move to adjacent pixels)
27 134217728 ADJ_OPEN Adjacent to open pixel
28 268435456 FLUX_ESTIMATED Pixel flux estimated due to missing/bad data
29 536870912 MSA_FAILED_OPEN Pixel sees light from failed-open shutter
30 1073741824 OTHER_BAD_PIXEL A catch-all flag
31 2147483648 REFERENCE_PIXEL Pixel is a reference pixel

Note: Words like “highly” and “large” will be defined by each instrument team. They are likely to vary from one
detector to another – or even from one observing mode to another.

Parameter Specification

There are a number of steps, such as OutlierDetectionStep or SkyMatchStep, that define what data quality flags a pixel
is allowed to have to be considered in calculations. Such parameters can be set in a number of ways.

First, the flag can be defined as the integer sum of all the DQ bit values from the input images DQ arrays that should
be considered “good”. For example, if pixels in the DQ array can have combinations of 1, 2, 4, and 8 and one wants to
consider DQ flags 2 and 4 as being acceptable for computations, then the parameter value should be set to “6” (2+4).
In this case a pixel having DQ values 2, 4, or 6 will be considered a good pixel, while a pixel with a DQ value, e.g.,
1+2=3, 4+8=”12”, etc. will be flagged as a “bad” pixel.

Alternatively, one can enter a comma-separated or ‘+’ separated list of integer bit flags that should be summed to obtain
the final “good” bits. For example, both “4,8” and “4+8” are equivalent to a setting of “12”.

Finally, instead of integers, the JWST mnemonics, as defined above, may be used. For example, all the following
specifications are equivalent:

15.1. Package Index 533

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

"12" == "4+8" == "4, 8" == "JUMP_DET, DROPOUT"

Note: The default value (0) will make all non-zero pixels in the DQ mask be considered “bad” pixels and the corre-
sponding pixels will not be used in computations.

Setting to None (https://docs.python.org/3/library/constants.html#None) will turn off the use of the DQ array for com-
putations.

In order to reverse the meaning of the flags from indicating values of the “good” DQ flags to indicating the “bad” DQ
flags, prepend ‘~’ to the string value. For example, in order to exclude pixels with DQ flags 4 and 8 for computations
and to consider as “good” all other pixels (regardless of their DQ flag), use a value of ~4+8, or ~4,8. A string value
of ~0 would be equivalent to a setting of None.

CRDS Integration in CAL Code

For JWST, the Calibration Reference Data System (CRDS) is directly integrated with calibration steps and pipelines
resulting in conventions for how Steps and Pipelines should be written.

Step Attribute .reference_file_types

Each calibration Step is required to define an attribute or property named reference_file_types which defines the CRDS
reference file types that are required for running the calibration step. Note that for some Steps the reference file types
actually used vary so the minimal list of required types may not be known if no science data is defined.

Note that the Step parameter reference files do not need to be specified. These are automatically requested in the Step
architecture.

CRDS Prefetch

To ensure all reference files required by a pipeline are available prior to processing, Pipelines perform a “pre-fetch” of
all references required by any Step in the Pipeline. This generic Pipeline behavior is intended to prevent processing
which fails due to missing CRDS files after running for lengthy periods.

When CRDS_SERVER_URL and CRDS_PATH are properly configured, CRDS will download and locally cache the
minimal set of references required to calibrate specific data using a particular pipeline. This configuration supports
remote processing for users with no access or inefficient access to the STScI local network.

The pre-fetch also enables CRDS to report on all reference file assignment and availability problems a pipeline will
encounter in a single CAL run. This is required in I&T scenarios where the total number of pipeline runs is very limited
(often weekly) so solving as many reference file issues per run as possible is needed.

While the prefetch runs for onsite users, since the default CRDS configuration points to a complete CRDS cache, no
downloads will occur.

534 Chapter 15. Package Documentation

https://docs.python.org/3/library/constants.html#None

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Step Method .get_reference_file()

During processing individual Steps make secondary calls to CRDS via the get_reference_file(input_file, refer-
ence_file_type) method to fetch the cache paths of individual reference files. If no file is applicable, CRDS returns
the value ‘N/A’ which is sometimes used to skip related Step processing. If there is an error determining a reference
file, CRDS will raise an exception stopping the calibration; typically these occur due to missing reference files or
incorrectly specified dataset parameters.

While get_reference_file() returns the absolute path of CRDS reference files, reference file assignments are recorded
in output products using a crds:// URI prefix which translates to roughly “the path of this file in the local cache you’ve
defined using CRDS_PATH, or under /grp/crds/cache if you didn’t define CRDS_PATH”.

Best Reference Matching

The Calibration Reference Data System (CRDS) assigns the best reference files needed to process a data set based on
the dataset’s metadata (FITS headers) and plain text CRDS rules files.

CRDS rules and references are organized into a 4 tiered hierarchical network of versioned files consisting of:

• .pmap - The overall context for the pipeline (i.e. all instruments)

• .imap - The rules for all reference types of one instrument

• .rmap - The rules for all reference files of one type of one instrument

• .fits,.asdf,.json - Individual reference files assigned by .rmaps

Based on dataset parameters, CRDS traverses the hierarchy of rules files, generally starting from the .pmap and de-
scending until a particular reference file is assigned.

Visiting the JWST operational website here:

https://jwst-crds.stsci.edu/

and opening up instrument panes of the Operational References display can rapidly give an idea about how reference
files should be assigned.

CRDS Parameter Naming

For the sake of brevity, the CRDS website often refers to matching parameters using truncated names intended to give
the gist of a parameter.

Within CRDS rules for JWST, CRDS refers to parameters using jwst datamodels attribute paths converted to capitalized
strings analogous to FITS keywords. For instance the datamodels attribute:

meta.instrument.name

corresponds to CRDS rules parameter name:

'META.INSTRUMENT.NAME'

and FITS keyword:

'INSTRUME'

Using e.g. ‘META.INSTRUMENT.NAME’ permits consistent naming regardless of the underlying file format (.fits
vs. .asdf vs. .json).

15.1. Package Index 535

https://jwst-crds.stsci.edu/

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

When creating or accessing reference files, Python code uses the lower case object path to populate an attribute corre-
sponding to the upper case string.

Example .pmap contents

Generally CRDS reference file lookups begin with a .pmap (context) file.

The .pmap’s serial number describes the overall version of rules for a pipeline.

The contents of context jwst_0493.pmap are shown below:

header = {
'mapping' : 'PIPELINE',
'observatory' : 'JWST',
'name' : 'jwst_0493.pmap',
'parkey' : ('META.INSTRUMENT.NAME',),
...

}

selector = {
'FGS' : 'jwst_fgs_0073.imap',
'MIRI' : 'jwst_miri_0158.imap',
'NIRCAM' : 'jwst_nircam_0112.imap',
'NIRISS' : 'jwst_niriss_0117.imap',
'NIRSPEC' : 'jwst_nirspec_0173.imap',
'SYSTEM' : 'jwst_system_0017.imap',

}

Based on the parameter META.INSTRUMENT.NAME (INSTRUME) CRDS selects an appropriate .imap for further
searching.

In all CRDS rules files, the header’s parkey field defines the parameter names used to select a file. These parkey names
correspond to the values shown in the selector’s keys.

Conceptually all CRDS selectors consist of dictionaries which map parameter values to either a file or a sub-selector.

If META.INSTRUMENT.NAME=NIRSPEC, then CRDS would choose jwst_nirspec_0173.imap to continue it’s
search.

Example .imap contents

A .imap file defines the appropriate version of .rmap to search for each reference type supported by the corresponding
instrument. Below is an example .imap taken from NIRSPEC:

header = {
'mapping' : 'INSTRUMENT',
'instrument' : 'NIRSPEC',
'name' : 'jwst_nirspec_0173.imap',
'parkey' : ('REFTYPE',),
...

}

selector = {
'AREA' : 'jwst_nirspec_area_0010.rmap',

(continues on next page)

536 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

'BARSHADOW' : 'jwst_nirspec_barshadow_0002.rmap',
'CAMERA' : 'jwst_nirspec_camera_0015.rmap',
...,
'PATHLOSS' : 'jwst_nirspec_pathloss_0003.rmap',
...,
'WAVECORR' : 'jwst_nirspec_wavecorr_0003.rmap',
'WAVELENGTHRANGE' : 'jwst_nirspec_wavelengthrange_0015.rmap',
'WCSREGIONS' : 'N/A',
'WFSSBKG' : 'N/A',

}

A value of N/A indicates that a particular reference type is not yet used by this instrument and CRDS will return ‘N/A’
instead of a filename.

If the requested REFTYPE was PATHLOSS, CRDS would continue it’s search with jwst_nirspec_pathloss_0003.rmap.

Example .rmap contents

Slightly modified contents of jwst_nirspec_pathloss_0003.rmap are shown below:

header = {
'mapping' : 'REFERENCE',
'observatory' : 'JWST',
'instrument' : 'NIRSPEC',
'filekind' : 'PATHLOSS',
'name' : 'jwst_nirspec_pathloss_0003.rmap',
'classes' : ('Match', 'UseAfter'),
'parkey' : (('META.EXPOSURE.TYPE',), ('META.OBSERVATION.DATE', 'META.OBSERVATION.TIME

→˓')),
...

}

selector = Match({
'NRS_AUTOWAVE' : 'N/A',
'NRS_FIXEDSLIT|NRS_BRIGHTOBJ' : UseAfter({

'1900-01-01 00:00:00' : 'jwst_nirspec_pathloss_0001.fits',
}),
'NRS_IFU' : UseAfter({

'1900-01-01 00:00:00' : 'jwst_nirspec_pathloss_0003.fits',
}),
'NRS_MSASPEC' : UseAfter({

'1900-01-01 00:00:00' : 'jwst_nirspec_pathloss_0002.fits',
'2000-01-01 00:00:00' : 'jwst_nirspec_pathloss_0007.fits',

}),
})

Each class of CRDS rmap selector defines a search algorithm to be used at that stage of the reference file lookup.

15.1. Package Index 537

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Match Selector

In the example shown above, CRDS selects a nested UseAfter selector based on the value of META.EXPOSURE.TYPE
(EXP_TYPE). The nested UseAfter is then used for a secondary lookup to determine the assigned reference.

Parameters which contain or-bars, e.g.:

'NRS_FIXEDSLIT|NRS_BRIGHTOBJ'

specify groups of values for which a file is equally applicable.

In this case the file jwst_nirspec_pathloss_0001.fits can be used to calibrate either NRS_FIXEDSLIT or
NRS_BRIGHTOBJ.

Or'ed parameter combinations shown in rmaps are almost identical to the or’ed parameter combinations taken from
P_ pattern keywords; the only difference is that rmaps do not specify the trailing or-bar required for P_ keyword
values.

If a parameter combination maps to the value N/A, then the reference type is not applicable for that combination and
CRDS returns the value N/A instead of a filename.

UseAfter Selector

The UseAfter sub-selector applies a given reference file only to datasets which occur at or after the specified date. For
cases where multiple references occur prior to a dataset, CRDS chooses the most recent reference file as best.

Based on the dataset’s values of:

META.OBSERVATION.DATE (DATE-OBS)
META.OBSERVATION.TIME (TIME-OBS)

CRDS will choose the appropriate reference file by comparing them to the date+time shown in the .rmap. Conceptually,
the date+time shown corresponds to the value of:

META.REFERENCE.USEAFTER (USEAFTER)

from each reference file with the USEAFTER’s T replaced with a space.

• In the example above, if the dataset defines:

EXP_TYPE=NRS_MSASPEC
DATE-OBS=1999-01-01
TIME-OBS=00:00:00

then CRDS will select jwst_nirspec_pathloss_0002.fits as best.

• In the example above, if the dataset defines:

EXP_TYPE=NRS_MSASPEC
DATE-OBS=2001-01-01
TIME-OBS=00:00:00

then CRDS will select jwst_nirspec_pathloss_0007.fits as best.

• If the dataset defines e.g.:

DATE-OBS=1864-01-01

538 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

then no reference match exists because the observation date precedes the USEAFTER of all available reference files.

UseAfter selection is one of the rare cases where CRDS makes an apples-to-oranges match and the dataset and reference
file parameters being correlated are not identical. In fact, not even the count of parameters (DATE-OBS, TIME-OBS)
vs. USEAFTER is identical.

Defining Reference File Applicability

Almost all reference files supply metadata which defines how CRDS should add the file to its corresponding .rmap, i.e.
each reference defines the science data parameters for which it is initially applicable.

When creating reference files, you will need to define a value for every CRDS matching parameter and/or define a
pattern using the P_ version of the matching parameter.

When CRDS adds a reference file to a .rmap, it uses literal matching between the value defined in the reference file and
the existing values shown in the .rmap. This enables CRDS to:

1. add files to existing categories

2. replace files in existing categories

3. create new categories of files.

Because creating new categories is an unusual event which should be carefully reviewed, CRDS issues a warning when
a reference file defines a new category.

Changing .rmaps to Reassign Reference Files

While reference files generally specify their intended use, sometimes different desired uses not specified in the reference
file appear over time. In CRDS it is possible to alter only a .rmap to change the category or dates for which a reference
file applies.

This is a fundamental CRDS feature which enables changes to reference assignment without forcing the re-delivery of
an otherwise serviceable reference file. This feature is very commonly used, and the net consequence is that .rmap
categories and dates do not have to match the contents of reference files.
It is better to view CRDS matching as a comparison between dataset parameters and a .rmap. Although references do
state “initial intent”, reference file metadata should not be viewed as definitive for how a file is assigned.

More Complex Matching

CRDS matching supports more complex situations than shown in the example above.

Although reference files are generally constructed so that their metadata defines the instrument modes for which they’re
applicable, conceptually, the values shown in .rmaps correspond to values in the dataset. Indeed, it is possible to change
the values shown in the rmap so that they differ from their corresponding values in the reference file. This makes it
possible to reassign reference files rather than redelivering them.

15.1. Package Index 539

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Match Parameter Combinations

For matches using combinations of multiple parameters, the Match selector keys will be shown as tuples, e.g.:

('NRS1|NRS2', 'ANY', 'GENERIC', '1', '1', '2048', '2048')

Because this match category matches either DETECTOR=NRS1 or NRS2, this single rmap entry represents two dis-
crete parameter combinations. With multiple pattern values (not shown here), a single match category can match many
different discrete combinations.

The parkey tuple from the NIRSPEC SUPERBIAS rmap which supplied the example match case above looks like:

(('META.INSTRUMENT.DETECTOR', 'META.EXPOSURE.READPATT',
'META.SUBARRAY.NAME', 'META.SUBARRAY.XSTART', 'META.SUBARRAY.YSTART',
'META.SUBARRAY.XSIZE', 'META.SUBARRAY.YSIZE'),
('META.OBSERVATION.DATE', 'META.OBSERVATION.TIME'))

The first sub-tuple corresponds to the Match cases, and the second sub-tuple corresponds to the nested UseAfters.

Weighted Matching

It’s possible for CRDS to complete it’s search without finding a unique match. To help resolve these situations, the
Match algorithm uses a weighting scheme.

Each parameter with an exact match contributes a value of 1 to the weighted sum. e.g. ‘NRS1’ matches ‘NRS1|NRS2’
exactly once patterns are accounted for.

An rmap value of ANY will match any dataset value and also has a weight of 1.

An rmap value of N/A or GENERIC will match any dataset value but have a weight of 0, contributing nothing to the
strength of the match.

Conceptually, the match with the highest weighting value is used. It is possible to create rmaps where ambiguity is
not resolved by the weighting scheme but it works fairly well when used sparingly and isolated to as few parameters as
possible.

Typically the value GENERIC corresponds to a full frame reference file which can support the calibration of any
SUBARRAY by performing a cut-out.

More Information

More information about CRDS can be found in the CRDS User’s Guide maintained on the CRDS server here:

https://jwst-crds.stsci.edu/static/users_guide/index.html

15.1.48 Reference Pixel Correction

Description

Class
jwst.refpix.RefPixStep

Alias
refpix

540 Chapter 15. Package Documentation

https://jwst-crds.stsci.edu/static/users_guide/index.html

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Overview

With a perfect detector and readout electronics, the signal in any given readout would differ from that in the previous
readout only as a result of detected photons. In reality, the readout electronics imposes its own signal on top of this. In
its simplest form, the amplifiers add a constant value to each pixel, and this constant value is different from amplifier
to amplifier in a given group, and varies from group to group for a given amplifier. The magnitude of this variation is
of the order of a few counts. In addition, superposed on this signal is a variation that is mainly with row number that
seems to apply to all amplifiers within a group.

The refpix step corrects for these drifts by using the reference pixels. NIR detectors have their reference pixels in
a 4-pixel wide strip around the edge of the detectors that are completely insensitive to light, while the MIR detectors
have 4 columns (1 column for each amplifier) of reference pixels at the left and right edges of the detector. They also
have data read through a fifth amplifier, which is called the reference output, but these data are not currently used in
any refpix correction.

The effect is more pronounced for the NIR detectors than for the MIR detectors.

Input details

The input file must be a 4-D ramp and it should contain both a science (SCI) extension and a pixel data quality (PIX-
ELDQ) extension. The PIXELDQ extension is normally populated by the dq_init step, so running that step is a
prerequisite for the refpix step.

Algorithms

The algorithms for the NIR and MIR detectors are somewhat different. An entirely different algorithm for NIRSpec
IRS2 readout mode is described in IRS2.

NIR Detector Data

1. The data from most detectors will have been rotated and/or flipped from their detector frame in order to give
them the same orientation and parity in the telescope focal plane. The first step is to transform them back to the
detector frame so that all NIR and MIR detectors can be treated equivalently.

2. It is assumed that a superbias correction has been performed.

3. For each integration and for each group:

1. Calculate the mean value in the top and bottom reference pixels. The reference pixel means for each ampli-
fier are calculated separately, and the top and bottom means are calculated separately. Optionally, the user
can choose to calculate the means of odd and even columns separately by using the --odd_even_columns
step parameter, because evidence has been found that there is a significant odd-even column effect in some
datasets. Bad pixels (those whose DQ flag has the “DO_NOT_USE” bit set) are not included in the calcu-
lation of the mean.

2. The mean is calculated as a clipped mean with a 3-sigma rejection threshold using the scipy.stats.
sigmaclip method.

3. Average the top and bottom reference pixel mean values

4. Subtract each mean from all pixels that the mean is representative of, i.e. by amplifier and using the odd
mean for the odd pixels and even mean for even pixels if this option is selected.

5. If the --use_side_ref_pixels option is selected, use the reference pixels up the side of the A and D
amplifiers to calculate a smoothed reference pixel signal as a function of row. A running median of height

15.1. Package Index 541

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

set by the step parameter side_smoothing_length (default value 11) is calculated for the left and right
side reference pixels, and the overall reference signal is obtained by averaging the left and right signals. A
multiple of this signal (set by the step parameter side_gain, which defaults to 1.0) is subtracted from the
full group on a row-by-row basis. Note that the odd_even_rows parameter is ignored for NIR data when
the side reference pixels are processed.

6. Transform the data back to the JWST focal plane, or DMS, frame.

MIR Detector Data

1. MIR data are always in the detector frame, so no flipping/rotation is needed.

2. Subtract the first group from each group within an integration.

3. For each integration, and for each group after the first:

1. Calculate the mean value in the reference pixels for each amplifier. The left and right side reference signals
are calculated separately. Optionally, the user can choose to calculate the means of odd and even rows
separately using the --odd_even_rows step parameter, because it has been found that there is a significant
odd-even row effect. Bad pixels (those whose DQ flag has the “DO_NOT_USE” bit set) are not included in
the calculation of the mean. The mean is calculated as a clipped mean with a 3-sigma rejection threshold us-
ing the scipy.stats.sigmaclip method. Note that the odd_even_columns, use_side_ref_pixels,
side_smoothing_length and side_gain parameters are ignored for MIRI data.

2. Average the left and right reference pixel mean values.

3. Subtract each mean from all pixels that the mean is representative of, i.e. by amplifier and using the odd
mean for the odd row pixels and even mean for even row pixels if this option is selected.

4. Add the first group of each integration back to each group.

At the end of the refpix step, the S_REFPIX keyword is set to “COMPLETE”.

NIRCam Frame 0

If a frame zero data cube is present in the input data, the image corresponding to each integration is corrected in the
same way as the regular science data and passed along to subsequent pipeline steps.

Subarrays

Subarrays are treated slightly differently. Once again, the data are flipped and/or rotated to convert to the detector
frame.

NIR Data

For single amplifier readout (NOUTPUTS keyword = 1):

If the odd_even_columns flag is set to True, then the clipped means of all reference pixels in odd-numbered columns
and those in even numbered columns are calculated separately, and subtracted from their respective data columns. If
the flag is False, then a single clipped mean is calculated from all of the reference pixels in each group and subtracted
from each pixel.

542 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Note: In subarray data, reference pixels are identified by the PIXELDQ array having the value of “REFER-
ENCE_PIXEL” (defined in datamodels/dqflags.py). These values are populated when the dq_init step is run, so
it is important to run that step before running the refpix step on subarray data.

Additionally, certain NIRSpec subarrays (SUB32, SUB512 and SUB512S) do not include any physical reference pixels
in their readouts. For these subarrays, the first and last four image columns should not receive any incoming light with
the filter+grating combinations for which they are approved for use, hence they can be used in place of actual reference
pixels. The step assigns the “REFERENCE_PIXEL” DQ flag to these image columns, which then causes them to be
used to perform the reference pixel correction.

If the science dataset has at least 1 group with no valid reference pixels, the step is skipped and the S_REFPIX header
keyword is set to ‘SKIPPED’.

The use_side_ref_pixels, side_smoothing_length, side_gain and odd_even_rows parameters are ignored
for these types of data.

For 4 amplifier readout (NOUTPUTS keyword = 4):

If the NOUTPUTS keyword is 4 for a subarray exposure, then the data are calibrated the same as for full-frame ex-
posures. The top/bottom reference values are obtained from available reference pixel regions, and the side reference
values are used if available. If only 1 of the top/bottom or side reference regions are available, they are used, whereas
if both are available they are averaged. If there are no top/bottom or side reference pixels available, then that part of
the correction is omitted. The routine will log which parameters are valid according to whether valid reference pixels
exist.

MIR Data

The refpix correction is skipped for MIRI subarray data.

NIRSpec IRS2 Readout Mode

This section describes – in a nutshell – the procedure for applying the reference pixel correction for data read out
using the IRS2 readout pattern. See the JdoxIRS2 (https://jwst-docs.stsci.edu/jwst-near-infrared-spectrograph/nirspec-
instrumentation/nirspec-detectors/nirspec-detector-readout-modes-and-patterns/nirspec-irs2-detector-readout-mode)
page for for an overview, and see Rauscher2017 (http://adsabs.harvard.edu/abs/2017PASP..129j5003R) for details.

The raw data include both the science data and interleaved reference pixel values. The time to read out the entire
detector includes not only the time to read each pixel of science (“normal”) data and some of the reference pixels, but
also time for the transition between reading normal data and reference pixels, as well as additional overhead at the end
of each row and between frames. For example, it takes the same length of time to jump from reading normal pixels to
reading reference pixels as it does to read one pixel value, about ten microseconds.

IRS2 readout is only used for full-frame data, never for subarrays. The full detector is read out by four separate amplifiers
simultaneously, and the reference output is read at the same time. Each of these five readouts is the same size, 640 by
2048 pixels, each containing a repeating set of 8 normal pixel readouts, 4 interleaved reference pixel readouts, and 8
more normal pixel readouts.

The first step in processing IRS2 data is to look for intermittently bad reference pixels. This is done by calculating
the means and standard deviations per reference pixel column, as well as the absolute value of the difference between
readout pairs, across all groups within each integration. The robust mean and standard deviation of each of these arrays
is then computed. Values greater than the robust mean plus the standard deviation, times a factor to avoid overcorrection,
are flagged as bad pixels. Readout pairs are always flagged together, and are flagged across all groups and integrations.

15.1. Package Index 543

https://jwst-docs.stsci.edu/jwst-near-infrared-spectrograph/nirspec-instrumentation/nirspec-detectors/nirspec-detector-readout-modes-and-patterns/nirspec-irs2-detector-readout-mode
http://adsabs.harvard.edu/abs/2017PASP..129j5003R

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Bad values will be replaced by values from the nearest reference group within the same amplifier, respecting parity
(even/oddness). The replacement value is the average of upper and lower values if both are good, or directly using the
upper or lower values if only one is good. If there are no nearest good values available, but there is a good adjacent
neighbor that does not match parity, that value is used. If there are no good replacement values, the bad pixel is set to
0.0 to be interpolated over in the IRS2 correction to follow.

After flagging bad reference pixels, the step performs an optional correction for overall mean reference pixel offsets by
amplifier and column parity. The algorithm described above for the traditional NIR readout mode is applied to IRS2
data to perform this correction, with two small differences:

1. Side pixel correction is never applied for IRS2 data.

2. “Even” and “odd” refer to detector column addresses, rather than data array locations, to ensure that interleaved
reference pixel columns are accounted for correctly.

After the mean offsets are subtracted and bad pixels are replaced, some processing is done on the remaining refer-
ence values, and the CRDS reference file factors are applied. If the CRDS reference file includes a DQ (data quality)
BINTABLE extension, interleaved reference pixel values will be set to zero if they are flagged as bad in the DQ exten-
sion.

The next step in this processing is to copy the science data and the reference pixel data separately to temporary 1-D
arrays (both of length 712 * 2048); this is done separately for each amp output. The reference output is also copied to
such an array, but there is only one of these. When copying a pixel of science or reference pixel data to a temporary
array, the elements are assigned so that the array indexes increase with and correspond to the time at which the pixel
value was read. That means that the change in readout direction from one amplifier to the next is taken into account
when the data are copied, and that there will be gaps (array elements with zero values), corresponding to the times when
reference pixels were read (or science data, depending on which is being copied), or corresponding to the overheads
mentioned in the previous paragraph. The gaps will then be assigned values by interpolation (cosine-weighted, then
Fourier filtered). Note that the above is done for every group.

The alpha and beta arrays that were read from the CRDS reference file are next applied, and this is done in Fourier
space. These are applied to the temporary 1-D arrays of reference pixel data and to the reference output array. alpha
and beta have shape (4, 712 * 2048) and data type Complex64 (stored as pairs of Float32 in the reference file).
The first index corresponds to the sector number for the different output amplifiers. alpha is read from columns
‘ALPHA_0’, ‘ALPHA_1’, ‘ALPHA_2’, and ‘ALPHA_3’. beta is read from columns ‘BETA_0’, ‘BETA_1’, ‘BETA_2’,
and ‘BETA_3’.

For each integration, the following is done in a loop over groups.

Let k be the output number, i.e. an index for sectors 0 through 3. Let ft_refpix be an array of shape (4, 712 * 2048);
for each output number k, ft_refpix[k] is the Fourier transform of the temporary 1-D array of reference pixel data.
Let ft_refout be the Fourier transform of the temporary 1-D array of reference output data. Then:

for k in range(4):
ft_refpix_corr[k] = ft_refpix[k] * beta[k] + ft_refout * alpha[k]

For each k, the inverse Fourier transform of ft_refpix_corr[k] is the processed array of reference pixel data, which
is then subtracted from the normal pixel data over the range of pixels for output k.

544 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Step Arguments

The reference pixel correction step has seven step-specific arguments:

• --odd_even_columns

If the odd_even_columns argument is given, the top/bottom reference signal is calculated and applied separately for
even- and odd-numbered columns. The default value is True, and this argument applies to NIR data only.

• --use_side_ref_pixels

If the use_side_ref_pixels argument is given, the side reference pixels are used to calculate a reference signal for
each row, which is subtracted from the data. The default value is True, and this argument applies to NIR data only.

• --side_smoothing_length

The side_smoothing_length argument is used to specify the height of the window used in calculating the running
median when calculating the side reference signal. The default value is 11, and this argument applies to NIR data only
when the --use_side_ref_pixels option is selected.

• --side_gain

The side_gain argument is used to specify the factor that the side reference signal is multiplied by before sub-
tracting from the group row-by-row. The default value is 1.0, and this argument applies to NIR data only when the
--use_side_ref_pixels option is selected.

• --odd_even_rows

If the odd_even_rows argument is selected, the reference signal is calculated and applied separately for even- and
odd-numbered rows. The default value is True, and this argument applies to MIR data only.

• --ovr_corr_mitigation_ftr

This is a factor to avoid overcorrection of intermittently bad reference pixels in the IRS2 algorithm. This factor is the
number of sigmas away from the mean. The default value is 3.0, and this argument applies only to NIRSpec data taken
with IRS2 mode.

• --preserve_irs2_refpix

If the preserve_irs2_refpix argument is set, interleaved reference pixels in IRS2 mode will be processed along
with the normal pixels and preserved in the output. This option is intended for calibration or diagnostic reductions
only. For normal science operation, this argument should always be False, so that interleaved pixels are stripped before
continuing processing.

Reference Files

The refpix step uses a REFPIX reference file, but only when processing NIRSpec exposures that have been acquired
using an IRS2 readout pattern. No other instruments or exposure modes require a reference file for this step.

REFPIX Reference File

REFTYPE
REFPIX

Data model
IRS2Model (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IRS2Model.html#jwst.datamodels.IRS2Model)

The REFPIX reference file contains the complex coefficients for the correction.

15.1. Package Index 545

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IRS2Model.html#jwst.datamodels.IRS2Model

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference Selection Keywords for REFPIX

CRDS selects appropriate REFPIX references based on the following keywords. REFPIX is not applicable for instru-
ments not in the table. All keywords used for file selection are required.

Instrument Keywords
NIRSpec INSTRUME, DETECTOR, READPATT, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for REFPIX

In addition to the standard reference file keywords listed above, the following keywords are required in REFPIX refer-
ence files, because they are used as CRDS selectors (see Reference Selection Keywords for REFPIX):

Keyword Data Model Name
DETECTOR model.meta.instrument.detector
READPATT model.meta.exposure.readpatt

546 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference File Format

REFPIX reference files are FITS format, with two BINTABLE extensions. The FITS primary HDU does not contain
a data array. The first BINTABLE extension is labeled with EXTNAME = “IRS2” and has the following column
characteristics:

Column Data type
alpha_0 float32
alpha_1 float32
alpha_2 float32
alpha_3 float32
beta_0 float32
beta_1 float32
beta_2 float32
beta_3 float32

The “alpha” arrays contain correction multipliers to the reference output, and the “beta” arrays contain correction
multipliers to the interleaved reference pixels. Both arrays have 4 components, one for each sector (amplifier output).
These are applied to (i.e. multiplied by) the Fourier transform of the interleaved reference pixel data. The coefficients
are intrinsically complex values, but have their real and imaginary parts stored in alternating table rows, i.e. row 1
contains the real components of all coefficients and row 2 contains the corresponding imaginary components for each.
This storage scheme results in a total of 2916352 (2048 * 712 * 2) rows in the table.

The second BINTABLE extension is labeled with EXTNAME = “DQ” and has the following column characteristics:

Column Data type
output int16
odd_even int16
mask uint32

This table has eight rows. The “output” column contains the amplifier output numbers: 1, 1, 2, 2, 3, 3, 4, 4. The
“odd_even” column contains values 1 or 2, indicating that either the first or second pair of reference pixel reads respec-
tively should be regarded as bad. The “mask” column contains 32-bit unsigned integer values. The interpretation of
these values was described in the ESA CDP3 document as follows:

“There is also a DQ extension that holds a binary table with three columns (OUTPUT, ODD_EVEN, and MASK) and
eight rows. In the current IRS2 implementation, one jumps 32 times to odd and 32 times to even reference pixels,
which are then read twice consecutively. Therefore, the masks are 32 bit unsigned integers that encode bad interleaved
reference pixels/columns from left to right (increasing column index) in the native detector frame. When a bit is set,
the corresponding reference data should not be used for the correction.”

We assume that “native detector frame” in the above description referred to the order that the data and interleaved
reference pixels were read out from the detector, not the physical locations of the pixels on the detector. The difference
is that the readout direction changes when going from one amplifier output to the next; that is, the pixels are read out
from left to right for the first and third outputs, and they are read out from right to left for the second and fourth outputs.
Furthermore, we assume that for the first amplifier output, it is the least significant bit in the value from the MASK
column that corresponds to the first set of four reads of interleaved reference pixel values (reading pixels from left to
right).

15.1. Package Index 547

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.refpix Package

Classes

RefPixStep([name, parent, config_file, ...]) RefPixStep: Use reference pixels to correct bias drifts

RefPixStep

class jwst.refpix.RefPixStep(name=None, parent=None, config_file=None, _validate_kwds=True, **kws)
Bases: JwstStep

RefPixStep: Use reference pixels to correct bias drifts

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) This is where real work happens.

548 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Documentation

class_alias = 'refpix'

reference_file_types = ['refpix']

spec

odd_even_columns = boolean(default=True) # Compute reference signal separately␣
→˓for even/odd columns
use_side_ref_pixels = boolean(default=True) # Use side reference pixels for␣
→˓reference signal for each row
side_smoothing_length = integer(default=11) # Median window smoothing height␣
→˓for side reference signal
side_gain = float(default=1.0) # Multiplicative factor for side reference␣
→˓signal before subtracting from rows
odd_even_rows = boolean(default=True) # Compute reference signal separately for␣
→˓even- and odd-numbered rows
ovr_corr_mitigation_ftr = float(default=3.0) # Factor to avoid overcorrection␣
→˓of bad reference pixels for IRS2
preserve_irs2_refpix = boolean(default=False) # Preserve reference pixels in␣
→˓output
irs2_mean_subtraction = boolean(default=False) # Apply a mean offset␣
→˓subtraction before IRS2 correction

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep RefPixStepStep

15.1. Package Index 549

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

15.1.49 Resampling

Description

Classes
jwst.resample.ResampleStep, jwst.resample.ResampleSpecStep

Alias
resample, resample_spec

This routine will resample each input 2D image based on the WCS and distortion information, and will combine multiple
resampled images into a single undistorted product. The distortion information should have been incorporated into the
image using the assign_wcs step.

The resample step can take as input either:

1. a single 2D input image

2. an association table (in json format)

The defined parameters for the drizzle operation itself get provided by the DRIZPARS reference file (from CRDS). The
exact values used depends on the number of input images being combined and the filter being used. Other information
may be added as selection criteria later, but for now, only basic information is used.

The output product gets defined using the WCS information of all inputs, even if it is just a single input image. The
output WCS defines a field-of-view that encompasses the undistorted footprints on the sky of all the input images with
the same orientation and plate scale as the first listed input image.

This step uses the interface to the C-based cdriz routine to do the resampling via the drizzle method. The input-to-
output pixel mapping is determined via a mapping function derived from the WCS of each input image and the WCS of
the defined output product. This mapping function gets passed to cdriz to drive the actual drizzling to create the output
product.

Context Image

In addition to image data, resample step also creates a “context image” stored in the con attribute in the output data
model or 'CON' extension of the FITS file. Each pixel in the context image is a bit field that encodes information about
which input image has contributed to the corresponding pixel in the resampled data array. Context image uses 32 bit
integers to encode this information and hence it can keep track of only 32 input images. First bit corresponds to the
first input image, second bit corrsponds to the second input image, and so on. If the number of input images is larger
than 32, then it is necessary to have multiple context images (“planes”) to hold information about all input images with
the first plane encoding which of the first 32 images contributed to the output data pixel, second plane representing
next 32 input images (number 33-64), etc. For this reason, context array is a 3D array of the type numpy.int32
(https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.int32) and shape (np, ny, nx) where nx and ny
are dimensions of image’s data. np is the number of “planes” equal to (number of input images - 1) // 32 +
1. If a bit at position k in a pixel with coordinates (p, y, x) is 0 then input image number 32 * p + k (0-indexed)
did not contribute to the output data pixel with array coordinates (y, x) and if that bit is 1 then input image number
32 * p + k did contribute to the pixel (y, x) in the resampled image.

As an example, let’s assume we have 8 input images. Then, when 'CON' pixel values are displayed using binary
representation (and decimal in parenthesis), one could see values like this:

00000001 (1) - only first input image contributed to this output pixel;
00000010 (2) - 2nd input image contributed;
00000100 (4) - 3rd input image contributed;
10000000 (128) - 8th input image contributed;
10000100 (132=128+4) - 3rd and 8th input images contributed;

(continues on next page)

550 Chapter 15. Package Documentation

https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.int32

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

11001101 (205=1+4+8+64+128) - input images 1, 3, 4, 7, 8 have contributed
to this output pixel.

In order to test if a specific input image contributed to an output pixel, one needs to use bitwise operations. Using the
example above, to test whether input images number 4 and 5 have contributed to the output pixel whose corresponding
'CON' value is 205 (11001101 in binary form) we can do the following:

>>> bool(205 & (1 << (5 - 1))) # (205 & 16) = 0 (== 0 => False): did NOT contribute
False
>>> bool(205 & (1 << (4 - 1))) # (205 & 8) = 8 (!= 0 => True): did contribute
True

In general, to get a list of all input images that have contributed to an output resampled pixel with image coordinates
(x, y), and given a context array con, one can do something like this:

>>> import numpy as np
>>> np.flatnonzero([v & (1 << k) for v in con[:, y, x] for k in range(32)])

For convenience, this functionality was implemented in the decode_context() function.

Spectroscopic Data

Use the resample_spec step for spectroscopic data. The dispersion direction is needed for this case, and this is
obtained from the DISPAXIS keyword. For the NIRSpec Fixed Slit mode, the resample_spec step will be skipped if
the input is a rateints product, as 3D input for the mode is not supported.

References

A full description of the drizzling algorithm can be found in Fruchter and Hook, PASP 2002
(https://doi.org/10.1086/338393). A description of the inverse variance map method can be found in Casertano
et al., AJ 2000 (https://doi.org/10.1086/316851), see Appendix A2. A description of the drizzle parameters and other
useful drizzle-related resources can be found at DrizzlePac Handbook (http://drizzlepac.stsci.edu).

Step Arguments

The resample step has the following optional arguments that control the behavior of the processing and the character-
istics of the resampled image.

--pixfrac (float, default=1.0)
The fraction by which input pixels are “shrunk” before being drizzled onto the output image grid, given as a real
number between 0 and 1.

--kernel (str, default=’square’)
The form of the kernel function used to distribute flux onto the output image. Available kernels are square,
gaussian, point, tophat, turbo, lanczos2, and lanczos3.

--pixel_scale_ratio (float, default=1.0)
Ratio of input to output pixel scale. A value of 0.5 means the output image would have 4 pixels sampling each
input pixel. Ignored when pixel_scale or output_wcs are provided.

--pixel_scale (float, default=None)
Absolute pixel scale in arcsec. When provided, overrides pixel_scale_ratio. Ignored when output_wcs
is provided.

15.1. Package Index 551

https://doi.org/10.1086/338393
https://doi.org/10.1086/316851
https://doi.org/10.1086/316851
http://drizzlepac.stsci.edu

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

--rotation (float, default=None)
Position angle of output image’s Y-axis relative to North. A value of 0.0 would orient the final output image
to be North up. The default of None (https://docs.python.org/3/library/constants.html#None) specifies that the
images will not be rotated, but will instead be resampled in the default orientation for the camera with the x and
y axes of the resampled image corresponding approximately to the detector axes. Ignored when pixel_scale
or output_wcs are provided.

--crpix (tuple of float, default=None)
Position of the reference pixel in the image array in the x, y order. If crpix is not specified, it will be set to
the center of the bounding box of the returned WCS object. When supplied from command line, it should be a
comma-separated list of floats. Ignored when output_wcs is provided.

--crval (tuple of float, default=None)
Right ascension and declination of the reference pixel. Automatically computed if not provided. When supplied
from command line, it should be a comma-separated list of floats. Ignored when output_wcs is provided.

--output_shape (tuple of int, default=None)
Shape of the image (data array) using “standard” nx first and ny second (as opposite to the numpy.ndarray
convention - ny first and nx second). This value will be assigned to pixel_shape and array_shape properties
of the returned WCS object. When supplied from command line, it should be a comma-separated list of integers
nx, ny.

Note: Specifying output_shape is required when the WCS in output_wcs does not have bounding_box
property set.

--output_wcs (str, default=”)
File name of a ASDF file with a GWCS stored under the "wcs" key under the root of the file. The output image
size is determined from the bounding box of the WCS (if any). Argument output_shape overrides computed
image size and it is required when output WCS does not have bounding_box property set or if pixel_shape
or array_shape keys (see below) are not provided.

Additional information may be stored under other keys under the root of the file. Currently, the following keys
are recognized:

• pixel_area: Indicates average pixel area of the output WCS in units of steradians. When provided, this
value will be used for updating photometric quantities PIXAR_SR and PIXAR_A2 of the output image. If
pixel_area is not provided, the code will attempt to estimate this value from the WCS.

• pixel_shape: dimensions of the output image in the order (nx, ny). Overrides the value of array_shape
if provided.

• array_shape: shape of the output image in numpy order: (ny, nx).

Note: When output_wcs is specified, WCS-related arguments such as pixel_scale_ratio, pixel_scale,
rotation, crpix, and crval will be ignored.

--fillval (str, default=’INDEF’)
The value to assign to output pixels that have zero weight or do not receive any flux from any input pixels during
drizzling.

--weight_type (str, default=’ivm’)
The weighting type for each input image. If weight_type=ivm (the default), the scaling value will be
determined per-pixel using the inverse of the read noise (VAR_RNOISE) array stored in each input im-
age. If the VAR_RNOISE array does not exist, the variance is set to 1 for all pixels (equal weighting). If
weight_type=exptime, the scaling value will be set equal to the measurement time (TMEASURE) found in
the image header if available; if unavailable, the scaling will be set equal to the exposure time (EFFEXPTM).

552 Chapter 15. Package Documentation

https://docs.python.org/3/library/constants.html#None

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

--single (bool, default=False)
If set to True (https://docs.python.org/3/library/constants.html#True), resample each input image into a separate
output. If False (https://docs.python.org/3/library/constants.html#False) (the default), each input is resampled
additively (with weights) to a common output

--blendheaders (bool, default=True)
Blend metadata from all input images into the resampled output image.

--allowed_memory (float, default=None)
Specifies the fractional amount of free memory to allow when creating the resampled image. If None, the envi-
ronment variable DMODEL_ALLOWED_MEMORY is used. If not defined, no check is made. If the resampled image
would be larger than specified, an OutputTooLargeError exception will be generated.

For example, if set to 0.5, only resampled images that use less than half the available memory can be created.

--in_memory (boolean, default=True)
Specifies whether or not to load and create all images that are used during processing into memory. If False,
input files are loaded from disk when needed and all intermediate files are stored on disk, rather than in memory.

Reference File

The resample step uses the DRIZPARS reference file.

DRIZPARS Reference File

REFTYPE
DRIZPARS

Data model
DrizParsModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.DrizParsModel.html#jwst.datamodels.DrizParsModel)

The DRIZPARS reference file contains various drizzle parameter values that control the characteristics of a drizzled
image and how it is built.

Reference Selection Keywords for DRIZPARS

CRDS selects appropriate DRIZPARS references based on the following keywords. DRIZPARS is not applicable for
instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
MIRI INSTRUME
NIRCam INSTRUME
NIRISS INSTRUME

15.1. Package Index 553

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.DrizParsModel.html#jwst.datamodels.DrizParsModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for DRIZPARS

No additional specific keywords are required in DRIZPARS reference files, because CRDS selection is based only on
the instrument name (see Reference Selection Keywords for DRIZPARS).

Reference File Format

DRIZPARS reference files are FITS format, with 1 BINTABLE extension. The FITS primary HDU does not contain
a data array. The format and content of the file is as follows:

EXTNAME XTENSION NAXIS Dimensions Data type
DRIZPARS BINTABLE 2 TFIELDS = 7 N/A

The DRIZPARS extension contains various step parameter values to be used when processing certain types of image
collections. The first two columns (numimages and filter) are used as row selectors within the table. Image collections
that match those selectors then use the parameter values specified in the remainder of that table row. The table contains
the following 7 columns:

TTYPE TFORM Description
numimages integer The number of images to be combined
filter integer The filter used to obtain the images
pixfrac float The pixel “shrinkage” fraction
kernel string The kernel function used to distribute flux
fillval float Value assigned to pixels with no input flux
wht_type string The input image weighting type
stepsize integer Output WCS grid interpolation step size

554 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Python Step Interface: ResampleStep()

jwst.resample.resample_step Module

Classes

ResampleStep([name, parent, config_file, ...]) Resample input data onto a regular grid using the drizzle
algorithm.

ResampleStep

class jwst.resample.resample_step.ResampleStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

Resample input data onto a regular grid using the drizzle algorithm.

Note: When supplied via output_wcs, a custom WCS overrides other custom WCS parameters such as
output_shape (now computed from by output_wcs.bounding_box), crpix

Parameters
input (JwstDataModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel)
or Association) – Single filename for either a single image or an association table.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

15.1. Package Index 555

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

get_drizpars(ref_filename, input_models) Extract drizzle parameters from reference file.
process(input) This is where real work happens.
update_fits_wcs(model) Update FITS WCS keywords of the resampled image.

Attributes Documentation

class_alias = 'resample'

reference_file_types = ['drizpars']

spec

pixfrac = float(default=1.0) # change back to None when drizpar reference files␣
→˓are updated
kernel = string(default='square') # change back to None when drizpar reference␣
→˓files are updated
fillval = string(default='INDEF') # change back to None when drizpar reference␣
→˓files are updated
weight_type = option('ivm', 'exptime', None, default='ivm') # change back to␣
→˓None when drizpar ref update
output_shape = int_list(min=2, max=2, default=None) # [x, y] order
crpix = float_list(min=2, max=2, default=None)
crval = float_list(min=2, max=2, default=None)
rotation = float(default=None)
pixel_scale_ratio = float(default=1.0) # Ratio of input to output pixel scale
pixel_scale = float(default=None) # Absolute pixel scale in arcsec
output_wcs = string(default='') # Custom output WCS.
single = boolean(default=False)
blendheaders = boolean(default=True)
allowed_memory = float(default=None) # Fraction of memory to use for the␣
→˓combined image.
in_memory = boolean(default=True)

Methods Documentation

get_drizpars(ref_filename, input_models)
Extract drizzle parameters from reference file.

This method extracts parameters from the drizpars reference file and uses those to set defaults on the fol-
lowing ResampleStep configuration parameters:

pixfrac = float(default=None) kernel = string(default=None) fillval = string(default=None) wht_type = op-
tion(‘ivm’, ‘exptime’, None, default=None)

Once the defaults are set from the reference file, if the user has used a resample.cfg file or run ResampleStep
using command line args, then these will overwrite the defaults pulled from the reference file.

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

556 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

update_fits_wcs(model)
Update FITS WCS keywords of the resampled image.

Class Inheritance Diagram

JwstStep ResampleStepStep

Python Interface to Drizzle: ResampleData()

jwst.resample.resample Module

Classes

OutputTooLargeError Raised when the output is too large for in-memory in-
stantiation

ResampleData(input_models[, output, single, ...]) This is the controlling routine for the resampling process.

OutputTooLargeError

exception jwst.resample.resample.OutputTooLargeError

Raised when the output is too large for in-memory instantiation

ResampleData

class jwst.resample.resample.ResampleData(input_models, output=None, single=False,
blendheaders=True, pixfrac=1.0, kernel='square',
fillval='INDEF', wht_type='ivm', good_bits=0,
pscale_ratio=1.0, pscale=None, **kwargs)

Bases: object (https://docs.python.org/3/library/functions.html#object)

This is the controlling routine for the resampling process.

15.1. Package Index 557

https://docs.python.org/3/library/functions.html#object

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Notes

This routine performs the following operations:

1. Extracts parameter settings from input model, such as pixfrac,
weight type, exposure time (if relevant), and kernel, and merges
them with any user-provided values.

2. Creates output WCS based on input images and define mapping function
between all input arrays and the output array.

3. Updates output data model with output arrays from drizzle, including
a record of metadata from all input models.

Parameters
• input_models (list (https://docs.python.org/3/library/stdtypes.html#list) of objects)

– list of data models, one for each input image

• output (str (https://docs.python.org/3/library/stdtypes.html#str)) – filename for output

• kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Other parameters.

Note: output_shape is in the x, y order.

Note: in_memory controls whether or not the resampled array
from resample_many_to_many() should be kept in memory or writ-
ten out to disk and deleted from memory. Default value is True
(https://docs.python.org/3/library/constants.html#True) to keep all products in memory.

Methods Summary

blend_output_metadata(output_model) Create new output metadata based on blending all in-
put metadata.

do_drizzle() Pick the correct drizzling mode based on self.single
drizzle_arrays(insci, inwht, input_wcs, ...) Low level routine for performing 'drizzle' operation

on one image.
resample_many_to_many() Resample many inputs to many outputs where outputs

have a common frame.
resample_many_to_one() Resample and coadd many inputs to a single output.
resample_variance_array(name, output_model) Resample variance arrays from self.input_models to

the output_model
update_exposure_times(output_model) Modify exposure time metadata in-place

558 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#True

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

blend_output_metadata(output_model)
Create new output metadata based on blending all input metadata.

do_drizzle()

Pick the correct drizzling mode based on self.single

static drizzle_arrays(insci, inwht, input_wcs, output_wcs, outsci, outwht, outcon, uniqid=1, xmin=0,
xmax=0, ymin=0, ymax=0, iscale=1.0, pixfrac=1.0, kernel='square',
fillval='INDEF', wtscale=1.0)

Low level routine for performing ‘drizzle’ operation on one image.

The interface is compatible with STScI code. All images are Python ndarrays, instead of filenames. File
handling (input and output) is performed by the calling routine.

Parameters
• insci (2d array) – A 2d numpy array containing the input image to be drizzled.

• inwht (2d array) – A 2d numpy array containing the pixel by pixel weighting. Must have
the same dimensions as insci. If none is supplied, the weighting is set to one.

• input_wcs (gwcs.WCS object) – The world coordinate system of the input image.

• output_wcs (gwcs.WCS object) – The world coordinate system of the output image.

• outsci (2d array) – A 2d numpy array containing the output image produced by driz-
zling. On the first call it should be set to zero. Subsequent calls it will hold the intermediate
results. This is modified in-place.

• outwht (2d array) – A 2d numpy array containing the output counts. On the first call
it should be set to zero. On subsequent calls it will hold the intermediate results. This is
modified in-place.

• outcon (2d or 3d array, optional) – A 2d or 3d numpy array holding a bitmap
of which image was an input for each output pixel. Should be integer zero on first call.
Subsequent calls hold intermediate results. This is modified in-place.

• uniqid (int (https://docs.python.org/3/library/functions.html#int), optional) – The id
number of the input image. Should be one the first time this function is called and incre-
mented by one on each subsequent call.

• xmin (int (https://docs.python.org/3/library/functions.html#int), optional) – This and
the following three parameters set a bounding rectangle on the input image. Only pixels on
the input image inside this rectangle will have their flux added to the output image. Xmin
sets the minimum value of the x dimension. The x dimension is the dimension that varies
quickest on the image. All four parameters are zero based, counting starts at zero.

• xmax (int (https://docs.python.org/3/library/functions.html#int), optional) – Sets the
maximum value of the x dimension on the bounding box of the input image. If xmax = 0,
no maximum will be set in the x dimension (all pixels in a row of the input image will be
resampled).

• ymin (int (https://docs.python.org/3/library/functions.html#int), optional) – Sets the
minimum value in the y dimension on the bounding box. The y dimension varies less
rapidly than the x and represents the line index on the input image.

• ymax (int (https://docs.python.org/3/library/functions.html#int), optional) – Sets the
maximum value in the y dimension. If ymax = 0, no maximum will be set in the y dimen-
sion (all pixels in a column of the input image will be resampled).

15.1. Package Index 559

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• iscale (float (https://docs.python.org/3/library/functions.html#float), optional) – A
scale factor to be applied to pixel intensities of the input image before resampling.

• pixfrac (float (https://docs.python.org/3/library/functions.html#float), optional) –
The fraction of a pixel that the pixel flux is confined to. The default value of 1 has the pixel
flux evenly spread across the image. A value of 0.5 confines it to half a pixel in the linear
dimension, so the flux is confined to a quarter of the pixel area when the square kernel is
used.

• kernel (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The
name of the kernel used to combine the input. The choice of kernel controls the distribu-
tion of flux over the kernel. The kernel names are: “square”, “gaussian”, “point”, “tophat”,
“turbo”, “lanczos2”, and “lanczos3”. The square kernel is the default.

• fillval (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The
value a pixel is set to in the output if the input image does not overlap it. The default
value of INDEF does not set a value.

Returns
• A tuple with three values (a version string, the number of pixels)

• on the input image that do not overlap the output image, and the

• number of complete lines on the input image that do not overlap the

• output input image.

resample_many_to_many()

Resample many inputs to many outputs where outputs have a common frame.

Coadd only different detectors of the same exposure, i.e. map NRCA5 and NRCB5 onto the same output
image, as they image different areas of the sky.

Used for outlier detection

resample_many_to_one()

Resample and coadd many inputs to a single output.

Used for stage 3 resampling

resample_variance_array(name, output_model)
Resample variance arrays from self.input_models to the output_model

Resample the name variance array to the same name in output_model, using a cumulative sum.

This modifies output_model in-place.

update_exposure_times(output_model)
Modify exposure time metadata in-place

560 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Class Inheritance Diagram

OutputTooLargeError

ResampleData

Resample Utilities

jwst.resample.resample_utils Module

Functions

decode_context(context, x, y) Get 0-based indices of input images that contributed to
(resampled) output pixel with coordinates x and y.

decode_context

jwst.resample.resample_utils.decode_context(context, x, y)
Get 0-based indices of input images that contributed to (resampled) output pixel with coordinates x and y.

Parameters
• context (numpy.ndarray (https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray))

– A 3D ndarray (https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray)
of integral data type.

• x (int (https://docs.python.org/3/library/functions.html#int), list
(https://docs.python.org/3/library/stdtypes.html#list) of integers, numpy.ndarray
(https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray) of
integers) – X-coordinate of pixels to decode (3rd index into the context array)

• y (int (https://docs.python.org/3/library/functions.html#int), list
(https://docs.python.org/3/library/stdtypes.html#list) of integers, numpy.ndarray
(https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray) of
integers) – Y-coordinate of pixels to decode (2nd index into the context array)

Returns
• A list of numpy.ndarray (https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray)

objects each containing indices of input images

• that have contributed to an output pixel with coordinates x and y.

• The length of returned list is equal to the number of input coordinate

15.1. Package Index 561

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• arrays x and y.

Examples

An example context array for an output image of array shape (5, 6) obtained by resampling 80 input images.

>>> import numpy as np
>>> from jwst.resample.resample_utils import decode_context
>>> con = np.array(
... [[[0, 0, 0, 0, 0, 0],
... [0, 0, 0, 36196864, 0, 0],
... [0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0],
... [0, 0, 537920000, 0, 0, 0]],
... [[0, 0, 0, 0, 0, 0,],
... [0, 0, 0, 67125536, 0, 0],
... [0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0],
... [0, 0, 163856, 0, 0, 0]],
... [[0, 0, 0, 0, 0, 0],
... [0, 0, 0, 8203, 0, 0],
... [0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0],
... [0, 0, 32865, 0, 0, 0]]],
... dtype=np.int32
...)
>>> decode_context(con, [3, 2], [1, 4])
[array([9, 12, 14, 19, 21, 25, 37, 40, 46, 58, 64, 65, 67, 77]),
array([9, 20, 29, 36, 47, 49, 64, 69, 70, 79])]

jwst.resample Package

Classes

ResampleStep([name, parent, config_file, ...]) Resample input data onto a regular grid using the drizzle
algorithm.

ResampleSpecStep([name, parent, ...]) ResampleSpecStep: Resample input data onto a regular
grid using the drizzle algorithm.

ResampleStep

class jwst.resample.ResampleStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

Resample input data onto a regular grid using the drizzle algorithm.

562 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Note: When supplied via output_wcs, a custom WCS overrides other custom WCS parameters such as
output_shape (now computed from by output_wcs.bounding_box), crpix

Parameters
input (JwstDataModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel)
or Association) – Single filename for either a single image or an association table.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

get_drizpars(ref_filename, input_models) Extract drizzle parameters from reference file.
process(input) This is where real work happens.
update_fits_wcs(model) Update FITS WCS keywords of the resampled image.

Attributes Documentation

class_alias = 'resample'

reference_file_types = ['drizpars']

spec

15.1. Package Index 563

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

pixfrac = float(default=1.0) # change back to None when drizpar reference files␣
→˓are updated
kernel = string(default='square') # change back to None when drizpar reference␣
→˓files are updated
fillval = string(default='INDEF') # change back to None when drizpar reference␣
→˓files are updated
weight_type = option('ivm', 'exptime', None, default='ivm') # change back to␣
→˓None when drizpar ref update
output_shape = int_list(min=2, max=2, default=None) # [x, y] order
crpix = float_list(min=2, max=2, default=None)
crval = float_list(min=2, max=2, default=None)
rotation = float(default=None)
pixel_scale_ratio = float(default=1.0) # Ratio of input to output pixel scale
pixel_scale = float(default=None) # Absolute pixel scale in arcsec
output_wcs = string(default='') # Custom output WCS.
single = boolean(default=False)
blendheaders = boolean(default=True)
allowed_memory = float(default=None) # Fraction of memory to use for the␣
→˓combined image.
in_memory = boolean(default=True)

Methods Documentation

get_drizpars(ref_filename, input_models)
Extract drizzle parameters from reference file.

This method extracts parameters from the drizpars reference file and uses those to set defaults on the fol-
lowing ResampleStep configuration parameters:

pixfrac = float(default=None) kernel = string(default=None) fillval = string(default=None) wht_type = op-
tion(‘ivm’, ‘exptime’, None, default=None)

Once the defaults are set from the reference file, if the user has used a resample.cfg file or run ResampleStep
using command line args, then these will overwrite the defaults pulled from the reference file.

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

update_fits_wcs(model)
Update FITS WCS keywords of the resampled image.

ResampleSpecStep

class jwst.resample.ResampleSpecStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: ResampleStep

ResampleSpecStep: Resample input data onto a regular grid using the drizzle algorithm.

Parameters
input (MultiSlitModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel),
ModelContainer, Association) – A singe datamodel, a container of datamodels, or an associa-
tion file

564 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

Methods Summary

process(input) This is where real work happens.
update_slit_metadata(model) Update slit attributes in the resampled slit image.

Attributes Documentation

class_alias = 'resample_spec'

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

update_slit_metadata(model)
Update slit attributes in the resampled slit image.

This is needed because model.slit attributes are not in model.meta, so the normal update() method doesn’t
work with them. Updates output_model in-place.

15.1. Package Index 565

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Class Inheritance Diagram

JwstStep ResampleStepStep ResampleSpecStep

15.1.50 Reset Correction

Description

Class
jwst.reset.ResetStep

Alias
reset

The reset correction is a MIRI step that attempts to correct for the reset anomaly effect. This effect is caused by the
non-ideal behavior of the FET upon resetting in the dark causing the initial frames in an integration to be offset from
their expected values. Another MIRI effect caused by resetting the detectors is the RSCD effect (see rscd).

Assumptions

The reset correction is a MIRI-specific correction. It will not be applied to data from other instruments.

Background

For MIRI exposures, the initial groups in each integration suffer from two effects related to the resetting of the detectors.
The first effect is that the first few groups after a reset do not fall on the expected linear accumulation of signal. The
most significant deviations occur in groups 1 and 2. This behavior is relatively uniform detector-wide. The second
effect, on the other hand, is the appearance of significant extra spatial structure in these initial groups, before fading
out in later groups.

The reset anomaly effect fades out by ~group 15 for full array data. It takes a few more groups for the effect to fade
away on subarray data. The time constant of the effect seems to be closely related to the group number and not time
since reset.

For multiple integration data, the reset anomaly also varies in amplitude for the first few integrations before settling
down to a relatively constant correction for integrations greater than the second integration for full array data. Because
of the shorter readout time, the subarray data requires a few more integrations before the effect is relatively stable from
integration to integration.

566 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Algorithm

The reset correction step applies the reset reference file. The reset reference file contains an integration dependent
correction for the first N groups, where N is defined by the reset correction reference file.

The format of the reset reference file is NCols X NRows X NGroups X NInts. For full frame data, the current imple-
mentation uses a reset anomaly reference file, which contains a correction for the first 15 groups for all integrations.
The reference file contains two corrections: one for the first integration and a second one for all other integrations. The
correction was determined so that the correction is forced to be zero on group 15. For each integration in the input
science data, the reset corrections are subtracted, group-by-group, integration-by- integration. If the input science data
contains more groups than the reset correction, then correction for those groups is zero. If the input science data con-
tains more integrations than the reset correction then the correction corresponding to the last integration in the reset
file is used.

There is a single, NCols X NRowss, DQ flag image for all the integrations. The reset DQ flag array are combined with
the science PIXELDQ array using numpy’s bitwise_or function. The ERR arrays of the science data are currently not
modified at all.

Subarrays

The reset correction is subarray-dependent, therefore this step makes no attempt to extract subarrays from the reset
reference file to match input subarrays. It instead relies on the presence of matching subarray reset reference files in
the CRDS. In addition, the number of NGROUPS and NINTS for subarray data varies from the full array data as well
as from each other.

Reference File Types

The reset correction step uses a RESET reference file.

RESET Reference File

REFTYPE
RESET

Data model
ResetModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ResetModel.html#jwst.datamodels.ResetModel)

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

15.1. Package Index 567

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ResetModel.html#jwst.datamodels.ResetModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Reference File Format

The reset reference files are FITS files with 3 IMAGE extensions and 1 BINTABLE extension. The FITS primary data
array is assumed to be empty. The characteristics of the three image extension are as follows:

EXTNAME NAXIS Dimensions Data type
SCI 4 ncols x nrows x ngroups x nint float
ERR 4 ncols x nrows x ngroups x nint float
DQ 2 ncols x nrows integer

The DQ_DEF extension contains the bit assignments used in the DQ array. It contains the following 4 columns:

TTYPE TFORM Description
BIT integer The bit number, starting at zero
VALUE integer The equivalent base-10 value of BIT
NAME string The mnemonic name of the data quality condition
DESCRIPTION string A description of the data quality condition

NOTE: For more information on standard bit definitions see: Data Quality Flags.

The SCI and ERR data arrays are 4-D, with dimensions of ncols x nrows x ngroups X nints, where ncols x nrows
matches the dimensions of the raw detector readout mode for which the reset applies. The reference file contains the
number of NGroups planes required for the correction to be zero on the last plane Ngroups plane. The correction for
the first few integrations varies and eventually settles down to a constant correction independent of integration number.

568 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Step Arguments

The reset correction has no step-specific arguments.

jwst.reset Package

Classes

ResetStep([name, parent, config_file, ...]) ResetStep: Performs a reset correction by subtracting
the reset correction reference data from the input science
data model.

ResetStep

class jwst.reset.ResetStep(name=None, parent=None, config_file=None, _validate_kwds=True, **kws)
Bases: JwstStep

ResetStep: Performs a reset correction by subtracting the reset correction reference data from the input science
data model.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

15.1. Package Index 569

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'reset'

reference_file_types = ['reset']

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep ResetStepStep

15.1.51 Residual Fringe

Description

Class
jwst.residual_fringe.ResidualFringeStep

Alias
residual_fringe

The JWST pipeline contains two steps devoted to the removal of fringes on MIRI MRS images. The first correction is
applied in the fringe_step in the calwebb_spec2 pipeline and consists in dividing detector-level data by a fringe-flat
and is described in the fringe step. Applying the fringe flat should eliminate fringes from spectra of spatially extended
sources, however residual fringes can remain. For spatially unresolved (point) sources or extended sources with struc-
ture, applying the fringe flat will undoubtedly leave residual fringes since these produce different fringe patterns on
the detector than accounted for by the fringe flat. The second step for fringe removal is the residual_fringe_step.
This step is part of the calwebb_spec2 pipeline, but currently it is skipped by default. To apply this step set the step
parameter, --skip = False. This step is applied after photom, but before cube_build.

The residual_fringe step can accept several different forms of input data, including:

1. a single file containing a 2-D IFU image

570 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

2. a data model (IFUImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel))
containing a 2-D IFU image

3. an association table (in json format) containing a single input file

Assumptions

This step only works on MIRI MRS data. It is assumed that the calwebb_spec2 pipeline has been run on the data. In
addition, the detection of residual fringes are better determined if the mrs_imatch step has also been applied to the
data.

Fringe Background Information

As is typical for spectrometers, the MIRI MRS detectors are affected by fringes. These are periodic gain modulations
caused by standing waves between parallel surfaces in the optical path, acting as a slow-finesse Fabry-Pérot etalons. In
the MRS, the principal fringe sources are the detector layers. A detailed detailed discussion on these fringe components
can be found in Argyriou, I., Wells, M., Glasse, A., et al. 2020, A&A, 641, A150 and Wells, M., Pel, J.-W., Glasse, A.,
et al. 2015, PASP, 127, 646.

The primary MRS fringe, observed in all MRS bands, is caused by the etalons between the anti-reflection coating and
lower layers, encompassing the detector substrate and the infrared-active layer. Since the thickness of the substrate is
not the same in the SW and LW detectors, the fringe frequency will differ in the two detectors. Up to 16 microns, this
fringe is produced by the anti-reflection coating and pixel metalization etalons, whereas above 16 microns it is produced
by the anti-reflection coating and bottom contact etalon, resulting in a different fringe frequency. The information in
the fringe frequency reference file is used to determine, for each MRS band, the frequencies to fit to this main fringe
component. The residual fringes are corrected for by fitting and removing sinusoidal gain to the detector level data.

Step Arguments

The residual fringe step has two step arguments that can be used to specify wavelength regions in which no correction
will be determined. The two arguments give lists of minimum and maximum wavelength values, respectively, for the
regions to be ignored. The two lists must contain an equal number of elements.

ignore_region_min [float, default = None]
The minimum wavelengths for the region(s) to be ignored, given as a comma-separated list.

ignore_region_max [float, default = None]
The maximum wavelengths for the region(s) to be ignored, given as a comma-separated list.

Reference Files

The residual_fringe step uses the FRINGEFREQ reference file.

15.1. Package Index 571

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.IFUImageModel.html#jwst.datamodels.IFUImageModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

FRINGEFREQ reference file

REFTYPE
FRINGEFREQ

Data models
FringeFreqModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.FringeFreqModel.html#jwst.datamodels.FringeFreqModel)

The FRINGEFREQ reference files contain parameter values used to correct MIRI MRS images for residual fringes that
remain after applying the fringe flat.

Reference Selection Keywords for FRINGEFREQ

CRDS selects appropriate FRINGEFREQ reference file based on the following keywords. FRINGEFREQ is not appli-
cable for instruments not in the table.

Instrument Keywords
MIRI INSTRUME, EXP_TYPE, DETECTOR, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

572 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.FringeFreqModel.html#jwst.datamodels.FringeFreqModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Type Specific Keywords for FRINGEFREQ

In addition to the standard reference file keywords listed above, the following keywords are required in FRINGEFREQ
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for FRINGEFREQ):

Keyword Data Model Name
DETECTOR model.meta.instrument.detector
EXP_TYPE model.meta.exposure.type

Reference File Format

The FRINGEFREQ reference files are FITS format, with 4 BINTABLE extensions. The FITS primary data array is
assumed to be empty. The format and content of the FRINGEFREQ reference file is

EXTNAME XTENSION Dimensions
RFC_FREQ_SHORT BINTABLE TFIELDS = 7
RFC_FREQ_MEDIUM BINTABLE TFIELDS = 7
RFC_FREQ_LONG BINTABLE TFIELDS = 7
MAX_AMP BINTABLE TFIELDS = 2

The formats of the individual table extensions are listed below.

Table Column Data type Units
RFC_FREQ_SHORT SLICE double N/A

FFREQ double cm-1

DFFREQ double cm-1

MIN_NFRIGES int N/A
MAX_NFRINGES int N/A
MIN_SNR double cm-1

PGRAM_RES double cm-1

FRC_FREQ_MEDIUM SLICE double N/A
FFREQ double cm-1

DFFREQ double cm-1

MIN_NFRIGES int N/A
MAX_NFRINGES int N/A
MIN_SNR double cm-1

PGRAM_RES double cm-1

RFC_FREQ_LONG SLICE double N/A
FFREQ double cm-1

DFFREQ double cm-1

MIN_NFRIGES int N/A
MAX_NFRINGES int N/A
MIN_SNR double cm-1

PGRAM_RES double cm-1

MAX_AMP WAVELENGTH double micron
AMPLITUDE double N/A

These reference files contain tables for each MIRI band giving the fringe frequencies and other parameters for each
band to fit and remove residual fringes.

15.1. Package Index 573

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

The reference table descriptions:

• RFC_FREQ_SHORT table contains the fringe frequencies and parameters for the SHORT band.

• RFC_FREQ_MEDIUM table contains the fringe frequencies and parameters for the MEDIUM band.

• RFC_FREQ_LONG table contains the fringe frequencies and parameters for the LONG band.

• MAX_AMP table contains a wavelength dependent maximum amplitude which is use for feature identification
and fit rejection.

jwst.residual_fringe.residual_fringe_step Module

Classes

ResidualFringeStep([name, parent, ...]) ResidualFringeStep: Apply residual fringe correction to
a science image using parameters in the residual fringe
reference file.

ResidualFringeStep

class jwst.residual_fringe.residual_fringe_step.ResidualFringeStep(name=None, parent=None,
config_file=None,
_validate_kwds=True,
**kws)

Bases: JwstStep

ResidualFringeStep: Apply residual fringe correction to a science image using parameters in the residual fringe
reference file.

Parameters
input_data (asn file or single file) –

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

574 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'residual_fringe'

reference_file_types = ['fringefreq', 'regions']

spec

skip = boolean(default=True)
save_intermediate_results = boolean(default = False)
search_output_file = boolean(default = False)
ignore_region_min = list(default = None)
ignore_region_max = list(default = None)
suffix = string(default = 'residual_fringe')

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep ResidualFringeStepStep

15.1. Package Index 575

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

15.1.52 Reset Switch Charge Decay (RSCD) Correction

Description

Class
jwst.rscd.RscdStep

Alias
rscd

Assumptions

This correction is currently only implemented for MIRI data and is only applied to integrations after the first integration
(i.e. this step does not correct the first integration). It is assumed this step occurs before the dark subtraction, but after
linearity correction.

Background

The MIRI Focal Plane System (FPS) consists of the detectors and the electronics to control them. There are a number of
non-ideal detector and readout effects that produce reset offsets, nonlinearities at the start of an integration, non-linear
ramps with increasing signal, latent images, and drifts in the slopes.

The manner in which the MIRI readout electronics operate have been shown to be the source of the ramp offsets,
nonlinearities at the start of the integration, and overall changes in slopes. Basically the MIRI reset electronics use
field effect transistors (FETs) in their operation. The FET acts as a switch to allow charge to build up and to also
initialize (clear) the charge. However, the reset FETS do not instantaneously reset the level, instead the exponential
adjustment of the FET after a reset causes the initial frames in an integration to be offset from their expected values.
Between exposures the MIRI detectors are continually reset; however for a multiple integration exposure there is a
single reset between integrations. The effects of this decay are not measurable in the first integration because a number
of resets have occurred from the last exposure and the effect has decayed away by the time it takes to read out the last
exposure, set up the next exposure and begin exposing. There are low level reset effects in the first integration that are
related to the strength of the dark current and can be removed with an integration-dependent dark.

The Reset Switch Charge Decay (RSCD) step corrects for these effects by simply flagging the first N groups as
DO_NOT_USE. An actual correction algorithm allowing for the first N groups to be used is under development.

Algorithm

This correction is only applied to integrations > 1. This step flags the N groups at the beginning of all 2nd and higher
integrations as bad (the “DO_NOT_USE” bit is set in the GROUPDQ flag array), but only if the total number of groups
in each integration is greater than N+3. This results in the data contained in the the first N groups being excluded from
subsequent steps, such as jump detection and ramp_fitting. No flags are added if NGROUPS <= N+3, because doing
so would leave too few good groups to work with in later steps.

Only the GROUPDQ array is modified. The SCI, ERR, and PIXELDQ arrays are unchanged.

576 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Step Arguments

The rscd correction has no step-specific arguments.

Reference Files

The rscd correction step uses an RSCD reference file.

RSCD Reference File

REFTYPE
RSCD

Data model
RSCDModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RSCDModel.html#jwst.datamodels.RSCDModel)

The RSCD reference file contains coefficients used to compute the correction.

Reference Selection Keywords for RSCD

CRDS selects appropriate RSCD references based on the following keywords. RSCD is not applicable for instruments
not in the table. All keywords used for file selection are required.

Instrument Keywords
MIRI INSTRUME, DETECTOR, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

15.1. Package Index 577

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.RSCDModel.html#jwst.datamodels.RSCDModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Type Specific Keywords for RSCD

In addition to the standard reference file keywords listed above, the following keywords are required in RSCD reference
files, because they are used as CRDS selectors (see Reference Selection Keywords for RSCD):

Keyword Data Model Name
DETECTOR model.meta.instrument.detector

Reference File Format

RSCD reference files are FITS format, with 1 BINTABLE extension. The FITS primary HDU does not contain a data
array. The BINTABLE extension uses the identifier EXTNAME = “RSCD” and the characteristics of the table columns
are as follows:

Column name Data type Notes
subarray char*13 FULL or subarray name
readpatt char*4 SLOW or FAST
rows char*4 EVEN or ODD
tau float32 e-folding time scale, in units of frames
ascale float32 𝑏1 in equation 2
pow float32 𝑏2 in equation 2
illum_zp float32 𝑖𝑙𝑙𝑢𝑚𝑧𝑝𝑡 in equation 2.1
illum_slope float32 𝑖𝑙𝑙𝑢𝑚𝑠𝑙𝑜𝑝𝑒 in equation 2.1
illum2 float32 𝑖𝑙𝑙𝑢𝑚2 in equation 2.1
param3 float32 𝑏3 in equation 2
crossopt float32 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑃𝑜𝑖𝑛𝑡 in equation 2.2
sat_zp float32 𝑠𝑎𝑡zp in equation 3.1
sat_slope float32 𝑠𝑎𝑡slope in equation 3.1
sat_2 float32 𝑠𝑎𝑡2 in equation 3.1
sat_mzp float32 𝑠𝑎𝑡mzp in equation 3
sat_rowterm float32 𝑒𝑣𝑒𝑛𝑟𝑜𝑤𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 in equation 3.1
sat_scale float32 𝑠𝑐𝑎𝑙𝑒sat in equation 3

The entries in the first 3 columns of the table are used as row selection criteria, matching the exposure properties and
row type of the data. The remaining 14 columns contain the parameter values for the double-exponential correction
function.

The general form of the correction to be added to the input data is:

corrected data = input data + dn_accumulated * scale * exp(-T / tau) (Equation 1)

where:

• T is the time since the last group in the previous integration

• tau is the exponential time constant found in the RSCD table

• dn_accumulated is the DN level that was accumulated for the pixel from the previous integration.

In cases where the last integration does not saturate, the 𝑠𝑐𝑎𝑙𝑒 term in equation 1 is determined according to:

𝑠𝑐𝑎𝑙𝑒 = 𝑏1 * [𝐶𝑜𝑢𝑛𝑡𝑠2𝑏2 * [1/𝑒𝑥𝑝(𝐶𝑜𝑢𝑛𝑡𝑠2/𝑏3)− 1] (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2)

The following two additional equations are used in Equation 2:

578 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

𝑏1 = 𝑎𝑠𝑐𝑎𝑙𝑒 * (𝑖𝑙𝑙𝑢𝑚𝑧𝑝𝑡 + 𝑖𝑙𝑙𝑢𝑚𝑠𝑙𝑜𝑝𝑒 *𝑁 + 𝑖𝑙𝑙𝑢𝑚2 *𝑁2) (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.1)

𝐶𝑜𝑢𝑛𝑡𝑠2 = 𝐹𝑖𝑛𝑎𝑙𝐷𝑁 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑔𝑟𝑜𝑢𝑝 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 −
𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑃𝑜𝑖𝑛𝑡 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.2)

where:

• N in equation 2.1 is the number of groups per integration

• Crossover Point in equation 2.2 is column CROSSOPT in the RSCD table.

If the previous integration saturates, 𝑠𝑐𝑎𝑙𝑒 is no longer calculated using equations 2 - 2.2. Instead it is calculated using
equations 3 and 3.1:

𝑠𝑐𝑎𝑙𝑒sat = 𝑠𝑙𝑜𝑝𝑒 * 𝐶𝑜𝑢𝑛𝑡𝑠3 + 𝑠𝑎𝑡mzp (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3)

𝑠𝑙𝑜𝑝𝑒 = 𝑠𝑎𝑡𝑧𝑝 + 𝑠𝑎𝑡𝑠𝑙𝑜𝑝𝑒 *𝑁 + 𝑠𝑎𝑡2 *𝑁2 + 𝑒𝑣𝑒𝑛𝑟𝑜𝑤𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1)

where:

• 𝐶𝑜𝑢𝑛𝑡𝑠3 is an estimate of what the last group in the previous integration would have been if saturation did not
exist

• 𝑠𝑐𝑎𝑙𝑒sat is sat_scale in the RSCD table

• 𝑠𝑎𝑡mzp is sat_mzp in the RSCD table

• 𝑠𝑎𝑡zp is sat_zp in the RSCD table

• 𝑠𝑎𝑡slope is sat_slope in the RSCD table

• 𝑠𝑎𝑡2 is sat2 in the RSCD table

• 𝑒𝑣𝑒𝑛𝑟𝑜𝑤𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 is sat_rowterm in the RSCD table

• N is the number of groups per integration

jwst.rscd Package

Classes

RscdStep([name, parent, config_file, ...]) RscdStep: Performs an RSCD correction to MIRI data.

RscdStep

class jwst.rscd.RscdStep(name=None, parent=None, config_file=None, _validate_kwds=True, **kws)
Bases: JwstStep

RscdStep: Performs an RSCD correction to MIRI data. Baseline version flags the first N groups as
‘DO_NOT_USE’ in the 2nd and later integrations in a copy of the input science data model. Enhanced ver-
sion is not ready nor enabled.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

15.1. Package Index 579

https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'rscd'

reference_file_types = ['rscd']

spec

type = option('baseline','enhanced',default = 'baseline') # Type of correction

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep RscdStepStep

580 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

15.1.53 Saturation Detection

Description

Class
jwst.saturation.SaturationStep

Alias
saturation

The core algorithm for this step is called from the external package stcal, an STScI effort to unify common calibration
processing algorithms for use by multiple observatories.

Saturation Checking

The saturation step flags pixels at or below the A/D floor or above the saturation threshold. Pixels values are flagged
as saturated if the pixel value is larger than the defined saturation threshold. Pixel values are flagged as below the A/D
floor if they have a value of zero DN.

This step loops over all integrations within an exposure, examining each one group-by-group, comparing the pixel
values in the SCI array with defined saturation thresholds for each pixel. When it finds a pixel value in a given group
that is above the saturation threshold (high saturation), it sets the “SATURATED” flag in the corresponding location
of the “GROUPDQ” array in the science exposure. When it finds a pixel in a given group that has a zero or negative
value (below the A/D floor), it sets the “AD_FLOOR” and “DO_NOT_USE” flags in the corresponding location of the
“GROUPDQ” array in the science exposure. For the saturation case, it also flags all subsequent groups for that pixel
as saturated. For example, if there are 10 groups in an integration and group 7 is the first one to cross the saturation
threshold for a given pixel, then groups 7 through 10 will all be flagged for that pixel.

Pixels with thresholds set to NaN or flagged as “NO_SAT_CHECK” in the saturation reference file have their
thresholds set above the 16-bit A-to-D converter limit of 65535 and hence will never be flagged as saturated. The
“NO_SAT_CHECK” flag is propagated to the PIXELDQ array in the output science data to indicate which pixels fall
into this category.

Charge Migration

There is an effect in IR detectors that results in charge migrating (spilling) from a pixel that has “hard” saturation
(i.e. where the pixel no longer accumulates charge) into neighboring pixels. This results in non-linearities in the
accumulating signal ramp in the neighboring pixels and hence the ramp data following the onset of saturation is not
usable.

The saturation step accounts for charge migration by flagging - as saturated - all pixels neighboring a pixel that goes
above the saturation threshold. This is accomplished by first flagging all pixels that cross their saturation thresholds
and then making a second pass through the data to flag neighbors within a specified region. The region of neighboring
pixels is specified as a 2N+1 pixel wide box that is centered on the saturating pixel and N is set by the step parameter
n_pix_grow_sat. The default value is 1, resulting in a 3x3 box of neighboring pixels that will be flagged.

15.1. Package Index 581

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NIRSpec IRS2 Readouts

NIRSpec data acquired using the “IRS2” readout pattern require special handling in this step, due to the extra reference
pixel values that are interleaved within the science data. The saturation reference file data does not contain extra entries
for these pixels. The step-by-step process is as follows:

1. Retrieve and load data from the appropriate “SATURATION” reference file from CRDS

2. If the input science exposure used the NIRSpec IRS2 readout pattern:

• Create a temporary saturation array that is the same size as the IRS2 readout

• Copy the saturation threshold values from the original reference data into the larger saturation array, skip-
ping over the interleaved reference pixel locations within the array

3. If the input science exposure used a subarray readout, extract the matching subarray from the full-frame saturation
reference file data

4. For pixels that contain NaN in the reference file saturation threshold array or are flagged in the reference file with
“NO_SAT_CHECK” (no saturation check available), propagate the “NO_SAT_CHECK” flag to the science data
PIXELDQ array

5. For each group in the input science data, set the “SATURATION” flag in the “GROUPDQ” array if the pixel
value is greater than or equal to the saturation threshold from the reference file

NIRCam Frame 0

If the input contains a frame zero data cube, the frame zero image for each integration is checked for saturation in the
same way as the regular science data. This means doing the same comparison of pixel values in the frame zero image
to the saturation thresholds defined in the saturation reference file. Because the frame zero does not carry its own Data
Quality (DQ) information, pixels found to be above the saturation threshold are simply reset to a value of zero in the
frame zero image itself. Subsequent calibration steps are setup to recognize these zero values as indicating that the data
were saturated.

Subarrays

The saturation step will accept either full-frame or subarray saturation reference files. If only a full-frame reference
file is available, the step will extract a subarray to match that of the science exposure. Otherwise, subarray-specific
saturation reference files will be used if they are available.

Step Arguments

The saturation step has one optional argument:

--n_pix_grow_sat (integer, default=1)
The distance to use when growing saturation flag values to neighboring pixels, in order to account for charge
migration (spilling). The total region size is 2*n_pix_grow_sat+1 pixels, centered on the primary pixel.

582 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference Files

The saturation step uses a SATURATION reference file.

SATURATION Reference File

REFTYPE
SATURATION

Data model
jwst.datamodels.SaturationModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.SaturationModel.html#jwst.datamodels.SaturationModel)

The SATURATION reference file contains pixel-by-pixel saturation threshold values.

Reference Selection Keywords for SATURATION

CRDS selects appropriate SATURATION references based on the following keywords. SATURATION is not applica-
ble for instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
FGS INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
MIRI INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
NIRCam INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
NIRISS INSTRUME, DETECTOR, DATE-OBS, TIME-OBS
NIRSpec INSTRUME, DETECTOR, SUBARRAY, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

15.1. Package Index 583

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.SaturationModel.html#jwst.datamodels.SaturationModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Type Specific Keywords for SATURATION

In addition to the standard reference file keywords listed above, the following keywords are required in SATURATION
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for SATURATION):

Keyword Data Model Name Instrument
DETECTOR model.meta.instrument.detector All
SUBARRAY model.meta.subarray.name NIRSpec

Reference File Format

SATURATION reference files are FITS format, with 2 IMAGE extensions and 1 BINTABLE extension. The FITS
primary HDU does not contain a data array. The format and content of the file is as follows:

EXTNAME XTENSION NAXIS Dimensions Data type
SCI IMAGE 2 ncols x nrows float
DQ IMAGE 2 ncols x nrows integer
DQ_DEF BINTABLE 2 TFIELDS = 4 N/A

The values in the SCI array give the saturation threshold in units of DN for each pixel.

The DQ_DEF extension contains the bit assignments used in the DQ array. It contains the following 4 columns:

TTYPE TFORM Description
BIT integer The bit number, starting at zero
VALUE integer The equivalent base-10 value of BIT
NAME string The mnemonic name of the data quality condition
DESCRIPTION string A description of the data quality condition

NOTE: For more information on standard bit definitions see: Data Quality Flags.

jwst.saturation Package

Classes

SaturationStep([name, parent, config_file, ...]) This Step sets saturation flags.

584 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

SaturationStep

class jwst.saturation.SaturationStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

This Step sets saturation flags.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'saturation'

reference_file_types = ['saturation']

spec

n_pix_grow_sat = integer(default=1) # number of layers adjacent pixels to flag

15.1. Package Index 585

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep SaturationStepStep

15.1.54 SkyMatch

Description

Class
jwst.skymatch.SkymatchStep

Alias
skymatch

Overview

The skymatch step can be used to compute sky values in a collection of input images that contain both sky and source
signal. The sky values can be computed for each image separately or in a way that matches the sky levels amongst the
collection of images so as to minimize their differences. This operation is typically applied before doing cosmic-ray
rejection and combining multiple images into a mosaic. When running the skymatch step in a matching mode, it
compares total signal levels in the overlap regions of a set of input images and computes the signal offsets for each
image that will minimize – in a least squares sense – the residuals across the entire set. This comparison is performed
directly on the input images without resampling them onto a common grid. The overlap regions are computed directly
on the sky (celestial sphere) for each pair of input images. Matching based on total signal level is especially useful for
images that are dominated by large, diffuse sources, where it is difficult – if not impossible – to find and measure true
sky.

Note that the meaning of “sky background” depends on the chosen sky computation method. When the matching
method is used, for example, the reported “sky” value is only the offset in levels between images and does not necessarily
include the true total sky level.

Note: Throughout this document the term “sky” is used in a generic sense, referring to any kind of non-source
background signal, which may include actual sky, as well as instrumental (e.g. thermal) background, etc.

The step records information in three keywords that are included in the output files:

586 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

BKGMETH
records the sky method that was used to compute sky levels

BKGLEVEL
the sky level computed for each image

BKGSUB
a boolean indicating whether or not the sky was subtracted from the output images. Note that by default the step
argument “subtract” is set to False, which means that the sky will NOT be subtracted (see the skymatch step
arguments for more details).

Both the “BKGSUB” and “BKGLEVEL” keyword values are important information for downstream tasks, such as
outlier detection and resampling. Outlier detection will use the BKGLEVEL values to internally equalize the im-
ages, which is necessary to prevent false detections due to overall differences in signal levels between images, and the
resample step will subtract the BKGLEVEL values from each input image when combining them into a mosaic.

Assumptions

When matching sky background, the code needs to compute bounding polygon intersections in world coordinates. The
input images, therefore, need to have a valid WCS, generated by the assign_wcs step.

Algorithms

The skymatch step provides several methods for constant sky background value computations.

The first method, called “local”, essentially is an enhanced version of the original sky subtraction method used in older
versions of astrodrizzle (https://drizzlepac.readthedocs.io/en/latest/astrodrizzle.html). This method simply computes
the mean/median/mode/etc. value of the sky separately in each input image. This method was upgraded to be able to
use DQ flags to remove bad pixels from being used in the computations of sky statistics.

In addition to the classic “local” method, two other methods have been introduced: “global” and “match”, as well as a
combination of the two – “global+match”.

1. The “global” method essentially uses the “local” method to first compute a sky value for each image separately,
and then assigns the minimum of those results to all images in the collection. Hence after subtraction of the sky
values only one image will have a net sky of zero, while the remaining images will have some small positive
residual.

2. The “match” algorithm computes only a correction value for each image, such that, when applied to each image,
the mismatch between all pairs of images is minimized, in the least-squares sense. For each pair of images, the
sky mismatch is computed only in the regions in which the two images overlap on the sky.

This makes the “match” algorithm particularly useful for equalizing sky values in large mosaics in which one
may have only pair-wise intersection of adjacent images without having a common intersection region (on the
sky) in all images.

Note that if the argument “match_down=True”, matching will be done to the image with the lowest sky value,
and if “match_down=False” it will be done to the image with the highest value (see skymatch step arguments for
full details).

3. The “global+match” algorithm combines the “global” and “match” methods. It uses the “global” algorithm to
find a baseline sky value common to all input images and the “match” algorithm to equalize sky values among
images. The direction of matching (to the lowest or highest) is again controlled by the “match_down” argument.

In the “local” and “global” methods, which find sky levels in each image, the calculation of the image statistics takes
advantage of sigma clipping to remove contributions from isolated sources. This can work well for accurately deter-
mining the true sky level in images that contain semi-large regions of empty sky. The “match” algorithm, on the other

15.1. Package Index 587

https://drizzlepac.readthedocs.io/en/latest/astrodrizzle.html

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

hand, compares the total signal levels integrated over regions of overlap in each image pair. This method can produce
better results when there are no large empty regions of sky in the images. This method cannot measure the true sky
level, but instead provides additive corrections that can be used to equalize the signal between overlapping images.

Examples

To get a better idea of the behavior of these different methods, the tables below show the results for two hypothetical
sets of images. The first example is for a set of 6 images that form a 2x3 mosaic, with every image having overlap with
its immediate neighbors. The first column of the table gives the actual (fake) sky signal that was imposed in each image,
and the subsequent columns show the results computed by each method (i.e. the values of the resulting BKGLEVEL
keywords). All results are for the case where the step argument match_down = True, which means matching is done
to the image with the lowest sky value. Note that these examples are for the highly simplistic case where each example
image contains nothing but the constant sky value. Hence the sky computations are not affected at all by any source
content and are therefore able to determine the sky values exactly in each image. Results for real images will of course
not be so exact.

Sky Local Global Match Global+Match
100 100 100 0 100
120 120 100 20 120
105 105 100 5 105
110 110 100 10 110
105 105 100 5 105
115 115 100 15 115

local
finds the sky level of each image independently of the rest.

global
uses the minimum sky level found by “local” and applies it to all images.

match
with “match_down=True” finds the offset needed to match all images to the level of the image with the lowest
sky level.

global+match
with “match_down=True” finds the offsets and global value needed to set all images to a sky level of zero. In
this trivial example, the results are identical to the “local” method.

The second example is for a set of 7 images, where the first 4 form a 2x2 mosaic, with overlaps, and the second set of
3 images forms another mosaic, with internal overlap, but the 2 mosaics do NOT overlap one another.

Sky Local Global Match Global+Match
100 100 90 0 86.25
120 120 90 20 106.25
105 105 90 5 91.25
110 110 90 10 96.25
95 95 90 8.75 95
90 90 90 3.75 90
100 100 90 13.75 100

In this case, the “local” method again computes the sky in each image independently of the rest, and the “global” method
sets the result for each image to the minimum value returned by “local”. The matching results, however, require some
explanation. With “match” only, all of the results give the proper offsets required to equalize the images contained within

588 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

each mosaic, but the algorithm does not have the information needed to match the two (non-overlapping) mosaics to
one another. Similarly, the “global+match” results again provide proper matching within each mosaic, but will leave
an overall residual in one of the mosaics.

Limitations and Discussions

As aluded to above, the best sky computation method depends on the nature of the data in the input images. If the input
images contain mostly compact, isolated sources, the “local” and “global” algorithms can do a good job at finding the
true sky level in each image. If the images contain large, diffuse sources, the “match” algorithm is more appropriate,
assuming of course there is sufficient overlap between images from which to compute the matching values. In the event
there is not overlap between all of the images, as illustrated in the second example above, the “match” method can still
provide useful results for matching the levels within each non-contigous region covered by the images, but will not
provide a good overall sky level across all of the images. In these situations it is more appropriate to either process
the non-contiguous groups independently of one another or use the “local” or “global” methods to compute the sky
separately in each image. The latter option will of course only work well if the images are not domimated by extended,
diffuse sources.

The primary reason for introducing the skymatch algorithm was to try to equalize the sky in large mosaics in which
computation of the absolute sky is difficult, due to the presence of large diffuse sources in the image. As discussed
above, the skymatch step accomplishes this by comparing the sky values in the overlap regions of each image pair.
The quality of sky matching will obviously depend on how well these sky values can be estimated. True background
may not be present at all in some images, in which case the computed “sky” may be the surface brightness of a large
galaxy, nebula, etc.

Here is a brief list of possible limitations and factors that can affect the outcome of the matching (sky subtraction in
general) algorithm:

1. Because sky computation is performed on flat-fielded but not distortion corrected images, it is important to keep
in mind that flat-fielding is performed to obtain correct surface brightnesses. Because the surface brightness of a
pixel containing a point-like source will change inversely with a change to the pixel area, it is advisable to mask
point-like sources through user-supplied mask files. Values different from zero in user-supplied masks indicate
good data pixels. Alternatively, one can use the upper parameter to exclude the use of pixels containing bright
objects when performing the sky computations.

2. The input images may contain cosmic rays. This algorithm does not perform CR cleaning. A possible way of
minimizing the effect of the cosmic rays on sky computations is to use clipping (nclip > 0) and/or set the upper
parameter to a value larger than most of the sky background (or extended sources) but lower than the values of
most CR-affected pixels.

3. In general, clipping is a good way of eliminating bad pixels: pixels affected by CR, hot/dead pixels, etc. How-
ever, for images with complicated backgrounds (extended galaxies, nebulae, etc.), affected by CR and noise, the
clipping process may mask different pixels in different images. If variations in the background are too strong,
clipping may converge to different sky values in different images even when factoring in the true difference in
the sky background between the two images.

4. In general images can have different true background values (we could measure it if images were not affected by
large diffuse sources). However, arguments such as lower and upper will apply to all images regardless of the
intrinsic differences in sky levels (see skymatch step arguments).

15.1. Package Index 589

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Step Arguments

The skymatch step uses the following optional arguments:

General sky matching parameters:
skymethod (str, default=’match’)

The sky computation algorithm to be used. Allowed values: local, global, match, global+match

match_down (boolean, default=True)
Specifies whether the sky differences should be subtracted from images with higher sky values (match_down =
True (https://docs.python.org/3/library/constants.html#True)) in order to match the image with the lowest sky,
or sky differences should be added to the images with lower sky values to match the sky of the image with the
highest sky value (match_down = False (https://docs.python.org/3/library/constants.html#False)). NOTE: this
argument only applies when skymethod is either match or global+match.

subtract (boolean, default=False)
Specifies whether the computed sky background values are to be subtracted from the images. The BKGSUB
keyword (boolean) will be set in each output image to record whether or not the background was subtracted.

Image bounding polygon parameters:
stepsize (int, default=None)

Spacing between vertices of the images bounding polygon. The default value of None
(https://docs.python.org/3/library/constants.html#None) creates bounding polygons with four vertices cor-
responding to the corners of the image.

Sky statistics parameters:
skystat (str, default=’mode’)

Statistic to be used for sky background computations. Supported values are: mean, mode, midpt, and median.

dqbits (str, default=’~DO_NOT_USE+NON_SCIENCE’)
The DQ bit values from the input images’ DQ arrays that should be considered “good” when building masks for
sky computations. See DQ flag Parameter Specification for details. The default value rejects pixels flagged as
either ‘DO_NOT_USE’ or ‘NON_SCIENCE’ and considers all others to be good.

lower (float, default=None)
An optional value indicating the lower limit of usable pixel values for computing the sky. This value should be
specified in the units of the input images.

upper (float, default=None)
An optional value indicating the upper limit of usable pixel values for computing the sky. This value should be
specified in the units of the input images.

nclip (int, default=5)
The number of clipping iterations to use when computing sky values.

lsig (float, default=4.0)
Lower clipping limit, in sigma, used when computing the sky value.

usig (float, default=4.0)
Upper clipping limit, in sigma, used when computing the sky value.

binwidth (float, default=0.1)
Bin width, in sigma, used to sample the distribution of pixel values in order to compute the sky background using
statistics that require binning, such as mode and midpt.

590 Chapter 15. Package Documentation

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference File

The skymatch step does not use any reference files.

Also See:

skymatch_step

The skymatch_step function (class name SkyMatchStep) is the top-level function used to call the skymatch operation
from the JWST calibration pipeline.

jwst.skymatch.skymatch_step Module

JWST pipeline step for sky matching.

Authors
Mihai Cara

Classes

SkyMatchStep(*args, **kwargs) SkyMatchStep: Subtraction or equalization of sky back-
ground in science images.

SkyMatchStep

class jwst.skymatch.skymatch_step.SkyMatchStep(*args, **kwargs)
Bases: JwstStep

SkyMatchStep: Subtraction or equalization of sky background in science images.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

15.1. Package Index 591

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'skymatch'

reference_file_types = []

spec

General sky matching parameters:
skymethod = option('local', 'global', 'match', 'global+match', default='match')
→˓# sky computation method
match_down = boolean(default=True) # adjust sky to lowest measured value?
subtract = boolean(default=False) # subtract computed sky from image data?

Image's bounding polygon parameters:
stepsize = integer(default=None) # Max vertex separation

Sky statistics parameters:
skystat = option('median', 'midpt', 'mean', 'mode', default='mode') # sky␣
→˓statistics
dqbits = string(default='~DO_NOT_USE+NON_SCIENCE') # "good" DQ bits
lower = float(default=None) # Lower limit of "good" pixel values
upper = float(default=None) # Upper limit of "good" pixel values
nclip = integer(min=0, default=5) # number of sky clipping iterations
lsigma = float(min=0.0, default=4.0) # Lower clipping limit, in sigma
usigma = float(min=0.0, default=4.0) # Upper clipping limit, in sigma
binwidth = float(min=0.0, default=0.1) # Bin width for 'mode' and 'midpt'␣
→˓`skystat`, in sigma

592 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep SkyMatchStepStep

skymatch

The skymatch function performs the actual sky matching operations on the input image data models.

jwst.skymatch.skymatch Module

A module that provides functions for matching sky in overlapping images.

Authors
Mihai Cara

Functions

match (images[, skymethod, match_down, subtract]) A function to compute and/or "equalize" sky background
in input images.

match

jwst.skymatch.skymatch.match(images, skymethod='global+match', match_down=True, subtract=False)
A function to compute and/or “equalize” sky background in input images.

Note: Sky matching (“equalization”) is possible only for overlapping images.

Parameters
• images (list (https://docs.python.org/3/library/stdtypes.html#list) of SkyImage or
SkyGroup) – A list of of SkyImage or SkyGroup objects.

• skymethod ({'local', 'global+match', 'global', 'match'}, optional) – Select the
algorithm for sky computation:

15.1. Package Index 593

https://docs.python.org/3/library/stdtypes.html#list

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

– ’local’ : compute sky background values of each input image or group of images (members
of the same “exposure”). A single sky value is computed for each group of images.

Note: This setting is recommended when regions of overlap between images are domi-
nated by “pure” sky (as opposed to extended, diffuse sources).

– ’global’ : compute a common sky value for all input images and groups of images. With
this setting local will compute sky values for each input image/group, find the minimum
sky value, and then it will set (and/or subtract) the sky value of each input image to this
minimum value. This method may be useful when the input images have been already
matched.

– ’match’ : compute differences in sky values between images and/or groups in (pair-wise)
common sky regions. In this case the computed sky values will be relative (delta) to
the sky computed in one of the input images whose sky value will be set to (reported
to be) 0. This setting will “equalize” sky values between the images in large mosaics.
However, this method is not recommended when used in conjunction with astrodrizzle
(http://stsdas.stsci.edu/stsci_python_sphinxdocs_2.13/drizzlepac/astrodrizzle.html) be-
cause it computes relative sky values while astrodrizzle needs “absolute” sky values
for median image generation and CR rejection.

– ’global+match’ : first use the ‘match’ method to equalize sky values between images and
then find a minimum “global” sky value amongst all input images.

Note: This is the recommended setting for images containing diffuse sources (e.g., galax-
ies, nebulae) covering significant parts of the image.

• match_down (bool (https://docs.python.org/3/library/functions.html#bool), optional) –
Specifies whether the sky differences should be subtracted from images with higher sky val-
ues (match_down = True (https://docs.python.org/3/library/constants.html#True)) to match
the image with the lowest sky or sky differences should be added to the images with lower
sky values to match the sky of the image with the highest sky value (match_down = False
(https://docs.python.org/3/library/constants.html#False)).

Note: This setting applies only when the skymethod parameter is either 'match' or
'global+match'.

• subtract (bool (https://docs.python.org/3/library/functions.html#bool) (Default =
False)) – Subtract computed sky value from image data.

Raises
TypeError (https://docs.python.org/3/library/exceptions.html#TypeError) – The images argu-
ment must be a Python list of SkyImage and/or SkyGroup objects.

594 Chapter 15. Package Documentation

http://stsdas.stsci.edu/stsci_python_sphinxdocs_2.13/drizzlepac/astrodrizzle.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#TypeError

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Notes

match() provides new algorithms for sky value computations and enhances previously available algorithms used
by, e.g., astrodrizzle (http://stsdas.stsci.edu/stsci_python_sphinxdocs_2.13/drizzlepac/astrodrizzle.html).

Two new methods of sky subtraction have been introduced (compared to the standard 'local'): 'global' and
'match', as well as a combination of the two – 'global+match'.

• The 'global' method computes the minimum sky value across all input images and/or groups. That sky
value is then considered to be the background in all input images.

• The 'match' algorithm is somewhat similar to the traditional sky subtraction method (skymethod =
'local') in the sense that it measures the sky independently in input images (or groups). The major
differences are that, unlike the traditional method,

1. 'match' algorithm computes relative (delta) sky values with regard to the sky in a reference image
chosen from the input list of images; and

2. Sky statistics are computed only in the part of the image that intersects other images.

This makes the 'match' sky computation algorithm particularly useful for “equalizing” sky values in large
mosaics in which one may have only (at least) pair-wise intersection of images without having a common
intersection region (on the sky) in all images.

The 'match' method works in the following way: for each pair of intersecting images, an equation is
written that requires that average surface brightness in the overlapping part of the sky be equal in both
images. The final system of equations is then solved for unknown background levels.

Warning: The current algorithm is not capable of detecting cases where some subsets of intersecting
images (from the input list of images) do not intersect at all with other subsets of intersecting images
(except for the simple case when single images do not intersect any other images). In these cases the
algorithm will find equalizing sky values for each intersecting subset of images and/or groups of images.
However since these subsets of images do not intersect each other, sky will be matched only within each
subset and the “inter-subset” sky mismatch could be significant.

Users are responsible for detecting such cases and adjusting processing accordingly.

• The 'global+match' algorithm combines the 'match' and 'global'methods in order to overcome the
limitation of the 'match' method described in the note above: it uses the 'global' algorithm to find a
baseline sky value common to all input images and the 'match' algorithm to “equalize” sky values in the
mosaic. Thus, the sky value of the “reference” image will be equal to the baseline sky value (instead of 0
in 'match' algorithm alone).

Remarks:
• match() works directly on geometrically distorted flat-fielded images thus avoiding the need to per-

form distortion correction on the input images.

Initially, the footprint of a chip in an image is approximated by a 2D planar rectangle representing
the borders of chip’s distorted image. After applying distortion model to this rectangle and projecting
it onto the celestial sphere, it is approximated by spherical polygons. Footprints of exposures and
mosaics are computed as unions of such spherical polygons while overlaps of image pairs are found
by intersecting these spherical polygons.

Limitations and Discussions:
Primary reason for introducing “sky match” algorithm was to try to equalize the sky in large mosaics in
which computation of the “absolute” sky is difficult due to the presence of large diffuse sources in the
image. As discussed above, match() accomplishes this by comparing “sky values” in a pair of images

15.1. Package Index 595

http://stsdas.stsci.edu/stsci_python_sphinxdocs_2.13/drizzlepac/astrodrizzle.html

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

in the overlap region (that is common to both images). Quite obviously the quality of sky “matching”
will depend on how well these “sky values” can be estimated. We use quotation marks around sky values
because for some image “true” background may not be present at all and the measured sky may be the
surface brightness of large galaxy, nebula, etc.

In the discussion below we will refer to parameter names in SkyStats and these parameter names may
differ from the parameters of the actual skystat object passed to initializer of the SkyImage.

Here is a brief list of possible limitations/factors that can affect the outcome of the matching (sky subtraction
in general) algorithm:

• Since sky subtraction is performed on flat-fielded but not distortion corrected images, it is important
to keep in mind that flat-fielding is performed to obtain uniform surface brightness and not flux. This
distinction is important for images that have not been distortion corrected. As a consequence, it is
advisable that point-like sources be masked through the user-supplied mask files. Values different from
zero in user-supplied masks indicate “good” data pixels. Alternatively, one can use upper parameter
to limit the use of bright objects in sky computations.

• Normally, distorted flat-fielded images contain cosmic rays. This algorithm does not perform CR
cleaning. A possible way of minimizing the effect of the cosmic rays on sky computations is to use
clipping (nclip > 0) and/or set upper parameter to a value larger than most of the sky background
(or extended source) but lower than the values of most CR pixels.

• In general, clipping is a good way of eliminating “bad” pixels: pixels affected by CR, hot/dead pixels,
etc. However, for images with complicated backgrounds (extended galaxies, nebulae, etc.), affected
by CR and noise, clipping process may mask different pixels in different images. If variations in the
background are too strong, clipping may converge to different sky values in different images even when
factoring in the “true” difference in the sky background between the two images.

• In general images can have different “true” background values (we could measure it if images were
not affected by large diffuse sources). However, arguments such as lower and upper will apply to all
images regardless of the intrinsic differences in sky levels.

skyimage

jwst.skymatch.skyimage Module

The skyimage module contains algorithms that are used by skymatch to manage all of the information for footprints
(image outlines) on the sky as well as perform useful operations on these outlines such as computing intersections and
statistics in the overlap regions.

Authors
Mihai Cara (contact: help@stsci.edu)

596 Chapter 15. Package Documentation

mailto:help@stsci.edu

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Classes

SkyImage(image, wcs_fwd, wcs_inv[, ...]) Container that holds information about properties of a
single image such as:

SkyGroup(images[, id, sky]) Holds multiple SkyImage objects whose sky back-
ground values must be adjusted together.

DataAccessor() Base class for all data accessors.
NDArrayInMemoryAccessor(data) Acessor for in-memory numpy.ndarray

(https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray)
data.

NDArrayMappedAccessor(data[, tmpfile, ...]) Data accessor for arrays stored in temporary files.

SkyImage

class jwst.skymatch.skyimage.SkyImage(image, wcs_fwd, wcs_inv, pix_area=1.0, convf=1.0, mask=None,
id=None, skystat=None, stepsize=None, meta=None,
reduce_memory_usage=True)

Bases: object (https://docs.python.org/3/library/functions.html#object)

Container that holds information about properties of a single image such as:

• image data;

• WCS of the chip image;

• bounding spherical polygon;

• id;

• pixel area;

• sky background value;

• sky statistics parameters;

• mask associated image data indicating “good” (1) data.

Initializes the SkyImage object.

Parameters
• image (numpy.ndarray (https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray),
NDArrayDataAccessor) – A 2D array of image data or a NDArrayDataAccessor.

• wcs_fwd (function) – “forward” pixel-to-world transformation function.

• wcs_inv (function) – “inverse” world-to-pixel transformation function.

• pix_area (float (https://docs.python.org/3/library/functions.html#float), optional) –
Average pixel’s sky area.

• convf (float (https://docs.python.org/3/library/functions.html#float), optional) – Con-
version factor that when multiplied to image data converts the data to “uniform” (across
multiple images) surface brightness units.

Note: The functionality to support this conversion is not yet implemented and at this mo-
ment convf is ignored.

15.1. Package Index 597

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#object
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• mask (numpy.ndarray (https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray),
NDArrayDataAccessor) – A 2D array or NDArrayDataAccessor of a 2D array that
indicates which pixels in the input image should be used for sky computations (1) and
which pixels should not be used for sky computations (0).

• id (anything) – The value of this parameter is simple stored within the SkyImage object.
While it can be of any type, it is preferable that id be of a type with nice string representation.

• skystat (callable, None, optional) – A callable ob-
ject that takes a either a 2D image (2D numpy.ndarray
(https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray))
or a list of pixel values (a Nx1 array) and returns a tuple of two values: some statistics (e.g.,
mean, median, etc.) and number of pixels/values from the input image used in computing
that statistics.

When skystat is not set, SkyImage will use SkyStats object to perform sky statistics on
image data.

• stepsize (int (https://docs.python.org/3/library/functions.html#int), None, optional)
– Spacing between vertices of the image’s bounding polygon. Default value of None
(https://docs.python.org/3/library/constants.html#None) creates bounding polygons with
four vertices corresponding to the corners of the image.

• meta (dict (https://docs.python.org/3/library/stdtypes.html#dict), None, optional) – A
dictionary of various items to be stored within the SkyImage object.

• reduce_memory_usage (bool (https://docs.python.org/3/library/functions.html#bool),
optional) – Indicates whether to attempt to minimize mem-
ory usage by attaching input image and/or mask numpy.ndarray
(https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray)
arrays to file-mapped accessor. This has no effect when input parameters image and/or
mask are already of NDArrayDataAccessor objects.

598 Chapter 15. Package Documentation

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

id Set or get SkyImage's id .
image Set or get SkyImage's image data array.
image_shape Get SkyImage's image data shape.
is_sky_valid Indicates whether sky value was successfully com-

puted.
mask Set or get SkyImage's mask data array or None

(https://docs.python.org/3/library/constants.html#None).
pix_area Set or get mean pixel area.
poly_area Get bounding polygon area in srad units.
polygon Get image's bounding polygon.
radec Get RA and DEC of the vertices of

the bounding polygon as a ndarray
(https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray)
of shape (N, 2) where N is the number of vertices +
1.

sky Sky background value.
skystat Stores/retrieves a callable object that takes

a either a 2D image (2D numpy.ndarray
(https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray))
or a list of pixel values (a Nx1 array) and returns
a tuple of two values: some statistics (e.g., mean,
median, etc.) and number of pixels/values from the
input image used in computing that statistics.

Methods Summary

calc_bounding_polygon([stepsize]) Compute image's bounding polygon.
calc_sky([overlap, delta]) Compute sky background value.
copy() Return a shallow copy of the SkyImage object.
intersection(skyimage) Compute intersection of this SkyImage ob-

ject and another SkyImage, SkyGroup, or
SphericalPolygon object.

set_builtin_skystat([skystat, lower, upper, ...]) Replace already set skystat with a "built-in" ver-
sion of a statistics callable object used to measure sky
background.

Attributes Documentation

id

Set or get SkyImage’s id .

While id can be of any type, it is preferable that id be of a type with nice string representation.

image

Set or get SkyImage’s image data array.

image_shape

Get SkyImage’s image data shape.

15.1. Package Index 599

https://docs.python.org/3/library/constants.html#None
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

is_sky_valid

Indicates whether sky value was successfully computed. Must be set externally.

mask

Set or get SkyImage’s mask data array or None (https://docs.python.org/3/library/constants.html#None).

pix_area

Set or get mean pixel area.

poly_area

Get bounding polygon area in srad units.

polygon

Get image’s bounding polygon.

radec

Get RA and DEC of the vertices of the bounding polygon as a ndarray
(https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray) of shape (N, 2)
where N is the number of vertices + 1.

sky

Sky background value. See calc_sky for more details.

skystat

Stores/retrieves a callable object that takes a either a 2D image (2D numpy.ndarray
(https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray)) or a list of pixel
values (a Nx1 array) and returns a tuple of two values: some statistics (e.g., mean, median, etc.) and
number of pixels/values from the input image used in computing that statistics.

When skystat is not set, SkyImage will use SkyStats object to perform sky statistics on image data.

Methods Documentation

calc_bounding_polygon(stepsize=None)
Compute image’s bounding polygon.

Parameters
stepsize (int (https://docs.python.org/3/library/functions.html#int), None, optional)
– Indicates the maximum separation between two adjacent vertices of the bounding polygon
along each side of the image. Corners of the image are included automatically. If stepsize
is None (https://docs.python.org/3/library/constants.html#None), bounding polygon will con-
tain only vertices of the image.

calc_sky(overlap=None, delta=True)
Compute sky background value.

Parameters
• overlap (SkyImage, SkyGroup, SphericalPolygon, list

(https://docs.python.org/3/library/stdtypes.html#list) of tuples, None,
optional) – Another SkyImage, SkyGroup, spherical_geometry.polygons.
SphericalPolygon, or a list of tuples of (RA, DEC) of vertices of a spherical polygon.
This parameter is used to indicate that sky statistics should computed only in the region of
intersection of this image with the polygon indicated by overlap. When overlap is None
(https://docs.python.org/3/library/constants.html#None), sky statistics will be computed
over the entire image.

600 Chapter 15. Package Documentation

https://docs.python.org/3/library/constants.html#None
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• delta (bool (https://docs.python.org/3/library/functions.html#bool), optional) –
Should this function return absolute sky value or the difference between the computed
value and the value of the sky stored in the sky property.

Returns
• skyval (float, None) – Computed sky value (absolute or relative to the sky attribute).

If there are no valid data to perform this computations (e.g., because this image
does not overlap with the image indicated by overlap), skyval will be set to None
(https://docs.python.org/3/library/constants.html#None).

• npix (int) – Number of pixels used to compute sky statistics.

• polyarea (float) – Area (in srad) of the polygon that bounds data used to compute sky
statistics.

copy()

Return a shallow copy of the SkyImage object.

intersection(skyimage)
Compute intersection of this SkyImage object and another SkyImage, SkyGroup, or SphericalPolygon
object.

Parameters
skyimage (SkyImage, SkyGroup, SphericalPolygon) – Another object that should be
intersected with this SkyImage.

Returns
polygon – A SphericalPolygon that is the intersection of this SkyImage and skyimage.

Return type
SphericalPolygon

set_builtin_skystat(skystat='median', lower=None, upper=None, nclip=5, lsigma=4.0, usigma=4.0,
binwidth=0.1)

Replace already set skystat with a “built-in” version of a statistics callable object used to measure sky
background.

See SkyStats for the parameter description.

SkyGroup

class jwst.skymatch.skyimage.SkyGroup(images, id=None, sky=0.0)
Bases: object (https://docs.python.org/3/library/functions.html#object)

Holds multiple SkyImage objects whose sky background values must be adjusted together.

SkyGroup provides methods for obtaining bounding polygon of the group of SkyImage objects and to compute
sky value of the group.

15.1. Package Index 601

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

id Set or get SkyImage's id .
polygon Get image's bounding polygon.
radec Get RA and DEC of the vertices of

the bounding polygon as a ndarray
(https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray)
of shape (N, 2) where N is the number of vertices +
1.

sky Sky background value.

Methods Summary

append(value) Appends a SkyImage to the group.
calc_sky([overlap, delta]) Compute sky background value.
insert(idx, value) Inserts a SkyImage into the group.
intersection(skyimage) Compute intersection of this SkyImage ob-

ject and another SkyImage, SkyGroup, or
SphericalPolygon object.

Attributes Documentation

id

Set or get SkyImage’s id .

While id can be of any type, it is preferable that id be of a type with nice string representation.

polygon

Get image’s bounding polygon.

radec

Get RA and DEC of the vertices of the bounding polygon as a ndarray
(https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray) of shape (N, 2)
where N is the number of vertices + 1.

sky

Sky background value. See calc_sky for more details.

Methods Documentation

append(value)
Appends a SkyImage to the group.

calc_sky(overlap=None, delta=True)
Compute sky background value.

Parameters
• overlap (SkyImage, SkyGroup, SphericalPolygon, list

(https://docs.python.org/3/library/stdtypes.html#list) of tuples, None,

602 Chapter 15. Package Documentation

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

optional) – Another SkyImage, SkyGroup, spherical_geometry.polygons.
SphericalPolygon, or a list of tuples of (RA, DEC) of vertices of a spherical polygon.
This parameter is used to indicate that sky statistics should computed only in the region of
intersection of this image with the polygon indicated by overlap. When overlap is None
(https://docs.python.org/3/library/constants.html#None), sky statistics will be computed
over the entire image.

• delta (bool (https://docs.python.org/3/library/functions.html#bool), optional) –
Should this function return absolute sky value or the difference between the computed
value and the value of the sky stored in the sky property.

Returns
• skyval (float, None) – Computed sky value (absolute or relative to the sky attribute).

If there are no valid data to perform this computations (e.g., because this image
does not overlap with the image indicated by overlap), skyval will be set to None
(https://docs.python.org/3/library/constants.html#None).

• npix (int) – Number of pixels used to compute sky statistics.

• polyarea (float) – Area (in srad) of the polygon that bounds data used to compute sky
statistics.

insert(idx, value)
Inserts a SkyImage into the group.

intersection(skyimage)
Compute intersection of this SkyImage object and another SkyImage, SkyGroup, or SphericalPolygon
object.

Parameters
skyimage (SkyImage, SkyGroup, SphericalPolygon) – Another object that should be
intersected with this SkyImage.

Returns
intersect_poly – A SphericalPolygon that is the intersection of this SkyImage and
skyimage.

Return type
SphericalPolygon

DataAccessor

class jwst.skymatch.skyimage.DataAccessor

Bases: ABC (https://docs.python.org/3/library/abc.html#abc.ABC)

Base class for all data accessors. Provides a common interface to access data.

15.1. Package Index 603

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/abc.html#abc.ABC

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

get_data()

get_data_shape()

set_data(data) Sets data.

Methods Documentation

abstract get_data()

abstract get_data_shape()

abstract set_data(data)
Sets data.

Parameters
data (numpy.ndarray (https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray))
– Data array to be set.

NDArrayInMemoryAccessor

class jwst.skymatch.skyimage.NDArrayInMemoryAccessor(data)
Bases: DataAccessor

Acessor for in-memory numpy.ndarray (https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray)
data.

Methods Summary

get_data()

get_data_shape()

set_data(data) Sets data.

Methods Documentation

get_data()

get_data_shape()

set_data(data)
Sets data.

Parameters
data (numpy.ndarray (https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray))
– Data array to be set.

604 Chapter 15. Package Documentation

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NDArrayMappedAccessor

class jwst.skymatch.skyimage.NDArrayMappedAccessor(data, tmpfile=None, prefix='tmp_skymatch_',
suffix='.npy', tmpdir='')

Bases: DataAccessor

Data accessor for arrays stored in temporary files.

Methods Summary

get_data()

get_data_shape()

set_data(data) Sets data.

Methods Documentation

get_data()

get_data_shape()

set_data(data)
Sets data.

Parameters
data (numpy.ndarray (https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray))
– Data array to be set.

Class Inheritance Diagram

ABC DataAccessor

NDArrayInMemoryAccessor

NDArrayMappedAccessor

SkyGroup

SkyImage

15.1. Package Index 605

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

skystatistics

The skystatistics module contains various statistical functions used by skymatch.

jwst.skymatch.skystatistics Module

skystatistics module provides statistics computation class used by match() and SkyImage.

Authors
Mihai Cara (contact: help@stsci.edu)

Classes

SkyStats([skystat, lower, upper, nclip, ...]) This is a superclass build on top of stsci.
imagestats.ImageStats.

SkyStats

class jwst.skymatch.skystatistics.SkyStats(skystat='mean', lower=None, upper=None, nclip=5,
lsig=4.0, usig=4.0, binwidth=0.1, **kwargs)

Bases: object (https://docs.python.org/3/library/functions.html#object)

This is a superclass build on top of stsci.imagestats.ImageStats. Compared to stsci.imagestats.
ImageStats, SkyStats has “persistent settings” in the sense that object’s parameters need to be set once and
these settings will be applied to all subsequent computations on different data.

Initializes the SkyStats object.

Parameters
• skystat ({'mode', 'median', 'mode', 'midpt'}, optional) – Sets the statistics that

will be returned by calc_sky. The following statistics are supported: ‘mean’,
‘mode’, ‘midpt’, and ‘median’. First three statistics have the same meaning as in sts-
das.toolbox.imgtools.gstatistics (http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?gstatistics) while
‘median’ will compute the median of the distribution.

• lower (float (https://docs.python.org/3/library/functions.html#float), None,
optional) – Lower limit of usable pixel values for computing the sky. This value
should be specified in the units of the input image(s).

• upper (float (https://docs.python.org/3/library/functions.html#float), None,
optional) – Upper limit of usable pixel values for computing the sky. This value
should be specified in the units of the input image(s).

• nclip (int (https://docs.python.org/3/library/functions.html#int), optional) – A non-
negative number of clipping iterations to use when computing the sky value.

• lsig (float (https://docs.python.org/3/library/functions.html#float), optional) – Lower
clipping limit, in sigma, used when computing the sky value.

• usig (float (https://docs.python.org/3/library/functions.html#float), optional) – Upper
clipping limit, in sigma, used when computing the sky value.

606 Chapter 15. Package Documentation

mailto:help@stsci.edu
https://docs.python.org/3/library/functions.html#object
http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?gstatistics
http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?gstatistics
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• binwidth (float (https://docs.python.org/3/library/functions.html#float), optional) –
Bin width, in sigma, used to sample the distribution of pixel brightness values in order to
compute the sky background statistics.

• kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – A dictionary of op-
tional arguments to be passed to ImageStats.

Methods Summary

__call__(data) Call self as a function.
calc_sky(data) Computes statistics on data.

Methods Documentation

__call__(data)
Call self as a function.

calc_sky(data)
Computes statistics on data.

Parameters
data (numpy.ndarray (https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray))
– A numpy array of values for which the statistics needs to be computed.

Returns
statistics – A tuple of two values: (skyvalue, npix), where skyvalue is the statistics spec-
ified by the skystat parameter during the initialization of the SkyStats object and npix is
the number of pixels used in computing the statistics reported in skyvalue.

Return type
tuple (https://docs.python.org/3/library/stdtypes.html#tuple)

Class Inheritance Diagram

SkyStats

15.1. Package Index 607

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

region

The region module provides a polygon filling algorithm used by skymatch to create data masks.

jwst.skymatch.region Module

Polygon filling algorithm.

Classes

Region(rid, coordinate_system) Base class for regions.
Edge([name, start, stop, next]) Edge representation
Polygon(rid, vertices[, coord_system]) Represents a 2D polygon region with multiple vertices

Region

class jwst.skymatch.region.Region(rid, coordinate_system)

Bases: object (https://docs.python.org/3/library/functions.html#object)

Base class for regions.

Parameters
• rid (int (https://docs.python.org/3/library/functions.html#int) or string) – region ID

• coordinate_system (astropy.wcs.CoordinateSystem instance or a string) –
in the context of WCS this would be an instance of wcs.CoordinateSysem

Methods Summary

scan(mask) Sets mask values to region id for all pixels within the
region.

Methods Documentation

scan(mask)
Sets mask values to region id for all pixels within the region. Subclasses must define this method.

Parameters
mask (ndarray) – a byte array with the shape of the observation to be used as a mask

Returns
mask – pixels which are not included in any region).

Return type
array where the value of the elements is the region ID or 0 (for

608 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Edge

class jwst.skymatch.region.Edge(name=None, start=None, stop=None, next=None)
Bases: object (https://docs.python.org/3/library/functions.html#object)

Edge representation

An edge has a “start” and “stop” (x,y) vertices and an entry in the GET table of a polygon. The GET entry is a
list of these values:

[ymax, x_at_ymin, delta_x/delta_y]

Attributes Summary

next

start

stop

ymax

ymin

Methods Summary

compute_AET_entry(edge) Compute the entry for an edge in the current Active
Edge Table

compute_GET_entry() Compute the entry in the Global Edge Table
intersection(edge)

is_parallel(edge)

Attributes Documentation

next

start

stop

ymax

ymin

15.1. Package Index 609

https://docs.python.org/3/library/functions.html#object

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

compute_AET_entry(edge)
Compute the entry for an edge in the current Active Edge Table

[ymax, x_intersect, 1/m] note: currently 1/m is not used

compute_GET_entry()

Compute the entry in the Global Edge Table

[ymax, x@ymin, 1/m]

intersection(edge)

is_parallel(edge)

Polygon

class jwst.skymatch.region.Polygon(rid, vertices, coord_system='Cartesian')
Bases: Region

Represents a 2D polygon region with multiple vertices

Parameters
• rid (string) – polygon id

• vertices (list (https://docs.python.org/3/library/stdtypes.html#list) of (x,y)
tuples or lists) – The list is ordered in such a way that when traversed in a
counterclockwise direction, the enclosed area is the polygon. The last vertex must coincide
with the first vertex, minimum 4 vertices are needed to define a triangle

• coord_system (string) – coordinate system

Methods Summary

get_edges() Create a list of Edge objects from vertices
scan(data) This is the main function which scans the polygon and

creates the mask
update_AET(y, AET) Update the Active Edge Table (AET)

Methods Documentation

get_edges()

Create a list of Edge objects from vertices

scan(data)
This is the main function which scans the polygon and creates the mask

Parameters
• data (array) – the mask array it has all zeros initially, elements within a region are set to

the region’s ID

• Algorithm –

610 Chapter 15. Package Documentation

mailto:x@ymin
https://docs.python.org/3/library/stdtypes.html#list

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• (GET) (- Set the Global Edge Table) –

• GET (- Set y to be the smallest y coordinate that has an entry in) –

• empty (- Initialize the Active Edge Table (AET) to be) –

• line (- For each scan) –

1. Add edges from GET to AET for which ymin==y

2. Remove edges from AET fro which ymax==y

3. Compute the intersection of the current scan line with all edges in the AET

4. Sort on X of intersection point

5. Set elements between pairs of X in the AET to the Edge’s ID

update_AET(y, AET)
Update the Active Edge Table (AET)

Add edges from GET to AET for which ymin of the edge is equal to the y of the scan line. Remove edges
from AET for which ymax of the edge is equal to y of the scan line.

Class Inheritance Diagram

Edge

PolygonRegion

jwst.skymatch Package

This package provides support for sky background subtraction and equalization (matching).

Classes

SkyMatchStep(*args, **kwargs) SkyMatchStep: Subtraction or equalization of sky back-
ground in science images.

15.1. Package Index 611

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

SkyMatchStep

class jwst.skymatch.SkyMatchStep(*args, **kwargs)
Bases: JwstStep

SkyMatchStep: Subtraction or equalization of sky background in science images.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'skymatch'

reference_file_types = []

spec

General sky matching parameters:
skymethod = option('local', 'global', 'match', 'global+match', default='match')
→˓# sky computation method
match_down = boolean(default=True) # adjust sky to lowest measured value?
subtract = boolean(default=False) # subtract computed sky from image data?

(continues on next page)

612 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

Image's bounding polygon parameters:
stepsize = integer(default=None) # Max vertex separation

Sky statistics parameters:
skystat = option('median', 'midpt', 'mean', 'mode', default='mode') # sky␣
→˓statistics
dqbits = string(default='~DO_NOT_USE+NON_SCIENCE') # "good" DQ bits
lower = float(default=None) # Lower limit of "good" pixel values
upper = float(default=None) # Upper limit of "good" pixel values
nclip = integer(min=0, default=5) # number of sky clipping iterations
lsigma = float(min=0.0, default=4.0) # Lower clipping limit, in sigma
usigma = float(min=0.0, default=4.0) # Upper clipping limit, in sigma
binwidth = float(min=0.0, default=0.1) # Bin width for 'mode' and 'midpt'␣
→˓`skystat`, in sigma

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep SkyMatchStepStep

15.1.55 Source Catalog

Description

Class
jwst.source_catalog.SourceCatalogStep

Alias
source_catalog

This step creates a catalog of source photometry and morphologies. Both aperture and isophotal (segment-based)
photometry are calculated. Source morphologies are based on 2D image moments within the source segment.

15.1. Package Index 613

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Source Detection

Sources are detected using image segmentation (https://en.wikipedia.org/wiki/Image_segmentation),
which is a process of assigning a label to every pixel in an image such that pixels with the same la-
bel are part of the same source. The segmentation procedure used is from Photutils source extraction
(https://photutils.readthedocs.io/en/latest/segmentation.html). Detected sources must have a minimum number
of connected pixels that are each greater than a specified threshold value in an image. The threshold level is usually
defined at some multiple of the background standard deviation above the background. The image can also be filtered
before thresholding to smooth the noise and maximize the detectability of objects with a shape similar to the filter
kernel.

Source Deblending

Overlapping sources are detected as single sources. Separating those sources requires a deblending procedure,
such as a multi-thresholding technique used by SExtractor (https://www.astromatic.net/software/sextractor). Here we
use the Photutils deblender (https://photutils.readthedocs.io/en/latest/segmentation.html#source-deblending), which
is an algorithm that deblends sources using a combination of multi-thresholding and watershed segmentation
(https://en.wikipedia.org/wiki/Watershed_(image_processing)). In order to deblend sources, they must be separated
enough such that there is a saddle between them.

Source Photometry and Properties

After detecting sources using image segmentation, we can measure their photometry, centroids, and morphological
properties. The aperture photometry is measured in three apertures, based on the input encircled energy values. The
total aperture-corrected flux and magnitudes are also calculated, based on the largest aperture. Both AB and Vega
magnitudes are calculated.

The isophotal photometry is based on photutils segmentation (https://photutils.readthedocs.org/en/latest/segmentation.html).
The properties that are currently calculated for each source include source centroids (both in pixel and sky coordinates),
isophotal fluxes (and errors), AB and Vega magnitudes (and errors), isophotal area, semimajor and semiminor axis
lengths, orientation of the major axis, and sky coordinates at corners of the minimal bounding box enclosing the
source.

Photometric errors are calculated from the resampled total-error array contained in the ERR (model.err) array. Note
that this total-error array includes source Poisson noise.

Output Products

Source Catalog Table

The output source catalog table is saved in ECSV format (https://docs.astropy.org/en/stable/io/ascii/ecsv.html).

The table contains a row for each source, with the following default columns (assuming the default encircled energies
of 30, 50, and 70):

Column Description
label Unique source identification label number
xcentroid X pixel value of the source centroid (0 indexed)
ycentroid Y pixel value of the source centroid (0 indexed)
sky_centroid Sky coordinate of the source centroid

continues on next page

614 Chapter 15. Package Documentation

https://en.wikipedia.org/wiki/Image_segmentation
https://photutils.readthedocs.io/en/latest/segmentation.html
https://www.astromatic.net/software/sextractor
https://photutils.readthedocs.io/en/latest/segmentation.html#source-deblending
https://en.wikipedia.org/wiki/Watershed_(image_processing)
https://photutils.readthedocs.org/en/latest/segmentation.html
https://docs.astropy.org/en/stable/io/ascii/ecsv.html

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Table 8 – continued from previous page
Column Description
aper_bkg_flux The local background value calculated as the sigma-clipped median value in the background annulus aperture
aper_bkg_flux_err The standard error of the sigma-clipped median background value
aper30_flux Flux within the 30% encircled energy circular aperture
aper30_flux_err Flux error within the 30% encircled energy circular aperture
aper50_flux Flux within the 50% encircled energy circular aperture
aper50_flux_err Flux error within the 50% encircled energy circular aperture
aper70_flux Flux within the 70% encircled energy circular aperture
aper70_flux_err Flux error within the 70% encircled energy circular aperture
aper_total_flux Total aperture-corrected flux based on the 70% encircled energy circular aperture; should be used only for unresolved sources
aper_total_flux_err Total aperture-corrected flux error based on the 70% encircled energy circular aperture; should be used only for unresolved sources
aper30_abmag AB magnitude within the 30% encircled energy circular aperture
aper30_abmag_err AB magnitude error within the 30% encircled energy circular aperture
aper50_abmag AB magnitude within the 50% encircled energy circular aperture
aper50_abmag_err AB magnitude error within the 50% encircled energy circular aperture
aper70_abmag AB magnitude within the 70% encircled energy circular aperture
aper70_abmag_err AB magnitude error within the 70% encircled energy circular aperture
aper_total_abmag Total aperture-corrected AB magnitude based on the 70% encircled energy circular aperture; should be used only for unresolved sources
aper_total_abmag_err Total aperture-corrected AB magnitude error based on the 70% encircled energy circular aperture; should be used only for unresolved sources
aper30_vegamag Vega magnitude within the 30% encircled energy circular aperture
aper30_vegamag_err Vega magnitude error within the 30% encircled energy circular aperture
aper50_vegamag Vega magnitude within the 50% encircled energy circular aperture
aper50_vegamag_err Vega magnitude error within the 50% encircled energy circular aperture
aper70_vegamag Vega magnitude within the 70% encircled energy circular aperture
aper70_vegamag_err Vega magnitude error within the 70% encircled energy circular aperture
aper_total_vegamag Total aperture-corrected Vega magnitude based on the 70% encircled energy circular aperture; should be used only for unresolved sources
aper_total_vegamag_err Total aperture-corrected Vega magnitude error based on the 70% encircled energy circular aperture; should be used only for unresolved sources
CI_50_30 Concentration index calculated as (aper50_flux / aper30_flux)
CI_70_50 Concentration index calculated as (aper70_flux / aper50_flux)
CI_70_30 Concentration index calculated as (aper70_flux / aper30_flux)
is_extended Flag indicating whether the source is extended
sharpness The DAOFind source sharpness statistic
roundness The DAOFind source roundness statistic
nn_label The label number of the nearest neighbor
nn_dist The distance in pixels to the nearest neighbor
isophotal_flux Isophotal flux
isophotal_flux_err Isophotal flux error
isophotal_abmag Isophotal AB magnitude
isophotal_abmag_err Isophotal AB magnitude error
isophotal_vegamag Isophotal Vega magnitude
isophotal_vegamag_err Isophotal Vega magnitude error
isophotal_area Isophotal area
semimajor_sigma 1-sigma standard deviation along the semimajor axis of the 2D Gaussian function that has the same second-order central moments as the source
semiminor_sigma 1-sigma standard deviation along the semiminor axis of the 2D Gaussian function that has the same second-order central moments as the source
ellipticity 1 minus the ratio of the 1-sigma lengths of the semimajor and semiminor axes
orientation The angle (degrees) between the positive X axis and the major axis (increases counter-clockwise)
sky_orientation The position angle (degrees) from North of the major axis
sky_bbox_ll Sky coordinate of the lower-left vertex of the minimal bounding box of the source
sky_bbox_ul Sky coordinate of the upper-left vertex of the minimal bounding box of the source
sky_bbox_lr Sky coordinate of the lower-right vertex of the minimal bounding box of the source
sky_bbox_ur Sky coordinate of the upper-right vertex of the minimal bounding box of the source

15.1. Package Index 615

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Note that pixel coordinates are 0 indexed, matching the Python 0-based indexing. That means pixel coordinate 0 is the
center of the first pixel.

Segmentation Map

The segmentation map computed during the source finding process is saved to a single 2D image extension in a FITS
file. Each image pixel contains an integer value corresponding to a source label number in the source catalog product.
Pixels that don’t belong to any source have a value of zero.

Arguments

The source_catalog step uses the following user-settable arguments:

• --bkg_boxsize: An integer value giving the background mesh box size in pixels

• --kernel_fwhm: A floating-point value giving the Gaussian kernel FWHM in pixels

• --snr_threshold: A floating-point value that sets the SNR threshold (above background) for source detection

• --npixels: An integer value that sets the minimum number of pixels in a source

• --deblend: A boolean indicating whether to deblend sources

• --aperture_ee1: An integer value of the smallest aperture encircled energy value

• --aperture_ee2: An integer value of the middle aperture encircled energy value

• --aperture_ee3: An integer value of the largest aperture encircled energy value

• --ci1_star_threshold: A floating-point value of the threshold compared to the concentration index calcu-
lated from aperture_ee1 and aperture_ee2 that is used to determine whether a source is a star. Sources must meet
the criteria of both ci1_star_threshold and ci2_star_threshold to be considered a star.

• --ci2_star_threshold: A floating-point value of the threshold compared to the concentration index calcu-
lated from aperture_ee2 and aperture_ee3 that is used to determine whether a source is a star. Sources must meet
the criteria of both ci1_star_threshold and ci2_star_threshold to be considered a star.

• --suffix: A string value giving the file name suffix to use for the output catalog file [default=’cat’]

Reference File Types

The source_catalog step uses APCORR, ABVEGAOFFSET, and PARS-SOURCECATALOGSTEP reference files.

APCORR Reference File

REFTYPE
APCORR

The APCORR reference file contains data necessary for correcting extracted imaging and spectroscopic photometry to
the equivalent of an infinite aperture. It is used within the source_catalog step for imaging and within the extract_1d
step for spectroscopic data.

616 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference Selection Keywords for APCORR

CRDS selects appropriate APCORR references based on the following keywords. APCORR is not applicable for
instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
FGS INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
MIRI INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRCam INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRISS INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRSpec INSTRUME, EXP_TYPE, FILTER, GRATING, LAMP, OPMODE, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for APCORR

In addition to the standard reference file keywords listed above, the following keywords are required in APCORR
reference files, because they are used as CRDS selectors (see apcorr_selectors):

Keyword Data Model Name Instruments
EXP_TYPE model.meta.exposure.type All

15.1. Package Index 617

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NON-IFU APCORR Reference File Format

APCORR reference files for non-IFU data are in FITS format. The FITS APCORR reference file contains tabular data
in a BINTABLE extension with EXTNAME = ‘APCORR’. The FITS primary HDU does not contain a data array. The
contents of the table extension varies for different instrument modes, as shown in the tables below.

Data model
FgsImgApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.FgsImgApcorrModel.html#jwst.datamodels.FgsImgApcorrModel)

Instrument Mode Column name Data type Dimensions Units
FGS Image eefraction float scalar unitless

radius float scalar pixels
apcorr float scalar unitless
skyin float scalar pixels
skyout float scalar pixels

Data model
MirImgApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirImgApcorrModel.html#jwst.datamodels.MirImgApcorrModel)

Instrument Mode Column name Data type Dimensions Units
MIRI Image filter string 12 N/A

subarray string 15 N/A
eefraction float scalar unitless
radius float scalar pixels
apcorr float scalar unitless
skyin float scalar pixels
skyout float scalar pixels

Data model
MirLrsApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirLrsApcorrModel.html#jwst.datamodels.MirLrsApcorrModel)

Instrument Mode Column name Data type Dimensions Units
MIRI LRS subarray string 15 N/A

wavelength float 1D array micron
nelem_wl integer scalar N/A
size integer 1D array pixels
nelem_size integer scalar N/A
apcorr float 2D array unitless
apcorr_err float 2D array unitless

Data model
NrcImgApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrcImgApcorrModel.html#jwst.datamodels.NrcImgApcorrModel)

Instrument Mode Column name Data type Dimensions Units
NIRCam Image filter string 12 N/A

pupil string 15 N/A
eefraction float scalar unitless
radius float scalar pixels
apcorr float scalar unitless
skyin float scalar pixels
skyout float scalar pixels

618 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.FgsImgApcorrModel.html#jwst.datamodels.FgsImgApcorrModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirImgApcorrModel.html#jwst.datamodels.MirImgApcorrModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirLrsApcorrModel.html#jwst.datamodels.MirLrsApcorrModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrcImgApcorrModel.html#jwst.datamodels.NrcImgApcorrModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Data model
NrcWfssApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrcWfssApcorrModel.html#jwst.datamodels.NrcWfssApcorrModel)

Instrument Mode Column name Data type Dimensions Units
NIRCam WFSS filter string 12 N/A

pupil string 15 N/A
wavelength float 1D array micron
nelem_wl integer scalar N/A
size integer 1D array pixels
nelem_size integer scalar N/A
apcorr float 2D array unitless
apcorr_err float 2D array unitless

Data model
NisImgApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NisImgApcorrModel.html#jwst.datamodels.NisImgApcorrModel)

Instrument Mode Column name Data type Dimensions Units
NIRISS Image filter string 12 N/A

pupil string 15 N/A
eefraction float scalar unitless
radius float scalar pixels
apcorr float scalar unitless
skyin float scalar pixels
skyout float scalar pixels

Data model
NisWfssApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NisWfssApcorrModel.html#jwst.datamodels.NisWfssApcorrModel)

Instrument Mode Column name Data type Dimensions Units
NIRISS WFSS filter string 12 N/A

pupil string 15 N/A
wavelength float 1D array micron
nelem_wl integer scalar N/A
size integer 1D array pixels
nelem_size integer scalar N/A
apcorr float 2D array unitless
apcorr_err float 2D array unitless

Data model
NrsFsApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrsFsApcorrModel.html#jwst.datamodels.NrsFsApcorrModel)

15.1. Package Index 619

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrcWfssApcorrModel.html#jwst.datamodels.NrcWfssApcorrModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NisImgApcorrModel.html#jwst.datamodels.NisImgApcorrModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NisWfssApcorrModel.html#jwst.datamodels.NisWfssApcorrModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrsFsApcorrModel.html#jwst.datamodels.NrsFsApcorrModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Instrument Mode Column name Data type Dimensions Units
NIRSpec FS filter string 12 N/A

grating string 15 N/A
slit string 15 N/A
wavelength float 1D array micron
nelem_wl integer scalar N/A
size integer 2D array arcsec
nelem_size integer scalar N/A
pixphase float 1D array N/A
apcorr float 3D array unitless
apcorr_err float 3D array unitless

Data model
NrsMosApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrsMosApcorrModel.html#jwst.datamodels.NrsMosApcorrModel)

Instrument Mode Column name Data type Dimensions Units
NIRSpec MOS filter string 12 N/A

grating string 15 N/A
wavelength float 1D array micron
nelem_wl integer scalar N/A
size integer 2D array arcsec
nelem_size integer scalar N/A
pixphase float 1D array N/A
apcorr float 3D array unitless
apcorr_err float 3D array unitless

Row Selection

A row of data within the reference table is selected by the pipeline step based on the optical elements in use for the
exposure. The selection attributes are always contained in the first few columns of the table. The remaining columns
contain the data needed for the aperture correction. The row selection criteria for each instrument+mode are:

•FGS Image:
– None (table contains a single row)

•MIRI:
– Image: Filter and Subarray

– LRS: Subarray

•NIRCam:
– Image: Filter and Pupil

– WFSS: Filter and Pupil

•NIRISS:
– Image: Filter and Pupil

– WFSS: Filter and Pupil

•NIRSpec:
– MOS: Filter and Grating

620 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.NrsMosApcorrModel.html#jwst.datamodels.NrsMosApcorrModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

– Fixed Slits: Filter, Grating, and Slit name

Note: Spectroscopic mode reference files contain the “nelem_wl” and “nelem_size” entries, which indicate to the
pipeline step how many valid elements are contained in the “wavelength” and “size” arrays, respectively. Only the first
“nelem_wl” and “nelem_size” entries are read from each array.

IFU APCORR Reference File ASDF Format

For IFU data the APCORR reference files are in ASDF format. The aperture correction varies with wavelength and
the contents of the files are shown below. The radius, aperture correction and error are all 2D arrays. Currently the
2nd dimension does not add information, but in the future it could be used to provide different aperture corrections for
different radii.

Data model
MirMrsApcorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirMrsApcorrModel.html#jwst.datamodels.MirMrsApcorrModel)

Instrument Mode Column name Data type Dimensions Units
MIRI MRS wavelength float 1D array micron

radius float 2D array arcsec
apcorr float 2D array unitless
apcorr_err float 2D array unitless

Data model
NRSIFUApcorrModel

Instrument Mode Column name Data type Dimensions Units
NIRSpec MOS filter string 12 N/A

grating string 15 N/A
wavelength float 1D array micron
radius float 2D array arcsec
apcorr float 2D array unitless
apcorr_err float 2D array unitless

ABVEGAOFFSET Reference File

REFTYPE
ABVEGAOFFSET

Data model
ABVegaOffsetModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ABVegaOffsetModel.html#jwst.datamodels.ABVegaOffsetModel)

The ABVEGAOFFSET reference file contains data necessary for converting from AB to Vega magnitudes.

15.1. Package Index 621

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirMrsApcorrModel.html#jwst.datamodels.MirMrsApcorrModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ABVegaOffsetModel.html#jwst.datamodels.ABVegaOffsetModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference Selection Keywords for ABVEGAOFFSET

CRDS selects appropriate ABVEGAOFFSET references based on the following keywords. ABVEGAOFFSET is not
applicable for instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
FGS INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
MIRI INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRCam INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS
NIRISS INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

ABVEGAOFFSET Reference File Format

ABVEGAOFFSET reference files are in ASDF format. The ABVEGAOFFSET reference file contains tabular data in
a key called abvega_offset. The content of the table varies for different instrument modes, as shown in the tables
below.

Instrument Column name Data type Dimensions Units
FGS detector string 7 N/A

abvega_offset float scalar unitless

Instrument Column name Data type Dimensions Units
MIRI filter string 12 N/A

abvega_offset float scalar unitless

622 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Instrument Column name Data type Dimensions Units
NIRCam or NIRISS filter string 12 N/A

pupil string 15 N/A
abvega_offset float scalar unitless

Row Selection

A row of data within the reference table is selected by the pipeline step based on the optical elements in use for the
exposure. The selection attributes are always contained in the first few columns of the table. The last column contains
the data needed to convert from AB to Vega magnitudes. The row selection criteria for each instrument/mode are:

•FGS:
– Detector

•MIRI:
– Filter

•NIRCam:
– Filter and Pupil

•NIRISS:
– Filter and Pupil

PARS-SOURCECATALOGSTEP Parameter Reference File

REFTYPE
PARS-SOURCECATALOGSTEP

Data model
N/A

Reference Selection Keywords

CRDS selects appropriate pars-sourcecatalogstep references based on the following keywords.

Instrument Keywords
FGS EXP_TYPE
MIRI EXP_TYPE, FILTER
NIRCAM EXP_TYPE, FILTER
NIRISS EXP_TYPE, FILTER

15.1. Package Index 623

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

jwst.source_catalog Package

Classes

SourceCatalogStep([name, parent, ...]) Create a final catalog of source photometry and mor-
phologies.

SourceCatalogStep

class jwst.source_catalog.SourceCatalogStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

Create a final catalog of source photometry and morphologies.

Parameters
input (str or ImageModel) – A FITS filename or an ImageModel of a drizzled image.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

624 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input_model) This is where real work happens.

Attributes Documentation

class_alias = 'source_catalog'

reference_file_types = ['apcorr', 'abvegaoffset']

spec

bkg_boxsize = integer(default=1000) # background mesh box size in pixels
kernel_fwhm = float(default=2.0) # Gaussian kernel FWHM in pixels
snr_threshold = float(default=3.0) # SNR threshold above the bkg
npixels = integer(default=25) # min number of pixels in source
deblend = boolean(default=False) # deblend sources?
aperture_ee1 = integer(default=30) # aperture encircled energy 1
aperture_ee2 = integer(default=50) # aperture encircled energy 2
aperture_ee3 = integer(default=70) # aperture encircled energy 3
ci1_star_threshold = float(default=2.0) # CI 1 star threshold
ci2_star_threshold = float(default=1.8) # CI 2 star threshold
suffix = string(default='cat') # Default suffix for output files

Methods Documentation

process(input_model)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

15.1. Package Index 625

https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Class Inheritance Diagram

JwstStep SourceCatalogStepStep

15.1.56 Spectral Leak

Description

Class
jwst.spectral_leak.SpectralLeakStep

Alias
spectral_leak

The MIRI MRS filters are designed to keep out-of-band light from interfering with the desired first order wavelengths
dispersed in a given band. However, around 12.2 µm (channel 3A) a few-percent spectral leak admits second-order
light from 6 µm (channel 1B) into the bandpass. This results in spectra produced by the pipeline containing additional
flux around 12.2 µm that is only proportional to the object flux at 6 µm.

Applying the optimal spectral leak correction to MIRI MRS data in the calwebb_spec3 pipeline corrects for this feature
in extracted channel 3A spectrum for a given target using the channel 1B spectrum of that target (if available). Note
that since the channel 1B FOV is smaller than that for Ch3A no such correction is possible in general for extended
sources that fill the entire FOV. An example of an uncorrected and corrected spectrum is given in the figure below for
a G dwarf star.

Figure: MRS spectral leak as seen in G Dwarf star. The red extracted spectrum does not have the spectral_leak step
applied, while the the black extracted spectrum has the spectral leak correction applied.

626 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Step Arguments

The spectral_leak correction has no step-specific arguments.

Reference Files

The spectral_leak step uses the MRSPTCORR reference file.

MRSPTCORR reference file

REFTYPE
MRSPTCORR

Data models
MirMrsPtCorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirMrsPtCorrModel.html#jwst.datamodels.MirMrsPtCorrModel)

The MRSPTCORR reference file contains parameter values used to subtract the MRS 12 micron spectral leak in the
spectral leak step. It also contains parameters to correct point sources, in future enhancements, for across-slice correc-
tions and throughput variations.

Reference Selection Keywords for MRSPTCORR

CRDS selects appropriate MRSPTCORR references based on the following keywords. MRSPTCORR is not applicable
for instruments not in the table.

Instrument Keywords
MIRI INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

15.1. Package Index 627

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirMrsPtCorrModel.html#jwst.datamodels.MirMrsPtCorrModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Type Specific Keywords for MRSPTCORR

In addition to the standard reference file keywords listed above, the following keywords are required in MRSPTCORR
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for MRSPTCORR):

Keyword Data Model Name
EXP_TYPE model.meta.exposure.type

MIRI Reference File Format

The MIRI MRSPTCORR reference files are FITS format, with 5 BINTABLE extensions. The FITS primary data array
is assumed to be empty. The format and content of the MIRI MRSPTCORR reference file

EXTNAME XTENSION Dimensions
LEAKCOR BINTABLE TFIELDS = 3
TRACOR BINTABLE TFIELDS = 7
WAVCORR_OPTICAL BINTABLE TFIELDS = 6
WAVCORR_XSLICE BINTABLE TFIELDS = 2
WAVCORR_SHIFT BINTABLE TFIELDS = 3

The formats of the individual table extensions are listed below.

Table Column Data type Units
LEAKCOR WAVELENGTH float micron

FRAC_LEAK float N/A
ERR_LEAK float N/A

TRACOR CHANNEL int N/A
WAVE_MIN float micron
WAVE_MAX float micron
T_WMIN_CENTRE float percent
T_WMIN_EDGE float percent
T_WMAX_CENTRE float percent
T_WMAX_EDGE float percent

WAVCORR_OPTICAL SUB_BAND string N/A
BETA_SLICE float arcsec
WAVE_MIN float micron
WAVE_MAX float micron
SRP_MIN float N/A
SRP_MAX float N/A

WAVCORR_XSLICE XSLICE_MIN float micron/arcsec
XSLICE_MAX float micron/arcsec

WAVCORR_SHIFT BETA_OFF float slice
DS_MIN float slice
DS_MAX float slice

This reference file contains the relative spectrophotometric response function for the MRS 12 micron spectral leak,
along with tables of across-slice wavelength and throughput variations for point sources in each of the MRS bands.
Currently, only the LEAKCOR table is use in the jwst pipeline.

628 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.spectral_leak.spectral_leak_step Module

Classes

SpectralLeakStep([name, parent, ...]) The MIRI MRS has a spectral leak in which 6 micron
light leaks into the 12 micron channel.

SpectralLeakStep

class jwst.spectral_leak.spectral_leak_step.SpectralLeakStep(name=None, parent=None,
config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

The MIRI MRS has a spectral leak in which 6 micron light leaks into the 12 micron channel. This step applies
a correction to the 12 micron channel.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

Methods Summary

process(input) Execute the step.

15.1. Package Index 629

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Documentation

class_alias = 'spectral_leak'

reference_file_types = ['mrsptcorr']

Methods Documentation

process(input)
Execute the step.

Parameters
input (container of models containing 1-D extracted spectra) –

Returns
The corrected data model. This will be “input” if the step is skipped, otherwise it will be a
corrected 1D extracted spectrum that contains the MRS channel 3B range.

Return type
JWST DataModel

Class Inheritance Diagram

JwstStep SpectralLeakStepStep

15.1.57 Source Type (SRCTYPE) Determination

Description

Class
jwst.srctype.SourceTypeStep

Alias
srctype

The Source Type (srctype) step in the calibration pipeline attempts to determine whether a spectroscopic source
should be considered to be a point or extended object, populating the “SRCTYPE” keyword with a value of either
“POINT” or “EXTENDED.” This information is then used in some subsequent spectroscopic processing steps to apply
source-dependent corrections.

630 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Single Source Observations

For JWST observing modes that use a single primary target (e.g. MIRI MRS and LRS spectroscopy and NIRSpec
IFU and Fixed-Slit spectroscopy), the observer has the option of designating a source type in the APT template for the
observation. They have the choice of declaring whether or not the source should be considered extended. If they don’t
know the character of the source, they can also choose a value of “UNKNOWN.” The observer’s choice is passed along
to DMS processing, which sets the value of the “SRCTYAPT” keyword in the primary header of the products used as
input to the calibration pipeline. If the user has selected a value in the APT, the “SRCTYAPT” keyword will be set to
“POINT”, “EXTENDED”, or “UNKNOWN.” If the selection is not available for a given observing mode or a choice
wasn’t made, the “SRCTYAPT” keyword will not appear in the uncalibrated product header.

The srctype step sets a value for the “SRCTYPE” keyword that is stored in the “SCI” extension header(s) of data
products. The step sets the value of “SRCTYPE” based on input from the user given in the “SRCTYAPT” keyword, as
well as other rules that can override the “SRCTYAPT” values.

The srctype step first checks to see if the “SRCTYAPT” keyword is present and has already been populated. If
“SRCTYAPT” is not present or is set to “UNKNOWN”, the step determines a suitable value based on the observing
mode, command line input, and other characteristics of the exposure. The following choices are used, in order of
priority:

1. The source type can be specified by the user on the command line. Exposure types for which
this is permitted contain a single pre-defined target, i.e. MIR_LRS-FIXEDSLIT, MIR_LRS-SLITLESS,
MIR_MRS,NRC_TSGRISM, NRS_FIXEDSLIT, NRS_BRIGHTOBJ, and NRS_IFU. Other EXP_TYPEs will
be ignored. For NRS_FIXEDSLIT exposures, a user-supplied value can replace the value for the target in the
primary slit only, while the other slits will retain their default settings of “EXTENDED” (which is appropriate
for sky background).

2. Background target exposures default to a source type of “EXTENDED.” Background exposures are identified by
the keyword “BKGDTARG” set to True.

3. TSO exposures default to a source type of “POINT.” TSO exposures are identified by
EXP_TYPE=”NRC_TSGRISM” or “NRS_BRIGHTOBJ”, or TSOVISIT=True.

4. Exposures that are part of a nodded dither pattern, which are assumed to only be used with point-like targets,
default to a source type of “POINT.” Nodded exposures are usually identified by the “PATTTYPE” keyword
either being set to a value of “POINT-SOURCE” or containing the sub-string “NOD” (NIRSpec IFU and Fixed
Slit). For MIRI MRS exposures the keyword “DITHOPFR” (DITHer pattern OPtimized FoR) is used instead of
“PATTTYPE”. If it has a value of “POINT-SOURCE”, the source type is set to “POINT”.

5. If none of the above conditions apply, and the user did not choose a value in the APT, the following table of
defaults is used, based on the “EXP_TYPE” keyword value:

EXP_TYPE Exposure Type SRCTYPE
MIR_LRS-FIXEDSLIT MIRI LRS fixed-slit POINT
MIR_LRS-SLITLESS MIRI LRS slitless POINT
MIR_MRS MIRI MRS (IFU) EXTENDED
NIS_SOSS NIRISS SOSS POINT
NRS_FIXEDSLIT NIRSpec fixed-slit POINT
NRS_BRIGHTOBJ NIRSpec bright object POINT
NRS_IFU NIRSpec IFU EXTENDED

If the EXP_TYPE value of the input image is not in the above list, SRCTYPE will be set to “UNKNOWN”.

NOTE: NIRSpec fixed-slit (EXP_TYPE=”NRS_FIXEDSLIT”) exposures are unique in that a single target is specified
in the APT, yet data for multiple slits can be contained within an exposure, depending on the size of the readout
used (e.g. SUBARRAY=”ALLSLITS”). For this observing mode, the source type selection resulting from the logic

15.1. Package Index 631

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

outlined above is used to populate the SRCTYPE keyword associated with the data for the primary slit instance in the
pipeline data products. The primary slit is determined from the value of the “FXD_SLIT” keyword. Any additional
slit instances contained within the data product will have their SRCTYPE value set to “EXTENDED”, as non-primary
slits are expected to contain background.

Multi-Source Observations

NIRSpec MOS

For NIRSpec MOS exposures (EXP_TYPE=”NRS_MSASPEC”), there are multiple sources per exposure and hence
a single user-selected parameter can’t be used in the APT, nor a single keyword in the science product, to record the
type of each source. For these exposures, a stellarity value can be supplied by the observer for each source used in the
MSA Planning Tool (MPT). The stellarity values are in turn passed from the MPT to the MSA metadata (_msa.fits) file
created by DMS and used in the calibration pipeline. The stellarity values from the MSA metadata file are loaded for
each source/slitlet by the assign_wcs step of the calwebb_spec2 pipeline and then evaluated by the srctype step to
determine whether each source should be treated as point or extended.

If the stellarity value for a given source in the MSA metadata is less than zero, the source type defaults to “POINT.”
If the stellarity value is between zero and 0.75, it is set to “EXTENDED”, and if the stellarity value is greater than
0.75, it is set to “POINT.” The resulting choice is stored in the “SRCTYPE” keyword located in the header of the SCI
extension associated with each slitlet.

In the future, reference files will be used to set more detailed threshold values for stellarity, based on the particular
filters, gratings, etc. of each exposure.

NIRCam and NIRISS WFSS

It is not possible to specify ahead of time the source types for spectra that may show up in a Wide-Field Slitless
Spectroscopy exposure. So for these modes the srctype step uses the value from the is_extended column of the
source catalog generated from the direct imaging taken with WFSS observations and uses that to set “POINT” or
“EXTENDED” for each extracted source.

Step Arguments

The Source Type step uses the following optional argument.

--source_type
A string that can be used to override the source_type that will be written to the SRCTYPE keyword. The allowed
values are POINT and EXTENDED.

Reference File

The Source Type step does not use any reference files.

632 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.srctype Package

Classes

SourceTypeStep([name, parent, config_file, ...]) SourceTypeStep: Selects and sets a source type based on
various inputs.

SourceTypeStep

class jwst.srctype.SourceTypeStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

SourceTypeStep: Selects and sets a source type based on various inputs. The source type is used in later cali-
brations to determine the appropriate methods to use. Input comes from either the SRCTYAPT keyword value,
which is populated from user info in the APT, or the NIRSpec MSA planning tool. The source type can be also
specified on the command line for exposures containing a single pre-defined target.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

spec

15.1. Package Index 633

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'srctype'

spec

source_type = option('POINT','EXTENDED', default=None) # user-supplied source␣
→˓type

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep SourceTypeStepStep

15.1.58 Stack PSF References

Description

Class
jwst.coron.StackRefsStep

Alias
stack_refs

The stack_refs step is one of the coronagraphic-specific steps in the coron sub-package and is part of Stage 3
calwebb_coron3 processing. It takes a list of reference PSF products and stacks all of the per-integration images
contained in each PSF product into a single 3D data cube. This operation prepares the PSF images for use by subsequent
steps in the calwebb_coron3 pipeline. The image data are simply copied and reformatted, without being modified in
any way.

634 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Arguments

The stack_refs step does not have any step-specific arguments.

Inputs

3D calibrated images

Data model
CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_calints

The inputs to the stack_refs step are multiple calibrated products for the PSF target, produced by the calwebb_image2
pipeline. Each input should be a 3D “_calints” product, containing a 3D stack of calibrated images for the multiple
integrations within each exposure.

It is assumed that the stack_refs step will be called from the calwebb_coron3 pipeline, which is given
an ASN file as input, specifying one or more PSF target exposures. The actual input passed to the
stack_refs step will be a ModelContainer created by the calwebb_coron3 pipeline, containing a CubeModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)
data model for each PSF “_calints” exposure listed in the ASN file. See calwebb_coron3 for more details on the
contents of the ASN file.

Outputs

3D PSF image stack

Data model
CubeModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel)

File suffix
_psfstack

The output of the stack_refs step will be a single 3D product containing a stack of all the PSF images from the
multiple input exposures. The size of the stack will be equal to the sum of the number of integration (NINTS) in
each input PSF exposure. The output file name is source-based, using the product name specified in the ASN file, e.g.
“jw86073-a3001_t001_nircam_f140m-maskbar_psfstack.fits.”

Reference Files

The stack_refs step does not use any reference files.

15.1. Package Index 635

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.CubeModel.html#jwst.datamodels.CubeModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.coron.stack_refs_step Module

Classes

StackRefsStep([name, parent, config_file, ...]) StackRefsStep: Stack multiple PSF reference exposures
into a single CubeModel, for use by subsequent corona-
graphic steps.

StackRefsStep

class jwst.coron.stack_refs_step.StackRefsStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

StackRefsStep: Stack multiple PSF reference exposures into a single CubeModel, for use by subsequent coron-
agraphic steps.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

spec

Methods Summary

process(input) This is where real work happens.

636 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Documentation

class_alias = 'stack_refs'

spec

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep StackRefsStepStep

15.1.59 STPIPE

For Users

Steps

Configuring a Step

This section describes how to instantiate a Step and set configuration parameters on it.

Steps can be configured by either:

• Writing a parameter file

• Instantiating the Step directly from Python

Running a Step from a parameter file

A parameter file contains one or more of a Step’s parameters. Any parameter not specified in the file will take its value
from the CRDS-retrieved parameter reference file or the defaults coded directly into the Step. Note that any parameter
specified on the command line overrides all other values.

The preferred format of parameter files is the ASDF Parameter Files format. Refer to the minimal example for a
complete description of the contents. The rest of this document will focus on the step parameters themselves.

Every parameter file must contain the key class, followed by the optional name followed by any parameters that are
specific to the step being run.

15.1. Package Index 637

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

class specifies the Python class to run. It should be a fully-qualified Python path to the class. Step classes can ship
with stpipe itself, they may be part of other Python packages, or they exist in freestanding modules alongside the con-
figuration file. For example, to use the SystemCall step included with stpipe, set class to stpipe.subprocess.
SystemCall. To use a class called Custom defined in a file mysteps.py in the same directory as the configuration
file, set class to mysteps.Custom.

name defines the name of the step. This is distinct from the class of the step, since the same class of Step may be
configured in different ways, and it is useful to be able to have a way of distinguishing between them. For example,
when Steps are combined into Pipelines, a Pipeline may use the same Step class multiple times, each with different
configuration parameters.

The parameters specific to the Step all reside under the key parameters. The set of accepted parameters is defined in
the Step’s spec member. The easiest way to get started on a parameter file is to call Step.export_config and then
edit the file that is created. This will generate an ASDF config file that includes every available parameter, which can
then be trimmed to the parameters that require customization.

Here is an example parameter file (do_cleanup.asdf) that runs the (imaginary) step stpipe.cleanup to clean up
an image.

#ASDF 1.0.0
#ASDF_STANDARD 1.3.0
%YAML 1.1
%TAG ! tag:stsci.edu:asdf/
--- !core/asdf-1.1.0
class: stpipe.cleanup
name: MyCleanup
parameters:
threshold: 42.0
scale: 0.01

...

Running a Step from the commandline

The strun command can be used to run Steps from the commandline.

The first argument may be either:

• The path to a parameter file

• A Python class

Additional parameters may be passed on the commandline. These parameters override any that are present in the
parameter file. Any extra positional parameters on the commandline are passed to the step’s process method. This will
often be input filenames.

For example, to use an existing parameter file from above, but override it so the threshold parameter is different:

$ strun do_cleanup.asdf input.fits --threshold=86

To display a list of the parameters that are accepted for a given Step class, pass the -h parameter, and the name of a
Step class or parameter file:

$ strun -h do_cleanup.asdf
usage: strun [--logcfg LOGCFG] cfg_file_or_class [-h] [--pre_hooks]

[--post_hooks] [--skip] [--scale] [--extname]

(continues on next page)

638 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

optional arguments:
-h, --help show this help message and exit
--logcfg LOGCFG The logging configuration file to load
--verbose, -v Turn on all logging messages
--debug When an exception occurs, invoke the Python debugger, pdb
--pre_hooks
--post_hooks
--skip Skip this step
--scale A scale factor
--threshold The threshold below which to apply cleanup
--output_file File to save the output to

Every step has an --output_file parameter. If one is not provided, the output filename is determined based on the
input file by appending the name of the step. For example, in this case, foo.fits is output to foo_cleanup.fits.

Finally, the parameters a Step actually ran with can be saved to a new parameter file using the --save-parameters
option. This file will have all the parameters, specific to the step, and the final values used.

Parameter Precedence

There are a number of places where the value of a parameter can be specified. The order of precedence, from most to
least significant, for parameter value assignment is as follows:

1. Value specified on the command-line: strun step.asdf --par=value_that_will_be_used

2. Value found in the user-specified parameter file

3. CRDS-retrieved parameter reference

4. Step-coded default, determined by the parameter definition Step.spec

For pipelines, if a pipeline parameter file specifies a value for a step in the pipeline, that takes precedence over any step-
specific value found, either from a step-specific parameter file or CRDS-retrieved step-specific parameter file. The full
order of precedence for a pipeline and its sub steps is as follows:

1. Value specified on the command-line: strun pipeline.asdf --steps.step.
par=value_that_will_be_used

2. Value found in the user-specified pipeline parameter file: strun pipeline.asdf

3. Value found in the parameter file specified in a pipeline parameter file

4. CRDS-retrieved parameter reference for the pipeline

5. CRDS-retrieved parameter reference for each sub-step

6. Pipeline-coded default for itself and all sub-steps

7. Step-coded default for each sub-step

15.1. Package Index 639

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Debugging

To output all logging output from the step, add the --verbose option to the commandline. (If more fine-grained
control over logging is required, see Logging).

To start the Python debugger if the step itself raises an exception, pass the --debug option to the commandline.

CRDS Retrieval of Step Parameters

In general, CRDS uses the input to a Step to determine which reference files to use. Nearly all JWST-related steps
take only a single input file. However, often times that input file is an association. Since step parameters are configured
only once per execution of a step or pipeline, only the first qualifying member, usually of type science is used.

Retrieval of Step parameters from CRDS can be completely disabled by using the --disable-crds-steppars
command-line switch, or setting the environment variable STPIPE_DISABLE_CRDS_STEPPARS to true.

Running a Step in Python

There are a number of methods to run a step within a Python interpreter, depending on how much control one needs.

Step.from_cmdline()

For individuals who are used to using the strun command, Step.from_cmdline is the most direct method of exe-
cuting a step or pipeline. The only argument is a list of strings, representing the command line arguments one would
have used for strun. The call signature is:

Step.from_cmdline([string,...])

For example, given the following command-line:

$ strun calwebb_detector1 jw00017001001_01101_00001_nrca1_uncal.fits
--steps.linearity.override_linearity='my_lin.fits'

the equivalent from_cmdline call would be:

from jwst.pipeline import Detector1Pipeline
Detector1Pipeline.from_cmdline(['jw00017001001_01101_00001_nrca1_uncal.fits',

'steps.linearity.override_linearity', 'my_lin.fits'])

call()

Class method Step.call is the slightly more programmatic, and preferred, method of executing a step or pipeline.
When using call, one gets the full configuration initialization, including CRDS parameter reference retrieval, that one
gets with the strun command or Step.from_cmdline method. The call signature is:

Step.call(input, config_file=None, **parameters)

The positional argument input is the data to be operated on, usually a string representing a file path or a DataModel The
optional keyword argument config_file is used to specify a local parameter file. The optional keyword argument
logcfg is used to specify a logging configuration file. Finally, the remaining optional keyword arguments are the
parameters that the particular step accepts. The method returns the result of the step. A basic example is:

640 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

from jwst.jump import JumpStep
output = JumpStep.call('jw00017001001_01101_00001_nrca1_uncal.fits')

makes a new instance of JumpStep and executes using the specified exposure file. JumpStep has a parameter
rejection_threshold. To use a different value than the default, the statement would be:

output = JumpStep.call('jw00017001001_01101_00001_nrca1_uncal.fits',
rejection_threshold=42.0)

If one wishes to use a parameter file, specify the path to it using the config_file argument:

output = JumpStep.call('jw00017001001_01101_00001_nrca1_uncal.fits',
config_file='my_jumpstep_config.asdf')

run()

The instance method Step.run() is the lowest-level method to executing a step or pipeline. Initialization and param-
eter settings are left up to the user. An example is:

from jwst.flatfield import FlatFieldStep

mystep = FlatFieldStep()
mystep.override_sflat = 'sflat.fits'
output = mystep.run(input)

input (https://docs.python.org/3/library/functions.html#input) in this case can be a fits file containing the appropriate
data, or the output of a previously run step/pipeline, which is an instance of a particular datamodel.

Unlike the call class method, there is no parameter initialization that occurs, either by a local parameter file or from
a CRDS-retrieved parameter reference file. Parameters can be set individually on the instance, as is shown above.
Parameters can also be specified as keyword arguments when instantiating the step. The previous example could be
re-written as:

from jwst.flatfield import FlatFieldStep

mystep = FlatFieldStep(override_sflat='sflat.fits')
output = mystep.run(input)

One can implement parameter reference file retrieval and use of a local parameter file as follows:

from stpipe import config_parser
from jwst.flatfield import FlatFieldStep

config = FlatFieldStep.get_config_from_reference(input)
local_config = config_parser.load_config_file('my_flatfield_config.asdf')
config_parser.merge_config(config, local_config)

flat_field_step = FlatFieldStep.from_config_section(config)
output = flat_field_step.run(input)

Using the .run() method is the same as calling the instance directly. They are equivalent:

15.1. Package Index 641

https://docs.python.org/3/library/functions.html#input

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

output = mystep(input)

Pipelines

It is important to note that a Pipeline is also a Step, so everything that applies to a Step in the For Users chapter also
applies to Pipelines.

Configuring a Pipeline

This section describes how to set parameters on the individual steps in a pipeline. To change the order of steps in a
pipeline, one must write a Pipeline subclass in Python. That is described in the Pipelines section of the developer
documentation.

Just as with Steps, Pipelines can by configured either by a parameter file or directly from Python.

From a parameter file

A Pipeline parameter file follows the same format as a Step parameter file: ASDF Parameter Files

Here is an example pipeline parameter file for the Image2Pipeline class:

#ASDF 1.0.0
#ASDF_STANDARD 1.5.0
%YAML 1.1
%TAG ! tag:stsci.edu:asdf/
--- !core/asdf-1.1.0
asdf_library: !core/software-1.0.0 {author: Space Telescope Science Institute, homepage:
→˓'http://github.com/spacetelescope/asdf',
name: asdf, version: 2.7.3}

class: jwst.pipeline.Image2Pipeline
name: Image2Pipeline
parameters:
save_bsub: false

steps:
- class: jwst.flatfield.flat_field_step.FlatFieldStep
name: flat_field
parameters:

skip = True
- class: jwst.resample.resample_step.ResampleStep
name: resample
parameters:
pixel_scale_ratio: 1.0
pixfrac: 1.0

Just like a Step, it must have name and class values. Here the class must refer to a subclass of stpipe.Pipeline.

Following name and class is the steps section. Under this section is a subsection for each step in the pipeline. The
easiest way to get started on a parameter file is to call Step.export_config and then edit the file that is created. This
will generate an ASDF config file that includes every available parameter, which can then be trimmed to the parameters
that require customization.

642 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

For each Step’s section, the parameters for that step may either be specified inline, or specified by referencing an external
parameter file just for that step. For example, a pipeline parameter file that contains:

steps:
- class: jwst.resample.resample_step.ResampleStep
name: resample
parameters:
pixel_scale_ratio: 1.0
pixfrac: 1.0

is equivalent to:

steps:
- class: jwst.resample.resample_step.ResampleStep
name: resample
parameters:

config_file = myresample.asdf

with the file myresample.asdf. in the same directory:

class: jwst.resample.resample_step.ResampleStep
name: resample
parameters:
pixel_scale_ratio: 1.0
pixfrac: 1.0

If both a config_file and additional parameters are specified, the config_file is loaded, and then the local param-
eters override them.

Any optional parameters for each Step may be omitted, in which case defaults will be used.

From Python

A pipeline may be configured from Python by passing a nested dictionary of parameters to the Pipeline’s constructor.
Each key is the name of a step, and the value is another dictionary containing parameters for that step. For example,
the following is the equivalent of the parameter file above:

from stpipe.pipeline import Image2Pipeline

steps = {
'resample': {'pixel_scale_ratio': 1.0, 'pixfrac': 1.0}

}

pipe = Image2Pipeline(steps=steps)

15.1. Package Index 643

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Running a Pipeline

From the commandline

The same strun script used to run Steps from the commandline can also run Pipelines.

The only wrinkle is that any parameters overridden from the commandline use dot notation to specify the parameter
name. For example, to override the pixfrac value on the resample step in the example above, one can do:

> strun stpipe.pipeline.Image2Pipeline --steps.resample.pixfrac=2.0

From Python

Once the pipeline has been configured (as above), just call the instance to run it.

pipe()

Caching details

The results of a Step are cached using Python pickles. This allows virtually most of the standard Python data types to
be cached. In addition, any FITS models that are the result of a step are saved as standalone FITS files to make them
more easily used by external tools. The filenames are based on the name of the substep within the pipeline.

Hooks

Each Step in a pipeline can also have pre- and post-hooks associated. Hooks themselves are Step instances, but there
are some conveniences provided to make them easier to specify in a parameter file.

Pre-hooks are run right before the Step. The inputs to the pre-hook are the same as the inputs to their parent Step.
Post-hooks are run right after the Step. The inputs to the post-hook are the return value(s) from the parent Step. The
return values are always passed as a list. If the return value from the parent Step is a single item, a list of this single
item is passed to the post hooks. This allows the post hooks to modify the return results, if necessary.

Hooks are specified using the pre_hooks and post_hooks parameters associated with each step. More than one
pre- or post-hook may be assigned, and they are run in the order they are given. There can also be pre_hooks and
post_hooks on the Pipeline as a whole (since a Pipeline is also a Step). Each of these parameters is a list of strings,
where each entry is one of:

• An external commandline application. The arguments can be accessed using {0}, {1} etc. (See stpipe.
subproc.SystemCall).

• A dot-separated path to a Python Step class.

• A dot-separated path to a Python function.

For example, here’s a post_hook that will display a FITS file in the ds9 FITS viewer the flat_field step has done
flat field correction on it:

steps:
- class: jwst.resample.resample_step.ResampleStep
name: resample
parameters:

post_hooks = "ds9 {0}",

644 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Logging

Log messages are emitted from each Step at different levels of importance. The levels used are the standard ones for
Python (from least important to most important:

1. DEBUG

2. INFO

3. WARNING

4. ERROR

5. CRITICAL

By default, only messages of type WARNING or higher are displayed. This can be controlled by providing a logging
configuration file.

Logging configuration

A logging configuration file can be provided to customize what is logged.

A logging configuration file is searched for in the following places. The first one found is used in its entirety and all
others are ignored:

1. The file specified with the --logcfg option to the strun script.

2. The file specified with the logcfg keyword to a .call() execution of a Step or Pipeline.

3. A file called stpipe-log.cfg in the current working directory.

4. ~/stpipe-log.cfg

5. /etc/stpipe-log.cfg

The logging configuration file is in the standard ini-file format.

Each section name is a Unix-style filename glob pattern used to match a particular Step’s logger. The settings in that
section apply only to that Steps that match that pattern. For example, to have the settings apply to all steps, create a
section called [*]. To have the settings apply only to a Step called MyStep, create a section called [*.MyStep]. To
apply settings to all Steps that are substeps of a step called MyStep, call the section [*.MyStep.*].

In each section, the following may be configured:

1. level: The level at and above which logging messages will be displayed. May be one of (from least important
to most important): DEBUG, INFO, WARNING, ERROR or CRITICAL.

2. break_level: The level at and above which logging messages will cause an exception to be raised. For instance,
if you would rather stop execution at the first ERROR message (rather than continue), set break_level to ERROR.

3. handler: Defines where log messages are to be sent. By default, they are sent to stderr. However, one may also
specify:

• file:filename.log to send the log messages to the given file.

• append:filename.log to append the log messages to the given file. This is useful over file if multiple
processes may need to write to the same log file.

• stdout to send log messages to stdout.

Multiple handlers may be specified by putting the whole value in quotes and separating the entries with a comma.

15.1. Package Index 645

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

4. format: Allows one to customize what each log message contains. What this string may contain is described in
the logging module LogRecord Attributes (https://docs.python.org/3/library/logging.html#logrecord-attributes)
section of the Python standard library.

Examples

The following configuration turns on all log messages and saves them in the file myrun.log:

[*]
level = INFO
handler = file:myrun.log

In a scenario where the user is debugging a particular Step, they may want to hide all logging messages except for that
Step, and stop when hitting any warning for that Step:

[*]
level = CRITICAL

[*.MyStep]
level = INFO
break_level = WARNING

ASDF Parameter Files

ASDF is the format of choice for parameter files. ASDF (https://asdf-standard.readthedocs.io/) stands for “Advanced
Scientific Data Format”, a general purpose, non-proprietary, and system-agnostic format for the dissemination of data.
Built on YAML (https://yaml.org/), the most basic file is text-based requiring minimal formatting.

ASDF replaces the original CFG format for step configuration. Using ASDF allows the configurations to be stored and
retrieved from CRDS, selecting the best parameter file for a given set of criteria, such as instrument and observation
mode.

To create a parameter file, the most direct way is to choose the Pipeline class, Step class, or already existing .asdf
or .cfg file, and run that step using the --save-parameters option. For example, to get the parameters for the
Spec2Pipeline pipeline, do the following:

$ strun jwst.pipeline.Spec2Pipeline jw00017001001_01101_00001_nrs1_uncal.fits --save-
→˓parameters my_spec2.asdf

Once created and modified as necessary, the file can now be used by strun to run the step/pipeline with the desired
parameters:

$ strun my_spec2.asdf jw00017001001_01101_00001_nrs1_uncal.fits

The remaining sections will describe the file format and contents.

646 Chapter 15. Package Documentation

https://docs.python.org/3/library/logging.html#logrecord-attributes
https://asdf-standard.readthedocs.io/
https://yaml.org/

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

File Contents

To describe the contents of an ASDF file, the configuration for the step CubeBuildStep will be used as the example:

#ASDF 1.0.0
#ASDF_STANDARD 1.5.0
%YAML 1.1
%TAG ! tag:stsci.edu:asdf/
--- !core/asdf-1.1.0
asdf_library: !core/software-1.0.0 {author: Space Telescope Science Institute, homepage:
→˓'http://github.com/spacetelescope/asdf',
name: asdf, version: 2.7.3}

history:
extensions:
- !core/extension_metadata-1.0.0
extension_class: asdf.extension.BuiltinExtension
software: !core/software-1.0.0 {name: asdf, version: 2.7.3}

class: jwst.cube_build.cube_build_step.CubeBuildStep
name: CubeBuildStep
parameters:
band: all
channel: all
coord_system: skyalign
filter: all
grating: all
input_dir: ''
output_ext: .fits
output_type: band
output_use_index: true
output_use_model: true
post_hooks: []
pre_hooks: []
rois: 0.0
roiw: 0.0
save_results: false
scale1: 0.0
scale2: 0.0
scalew: 0.0
search_output_file: false
single: false
skip: false
skip_dqflagging: false
weight_power: 2.0
weighting: emsm
...

15.1. Package Index 647

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Required Components

Preamble

The first 5 lines, up to and including the “—” line, define the file as an ASDF file. The rest of the file is formatted as
one would format YAML data. Being YAML, the last line, containing the three ... is essential.

class and name

There are two required keys at the top level: class and parameters. parameters is discussed below.

class specifies the Python class to run. It should be a fully-qualified Python path to the class. Step classes can ship
with stpipe itself, they may be part of other Python packages, or they exist in freestanding modules alongside the con-
figuration file. For example, to use the SystemCall step included with stpipe, set class to stpipe.subprocess.
SystemCall. To use a class called Custom defined in a file mysteps.py in the same directory as the configuration
file, set class to mysteps.Custom.

name defines the name of the step. This is distinct from the class of the step, since the same class of Step may be
configured in different ways, and it is useful to be able to have a way of distinguishing between them. For example,
when Steps are combined into Pipelines, a Pipeline may use the same Step class multiple times, each with different
configuration parameters.

Parameters

parameters contains all the parameters to pass onto the step. The order of the parameters does not matter. It is not
necessary to specify all parameters either. If not defined, the default, as defined in the code or values from CRDS
parameter references, will be used.

Formatting

YAML has two ways of formatting a list of key/value pairs. In the above example, each key/value pair is on separate
line. The other way is using a form that is similar to a Python dict. For example, the parameters block above could
also have been formatted as:

parameters: {band: all, channel: all, coord_system: world, filter: all,
grating: all, output_type: band, output_use_model: true, rois: 0.0,
roiw: 0.0, scale1: 0.0, scale2: 0.0, scalew: 0.0, search_output_file: false,
single: false, skip_dqflagging: false, weight_power: 2.0, weighting: msm}

Optional Components

The asdf_library and history blocks are necessary only when a parameter file is to be used as a parameter reference
file in CRDS. See Parameter Files as Reference Files below.

648 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Completeness

For any parameter file, it is not necessary to specify all step/pipeline parameters. Any parameter left unspecified will
get, at least, the default value define in the step’s code. If a parameter is defined without a default value, and the
parameter is never assigned a value, an error will be produced when the step is executed.

Remember that parameter values can come from numerous sources. Refer to Parameter Precedence for a full listing
of how parameters can be set.

From the CubeBuildStep example, if all that needed to change is the weight_power parameter with a setting of 4.0,
the parameters block need only contain the following:

parameters:
weight_power: 4.0

Pipeline Configuration

Pipelines are essentially steps that refer to sub-steps. As in the original cfg format, parameters for sub-steps can also
be specified. All sub-step parameters appear in a key called steps. Sub-step parameters are specified by using the
sub-step name as the key, then underneath and indented, the parameters to change for that sub-step. For example, to
define the weight_power of the cube_build step in a Spec2Pipeline parameter file, the parameter block would
look as follows:

class: jwst.pipeline.Spec2Pipeline
parameters: {}
steps:
- class: jwst.cube_build.cube_build_step.CubeBuildStep
parameters:
weight_power: 4.0

As with step parameter files, not all sub-steps need to be specified. If left unspecified, the sub-steps will be run with
their default parameter sets. For the example above, the other steps of Spec2Pipeline, such as assign_wcs and
photom would still be executed.

Similarly, to skip a particular step, one would specify skip: true for that substep. Continuing from the above
example, to skip the msa_flagging step, the parameter file would look like:

class: jwst.pipeline.Spec2Pipeline
parameters: {}
steps:
- class: jwst.msaflagopen.msaflagopen_step.MSAFlagOpenStep
parameters:
skip: true

- class: jwst.cube_build.cube_build_step.CubeBuildStep
parameters:
weight_power: 4.0

Note: In the previous examples, one may have noted the line parameters: {}. In neither example, and is a
common situation when defining pipeline configurations, there is no need to set any of the parameters for the pipeline
itself. However, the keyword parameters is required. As such, the value for parameters is defined as an empty
dictionary, {}.

15.1. Package Index 649

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Python API

There are a number of ways to create an ASDF parameter file. From the command line utility strun, the option
--save-parameters can be used.

Within a Python script, the method Step.export_config(filename: str) can be used. For example, to create a
parameter file for CubeBuildStep, use the following:

>>> from jwst.cube_build import CubeBuildStep
>>> step = CubeBuildStep()
>>> step.export_config('cube_build.asdf')

Parameter Files as Reference Files

ASDF-formatted parameter files are the basis for the parameter reference reftypes in CRDS. There are two more keys
that are needed to be added which CRDS requires: meta and history.

The direct way of creating a parameter reference file is through the Step.export_configmethod, just as one would to
get a basic parameter file. The only addition is the argument include_meta=True. For example, to get a reference-file
ready version of the CubeBuildStep, use the following Python code:

>>> from jwst.cube_build import CubeBuildStep
>>> step = CubeBuildStep()
>>> step.export_config('pars-cubebuildstep.asdf', include_meta=True)

The explanations for the meta and history blocks are given below.

META Block

When a parameter file is to be ingested into CRDS, there is another key required, meta, which defines the information
needed by CRDS parameter file selection. A basic reference parameter file will look as follows:

#ASDF 1.0.0
#ASDF_STANDARD 1.3.0
%YAML 1.1
%TAG ! tag:stsci.edu:asdf/
--- !core/asdf-1.1.0
history:
entries:
- !core/history_entry-1.0.0 {description: Base values, time: !!timestamp '2019-10-29

21:20:50'}
extensions:
- !core/extension_metadata-1.0.0
extension_class: asdf.extension.BuiltinExtension
software: {name: asdf, version: 2.4.2}

meta:
author: Alfred E. Neuman
date: '2019-07-17T10:56:23.456'
description: MakeListStep parameters
instrument: {name: MIRI}
pedigree: GROUND
reftype: pars-spec2pipeline

(continues on next page)

650 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

telescope: JWST
title: Spec2Pipeline default parameters
useafter: '1990-04-24T00:00:00'

class: jwst.pipeline.calwebb_spec2.Spec2Pipeline
parameters: {}
...

All of the keys under meta are required, most of which are self-explanatory. For more information, refer to the CRDS
documentation (https://jwst-crds.stsci.edu/static/users_guide/).

The one keyword to explain further is reftype. This is what CRDS uses to determine which parameter file is being
sought after. This has the format pars-<step_name> where <step_name> is the Python class name, in lowercase.

History

Parameter reference files also require at least one history entry. This can be found in the history block under entries:

history:
entries:
- !core/history_entry-1.0.0 {description: Base values, time: !!timestamp '2019-10-29

21:20:50'}

It is highly suggested to use the ASDF API to add history entries:

>>> import asdf
>>> cfg = asdf.open('config.asdf')

#
Modify `parameters` and `meta` as necessary.
#

>>> cfg.add_history_entry('Parameters modified for some reason')
>>> cfg.write_to('config_modified.asdf')

JWST, Parameters and Parameter References

In general, the default parameters for any pipeline or step are valid for nearly all instruments and observing modes.
This means that when a pipeline or step is run without any explicit parameter setting, that pipeline or step will usually
do the desired operation. Hence, most of the time there is no need for a parameter reference to be available in CRDS, or
provided by the user. Only for a small set of observing mode/step combinations, will there be need to create a parameter
reference. Even then, nearly all cases will involve changing a subset of a pipeline or step parameters.

Keeping this sparse-population philosophy in mind, for most parameter references, only those parameters that are
explicitly changed should be specified in the reference. If adhered to, when a pipeline/step default value for a particular
parameter needs to change, the change will be immediately available. Otherwise, all references that mistakenly set said
parameter will need to be updated. See Completeness for more information.

Furthermore, every pipeline/step have a common set of parameters, listed below. These parameters generally affect the
infrastructure operation of pipelines/steps, and should not be included in a parameter reference.

• input_dir

• output_ext

• output_use_index

15.1. Package Index 651

https://jwst-crds.stsci.edu/static/users_guide/
https://jwst-crds.stsci.edu/static/users_guide/

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• output_use_model

• post_hooks

• pre_hooks

• save_results

• search_output_file

Configuration (CFG) Files

Note: The cfg format can still be used but is deprecated in favor of ASDF Parameter Files. Please convert any
processes that use cfg files to the ASDF format. Note also that all cfg files that are currently being delivered in the
package and retrieved using collect_pipeline_cfgs set no parameters; files are empty. All steps query CRDS
parameter references for any data-dependent parameter settings, or use coded defaults.

The cfg format for configuration files uses the well-known ini-file format.

You can use the collect_pipeline_cfgs task to get copies of all the cfg files currently in use by the jwst pipeline
software. The task takes a single argument, which is the name of the directory to which you want the cfg files copied.
Use ‘.’ to specify the current working directory, e.g.

$ collect_pipeline_cfgs .

Each step and pipeline has their own cfg file, which are used to specify relevant parameter values. For each step in a
pipeline, the pipeline cfg file specifies either the step’s arguments or the cfg file containing the step’s arguments.

For a given step, the step’s cfg file specifies parameters and their default values; it includes parameters that are typically
not changed between runs. Parameters that are usually reset for each run are not included in the cfg file, but instead
specified on the command line. An example of a cfg file for the jump detection step is:

name = "jump"
class = "jwst.jump.JumpStep"
rejection_threshold = 4.0

You can list all of the parameters for this step using:

$ strun jump.cfg -h

which gives the usage, the positional arguments, and the optional arguments.

Executing a pipeline or pipeline step via call()

The call method will create an instance and run a pipeline or pipeline step in a single call.

from jwst.pipeline import Detector1Pipeline
result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits')

from jwst.linearity import LinearityStep
result = LinearityStep.call('jw00001001001_01101_00001_mirimage_uncal.fits')

To set custom parameter values when using the call method, set the parameters in the pipeline or parameter file and
then supply the file using the config_file keyword:

652 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Calling a pipeline
result = Detector1Pipeline.call('jw00017001001_01101_00001_nrca1_uncal.fits', config_
→˓file='calwebb_detector1.asdf')

Calling a step
result = LinearityStep.call('jw00017001001_01101_00001_nrca1_uncal.fits', config_file=
→˓'linearity.asdf')

When running a pipeline, parameter values can also be supplied in the call to call itself by using a nested dictionary
of step and parameter names:

result = Detector1Pipeline.call("jw00017001001_01101_00001_nrca1_uncal.fits", config_
→˓file='calwebb_detector1.asdf', steps={"jump":{"rejection_threshold": 200}})

When running a single step with call, parameter values can be supplied more simply:

result = JumpStep.call("jw00017001001_01101_00001_nrca1_uncal.fits", rejection_
→˓threshold=200)

Running steps and pipelines with call also allows for the specification of a logging configuration file using the keyword
logcfg:

result = Detector1Pipeline.call("jw00017001001_01101_00001_nrca1_uncal.fits",
config_file="calwebb_detector1.asdf",
logcfg="my-logging-config.cfg")

Note that naming the logging configuration file “stpipe-log.cfg” will configure logging without assignment of the
logcfg keyword, as stpipe searches for this filename in the local directory during execution. If the configuration
should be used only when specified, ensure your file is named something other than “stpipe-log.cfg”!

Where are the results?

A fundamental difference between running steps and pipelines in Python as opposed to from the command line using
strun is whether files are created or not. When using strun, results are automatically saved to files because that is
the only way to access the results.

However, when running within a Python interpreter or script, the presumption is that results will be used within the
script. As such, results are not automatically saved to files. It is left to the user to decide when to save.

If one wishes for results to be saved by a particular call, use the parameter save_results=True:

result = JumpStep.call("jw00017001001_01101_00001_nrca1_uncal.fits",
rejection_threshold=200, save_results=True)

If one wishes to specify a different file name, rather than a system-generated one, set output_file and/or output_dir.

15.1. Package Index 653

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Executing a pipeline or pipeline step directly, or via run()

When calling a pipeline or step instance directly, or using the run method, you can specify individual parameter values
manually. In this case, parameter files are not used. If you use run after instantiating with a parameter file (as is done
when using the call method), the parameter file will be ignored.

Instantiate the class. Do not provide a parameter file.
pipe = Detector1Pipeline()

Manually set any desired non-default parameter values
pipe.refpix.skip = True
pipe.jump.rejection_threshold = 5
pipe.ramp_fit.override_gain = 'my_gain_file.fits'
pipe.save_result = True
pipe.output_dir = '/my/data/pipeline_outputs'

Run the pipeline
result = pipe('jw00017001001_01101_00001_nrca1_uncal.fits')

Or, execute the pipeline using the run method
result = pipe.run('jw00017001001_01101_00001_nrca1_uncal.fits')

To run a single step:

from jwst.jump import JumpStep

Instantiate the step
step = JumpStep()

Set parameter values
step.rejection_threshold = 5
step.save_results = True
step.output_dir = '/my/data/jump_data'

Execute by calling the instance directly
result = step('jw00017001001_01101_00001_nrca1_linearity.fits')

Or, execute using the run method
result = step.run('jw00017001001_01101_00001_nrca1_linearity.fits')

Parameter Files

Parameter files can be used to specify parameter values when running a pipeline or individual steps. For JWST, param-
eter files are retrieved from CRDS, just as with other reference files. If there is no match between a step, the input data,
and CRDS, the coded defaults are used. These values can be overridden either by the command line options and/or a
local parameter file. See Parameter Precedence for a full description of how a parameter gets its final value.

Note: Retrieval of Step parameters from CRDS can be completely disabled by us-
ing the --disable-crds-steppars command-line switch, or setting the environment variable
STPIPE_DISABLE_CRDS_STEPPARS to true.

654 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

A parameter file should be used when there are parameters a user wishes to change from the default/CRDS version for
a custom run of the step. To create a parameter file add --save-parameters <filename.asdf> to the command:

$ strun <step.class> <required-input-files> --save-parameters <filename.asdf>

For example, to save the parameters used for a run of the calwebb_image2 pipeline, use:

$ strun calwebb_image2 jw82500001003_02101_00001_NRCALONG_rate.fits --save-parameters my_
→˓image2.asdf

Once saved, the file can be edited, removing parameters that should be left at their default/CRDS values, and setting
the remaining parameters to the desired values. Once modified, the new parameter file can be used:

$ strun my_image2.asdf jw82500001003_02101_00001_NRCALONG_rate.fits

Note that the parameter values will reflect whatever was set on the command-line, through a specified local parameter
file, and what was retrieved from CRDS. In short, the values will be those actually used in the running of the step.

For more information about and editing of parameter files, see ASDF Parameter Files. Note that the older Configuration
(CFG) Files format is still an option, understanding that this format will be deprecated.

More information on parameter files can be found in the stpipe User’s Guide at For Users.

CFG Usage Deprecation Notice

As of March 18, 2021, a significant change to how JWST pipelines operate was completed and pushed to the JWST mas-
ter branch on github. Theoretically the change should be transparent. However, we are all familiar with the difference
between theory and practice and hence we want to alert all users.

Originally, how the pipelines operated was determined by a set of configuration (CFG) files that were delivered as part
of the JWST package. These configuration files were retrieved using the collect_pipeline_cfgs command. The
configuration files were used to run each of the different pipelines using the strun command. For example:

$ collect_pipeline_cfgs ./
$ strun calwebb_spec2.cfg an_exposure_file.fits

The issue with the above process is that any changes, as determined by INS and the Calibration Working Group, to the
default operation of the pipeline requires a code release. A better solution would be if the pipeline configurations could
come from reference files retrieved from CRDS.

As of the version of master introduced on March 18th, 2021, in conjunction with CRDS context jwst_0712, the default
pipeline configurations no longer depend on the package-delivered configuration files. Instead, all default configuration
relies on settings in the pipeline code itself, using CRDS-retrieved parameter reference files to modify any parameters
that are data-dependent. There is no longer any need to run collect_pipeline_cfgs and specify a configuration
file for the strun command. One only needs to specify a simplified pipeline name. In most cases, this simple name,
or alias, is the same as the name of the old configuration file, but without the suffix .cfg.

Taking the example above, to get the same operation, the single command would become:

$ strun calwebb_spec2 an_exposure_file.fits

The JWST documentation has been updated to account for this change in usage. To get familiarized, it is best to start
with the Introduction

A list of the available pipeline aliases can be found in the Pipeline Stages section.

15.1. Package Index 655

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

An added benefit to removing the dependency on package-delivered configuration files is that users, under normal
circumstances, no longer need to be concerned with configuration files and whether they are up-to-date. One only
needs to install the JWST package and start using the pipelines out-of-the-box.

Does this mean that everyone has to immediately change their behavior and code if using the default configura-
tion files? Short answer is “No”. If one wishes to continue using the package-delivered configuration files from
collect_pipeline_cfgs, one may do so. However, these configuration files no longer contain any parameter set-
tings; only the class name of the pipeline to be run. This allows the code-plus-CRDS-retrieved parameter reference
files to determine operation.

Since the configuration settings have simply been moved to CRDS, the results one obtains should not change. If a change
in behavior is noted, please report the issue to the Help Desk, file a Github issue on the JWST Github repository, or file
a Jira issue against the JP project.

In the meantime, please consider deprecating the use of collect_pipeline_cfgs and the .cfg files in favor of simply
specifying pipeline aliases, as the documentation now describes.

For users that use their own, custom configuration files, there is no change to functionality. However, there are changes
to both how these files are documented and their format.

Concerning documentation, there is a change of terminology. No longer are these files referred to as “configuration
files”, but are called “parameter files” or “parameter reference files” when retrieved from CRDS.

In order to simplify integration with CRDS, the format of parameter files have changed from the “cfg”, init-like format,
to the ASDF format. All parameter files in CRDS are in this format. Similarly, the tools provided by the JWST package
to create parameter files will create them in ASDF. “cfg”-formatted files are still supported, but it is strongly suggested
that users change to using the ASDF form. For more information, please to refer to ASDF Parameter Files

As always, if anyone finds any discrepancies or other issues with the documentation, or actual operation of the pipelines,
please contact the Help Desk, or file issues directly against the Github repository or the JIRA “JP” project.

For Developers

Steps

Writing a step

Writing a new step involves writing a class that has a process method to perform work and a spec member to define
its configuration parameters. (Optionally, the spec member may be defined in a separate spec file).

Inputs and outputs

A Step provides a full framework for handling I/O. Below is a short description. A more detailed discussion can be
found in Step I/O Design.

Steps get their inputs from two sources:

• Configuration parameters come from the parameter file or commandline and are set as member variables on the
Step object by the stpipe framework.

• Arguments are passed to the Step’s process function as regular function arguments.

Parameters should be used to specify things that must be determined outside of the code by a user using the class.
Arguments should be used to pass data that needs to go from one step to another as part of a larger pipeline. Another
way to think about this is: if the user would want to examine or change the value, use a parameter.

The parameters are defined by the Step.spec member.

656 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Input Files, Associations, and Directories

All input files must be in the same directory. This directory is whichever directory the first input file is found in. This is
particularly important for associations. It is assumed that all files referenced by an association are in the same directory
as the association file itself.

Output Files and Directories

The step will generally return its output as a data model. Every step has implicitly created parameters output_dir
and output_file which the user can use to specify the directory and file to save this model to. Since the stpipe
architecture generally creates output file names, in general, it is expected that output_file be rarely specified, and
that different sets of outputs be separated using output_dir.

Output Suffix

There are three ways a step’s results can be written to a file:

1. Implicitly when a step is run from the command line or with Step.from_cmdline

2. Explicitly by specifying the parameter save_results

3. Explicitly by specifying a file name with the parameter output_file

In all cases, the file, or files, is/are created with an added suffix at the end of the base file name. By default this suffix
is the class name of the step that produced the results. Use the suffix parameter to explicitly change the suffix.

For pipelines, this can be done either in a parameter file, or within the code itself. See calwebb_dark for an example
of specifying in the parameter file.

For an example where the suffix can only be determined at runtime, see calwebb_detector1. For an example of a
pipeline that returns many results, see calwebb_spec2.

The Python class

At a minimum, the Python Step class should inherit from stpipe.Step, implement a processmethod to do the actual
work of the step and have a spec member to describe its parameters.

1. Objects from other Steps in a pipeline are passed as arguments to the process method.

2. The parameters described in Configuring a Step are available as member variables on self.

3. To support the caching suspend/resume feature of pipelines, images must be passed between steps as model
objects. To ensure you’re always getting a model object, call the model constructor on the parameter passed in. It
is good idea to use a with statement here to ensure that if the input is a file path that the file will be appropriately
closed.

4. Use get_reference_file_model method to load any CRDS reference files used by the Step. This will make
a cached network request to CRDS. If the user of the step has specified an override for the reference file in either
the parameter file or at the command line, the override file will be used instead. (See Interfacing with CRDS).

5. Objects to pass to other Steps in the pipeline are simply returned from the function. To return multiple objects,
return a tuple.

6. The parameters for the step are described in the spec member in the configspec format.

7. Declare any CRDS reference files used by the Step. (See Interfacing with CRDS).

15.1. Package Index 657

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

from jwst.stpipe import Step

from stdatamodels.jwst.datamodels import ImageModel
from my_awesome_astronomy_library import combine

class ExampleStep(Step):
"""
Every step should include a docstring. This docstring will be
displayed by the `strun --help`.
"""

1.
def process(self, image1, image2):

self.log.info("Inside ExampleStep")

2.
threshold = self.threshold

3.
with ImageModel(image1) as image1, ImageModel(image2) as image2:

4.
with self.get_reference_file_model(image1, "flat_field") as flat:

new_image = combine(image1, image2, flat, threshold)

5.
return new_image

6.
spec = """
This is the configspec file for ExampleStep

threshold = float(default=1.0) # maximum flux
"""

7.
reference_file_types = ['flat_field']

The Python Step subclass may be installed anywhere that your Python installation can find it. It does not need to be
installed in the stpipe package.

The spec member

The spec member variable is a string containing information about the parameters. It is in the configspec format
defined in the ConfigObj library that stpipe uses.

The configspec format defines the types of the parameters, as well as allowing an optional tree structure.

The types of parameters are declared like this:

n_iterations = integer(1, 100) # The number of iterations to run
factor = float() # A multiplication factor
author = string() # The author of the file

658 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Note that each parameter may have a comment. This comment is extracted and displayed in help messages and doc-
strings etc.

Parameters can be grouped into categories using ini-file-like syntax:

[red]
offset = float()
scale = float()

[green]
offset = float()
scale = float()

[blue]
offset = float()
scale = float()

Default values may be specified on any parameter using the default keyword argument:

name = string(default="John Doe")

While the most commonly useful parts of the configspec format are discussed here, greater detail can be found in the
configspec documentation (https://configobj.readthedocs.io/en/latest/).

Configspec types

The following is a list of the commonly useful configspec types.

integer: matches integer values. Takes optional min (https://docs.python.org/3/library/functions.html#min)
and max (https://docs.python.org/3/library/functions.html#max) arguments:

integer()
integer(3, 9) # any value from 3 to 9
integer(min=0) # any positive value
integer(max=9)

float (https://docs.python.org/3/library/functions.html#float): matches float values Has the same param-
eters as the integer check.

boolean: matches boolean values: True or False.

string (https://docs.python.org/3/library/string.html#module-string): matches any string. Takes
optional keyword args min (https://docs.python.org/3/library/functions.html#min) and max
(https://docs.python.org/3/library/functions.html#max) to specify min and max length of string.

list (https://docs.python.org/3/library/stdtypes.html#list): matches any list. Takes op-
tional keyword args min (https://docs.python.org/3/library/functions.html#min), and max
(https://docs.python.org/3/library/functions.html#max) to specify min and max sizes of the list.
The list checks always return a list.

force_list: matches any list, but if a single value is passed in will coerce it into a list containing that
value.

int_list: Matches a list of integers. Takes the same arguments as list.

float_list: Matches a list of floats. Takes the same arguments as list.

bool_list: Matches a list of boolean values. Takes the same arguments as list.

15.1. Package Index 659

https://configobj.readthedocs.io/en/latest/
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/library/functions.html#max
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/library/functions.html#max
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/library/functions.html#max

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

string_list: Matches a list of strings. Takes the same arguments as list.

option: matches any from a list of options. You specify this test with:

option('option 1', 'option 2', 'option 3')

Normally, steps will receive input files as parameters and return output files from their process methods.
However, in cases where paths to files should be specified in the parameter file, there are some extra
parameter types that stpipe provides that aren’t part of the core configobj library.

input_file: Specifies an input file. Relative paths are resolved against the location of the parameter file.
The file must also exist.

output_file: Specifies an output file. Identical to input_file, except the file doesn’t have to already
exist.

Interfacing with CRDS

If a Step uses CRDS to retrieve reference files, there are two things to do:

1. Within the process method, call self.get_reference_file or self.get_reference_file_model to get
a reference file from CRDS. These methods take as input a) a model for the input file, whose metadata is used
to do a CRDS bestref lookup, and b) a reference file type, which is just a string to identify the kind of reference
file.

2. Declare the reference file types used by the Step in the reference_file_types member. This information is
used by the stpipe framework for two purposes: a) to pre-cache the reference files needed by a Pipeline before
any of the pipeline processing actually runs, and b) to add override parameters to the Step’s configspec.

For each reference file type that the Step declares, an override_* parameter is added to the Step’s configspec. For
example, if a step declares the following:

reference_file_types = ['flat_field']

then the user can override the flat field reference file using the parameter file:

override_flat_field = /path/to/my_reference_file.fits

or at the command line:

--override_flat_field=/path/to/my_reference_file.fits

Making a simple commandline script for a step

Any step can be run from the commandline using Running a Step from the commandline. However, to make a step even
easier to run from the commandline, a custom script can be created. stpipe provides a function stpipe.cmdline.
step_script to make those scripts easier to write.

For example, to make a script for the step mypackage.ExampleStep:

#!/usr/bin/python
ExampleStep

Import the custom step
from mypackage import ExampleStep

(continues on next page)

660 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

Import stpipe.cmdline
from jwst.stpipe import cmdline

if __name__ == '__main__':
Pass the step class to cmdline.step_script
cmdline.step_script(ExampleStep)

Running this script is similar to invoking the step with Running a Step from the commandline, with one difference.
Since the Step class is known (it is hard-coded in the script), it does not need to be specified on the commandline. To
specify a config file on the commandline, use the --config-file option.

For example:

> ExampleStep

> ExampleStep --config-file=example_step.asdf

> ExampleStep --parameter1=42.0 input_file.fits

Pipelines

Writing a Pipeline

The basics of writing a Pipeline are just like Writing a step, but instead of inheriting from the Step class, one inherits
from the Pipeline class.

In addition, a Pipeline subclass defines what its Steps are so that the framework can configure parameters for the
individual Steps. This is done with the step_defs member, which is a dictionary mapping step names to step classes.
This dictionary defines what the Steps are, but says nothing about their order or how data flows from one Step to the
next. That is defined in Python code in the Pipeline’s process method. By the time the Pipeline’s process method is
called, the Steps in step_defs will be instantiated as member variables.

For example, here is a pipeline with two steps: one that processes each chip of a multi-chip FITS file, and another to
combine the chips into a single image:

from jwst.stpipe import Pipeline

from stdatamodels.jwst.datamodels import ImageModel

Some locally-defined steps
from . import FlatField, Combine

class ExamplePipeline(Pipeline):
"""
This example pipeline demonstrates how to combine steps
using Python code, in some way that it not necessarily
a linear progression.
"""

step_defs = {
'flat_field': FlatField,

(continues on next page)

15.1. Package Index 661

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

'combine': Combine,
}

def process(self, input):
with ImageModel(input) as science:

flattened = self.flat_field(science, self.multiplier)

combined = self.combine(flattened)

return combined

spec = """
multiplier = float() # A multiplier constant
"""

When writing the spec member for a Pipeline, only the parameters that apply to the Pipeline as a whole need to be
included. The parameters for each Step are automatically loaded in by the framework.

In the case of the above example, we define two new pipeline parameters for the flat field file and the output filename.

The parameters for the individual substeps that make up the Pipeline will be implicitly added by the framework.

Logging

The logging in stpipe is built on the Python standard library’s logging
(https://docs.python.org/3/library/logging.html#module-logging) module. For detailed information about log-
ging, refer to the documentation there. This document basically outlines some simple conventions to follow so that the
configuration mechanism described in Logging works.

Logging from a Step or Pipeline

Each Step instance (and thus also each Pipeline instance) has a log member, which is a Python logging.Logger
(https://docs.python.org/3/library/logging.html#logging.Logger) instance. All messages from the Step should use this
object to log messages. For example, from a process method:

self.log.info("This Step wants to say something")

Logging from library code

Often, you may want to log something from code that is oblivious to the concept of stpipe Steps. In that case,
stpipe has special code that allows library code to use any logger and have those messages appear as if they were
coming from the step that used the library. All the library code has to do is use a Python logging.Logger
(https://docs.python.org/3/library/logging.html#logging.Logger) as normal:

import logging

...
log = logging.getLogger()

(continues on next page)

662 Chapter 15. Package Documentation

https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.Logger

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

If the log on its own won’t emit, neither will it in the
context of an stpipe step, so make sure the level is set to
allow everything through
log.setLevel(logging.DEBUG)

def my_library_call():
...
log.info("I want to make note of something")
...

Step I/O Design

API Summary

Step command-line options

• --output_dir: Directory where all output will go.

• --output_file: File name upon which output files will be based.

Step configuration options

• output_dir: Directory where all output will go.

• output_file: File name upon which output files will be based.

• suffix: Suffix defining the output of this step.

• save_results: True to create output files. [more]

• search_output_file: True to retrieve the output_file from a parent Step or Pipeline. [more]

• output_use_model: True to always base output file names on the DataModel.meta.filename of the
DataModel being saved.

• input_dir: Generally defined by the location of the primary input file unless otherwise specified. All input
files must be in this directory.

Classes, Methods, Functions

• Step.open_model: Open a DataModel

• Step.load_as_level2_asn(): Open a list or file as Level2 association.

• Step.load_as_level3_asn(): Open a list or file as Level3 association.

• Step.make_input_path: Create a file name to be used as input

• Step.save_model: Save a DataModel immediately

• Step.make_output_path: Create a file name to be used as output

15.1. Package Index 663

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Design

The Step architecture is designed such that a Step’s intended sole responsibility is to perform the calculation required.
Any input/output operations are handled by the surrounding Step architecture. This is to help facilitate the use of
Step’s from both a command-line environment, and from an interactive Python environment, such as Jupyter notebooks
or ipython.

For command-line usage, all inputs and outputs are designed to come from and save to files.

For interactive Python use, inputs and outputs are expected to be Python objects, negating the need to save and reload
data after every Step call. This allows users to write Python scripts without having to worry about doing I/O at every
step, unless, of course, if the user wants to do so.

The high-level overview of the input/output design is given in Writing a step. The following discusses the I/O API and
best practices.

To facilitate this design, a basic Step is suggested to have the following structure:

class MyStep(jwst.stpipe.step.Step):

spec = '' # Desired configuration parameters

def process(self, input):

with jwst.datamodels.open(input) as input_model:

Do awesome processing with final result
in `result`
result = final_calculation(input_model)

return (result)

When run from the command line:

strun MyStep input_data.fits

the result will be saved in a file called:

input_data_mystep.fits

Similarly, the same code can be used in a Python script or interactive environment as follows:

>>> import jwst
>>> input = jwst.datamodels.open('input_data.fits')
>>> result = MyStep.call(input)

`result` contains the resulting data
which can then be used by further `Steps`'s or
other functions.
#
when done, the data can be saved with the `DataModel.save`
method

>>> result.save('my_final_results.fits')

664 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Input and JWST Conventions

A Step gets its input from two sources:

• Configuration parameters

• Arguments to the Step.process method

The definition and use of parameters is documented in Writing a step.

When using the Step.process arguments, the code must at least expect strings. When invoked from the command line
using strun, how many arguments to expect are the same number of arguments defined by Step.process. Similarly,
the arguments themselves are passed to Step.process as strings.

However, to facilitate code development and interactive usage, code is expected to accept other object types as well.

A Step’s primary argument is expected to be either a string containing the file path to a data file, or a JWST
JwstDataModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel)
object. The method open_model() handles either type of input, returning a DataModel from the specified file or a
shallow copy of the DataModel that was originally passed to it. A typical pattern for handling input arguments is:

class MyStep(jwst.stpipe.step.Step):

def process(self, input_argument):

input_model = self.open_model(input_argument)

...

input_argument can either be a string containing a path to a data file, such as FITS file, or a DataModel directly.

open_model() handles Step-specific issues, such ensuring consistency of input directory handling.

If some other file type is to be opened, the lower level method make_input_path() can be used to specify the input
directory location.

Input and Associations

Many of the JWST calibration steps and pipelines expect an Association file as input. When opened with
open_model(), a ModelContainer is returned. ModelContainer is, among other features, a list-like object where
each element is the DataModel of each member of the association. The meta.asn_table is populated with the asso-
ciation data structure, allowing direct access to the association itself. The association file, as well as the files listed in
the association file, must be in the input directory.

To read in a list of files, or an association file, as an association, use the load_as_level2_asn or
load_as_level3_asn methods.

15.1. Package Index 665

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.JwstDataModel.html#jwst.datamodels.JwstDataModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Input Source

All input files, except for references files provided by CRDS, are expected to be co-resident in the same directory. That
directory is determined by the directory in which the primary input file resides. For programmatic use, this directory
is available in the Step.input_dir attribute.

Output

When Files are Created

Whether a Step produces an output file or not is ultimately determined by the built-in parameter option save_results.
If True (https://docs.python.org/3/library/constants.html#True), output files will be created. save_results is set
under a number of conditions:

• Explicitly through a parameter file or as a command-line option.

• Implicitly when a step is called by strun.

Output File Naming

File names are constructed based on three components: basename, suffix, and extension:

basename_suffix.extension

The extension will often be the same as the primary input file. This will not be the case if the data format of the output
needs to be something different, such as a text table with ecsv extension.

Similarly, the basename will usually be derived from the primary input file. However, there are some caveats discussed
below.

Ultimately, the suffix is what Step’s use to identify their output. The most common suffixes are listed in the
Pipeline/Step Suffix Definitions.

A Step’s suffix is defined in a couple of different ways:

• By the Step.name attribute. This is the default.

• By the suffix parameter.

• Explicitly in the code. Often this is done in Pipelineswhere a single pipeline creates numerous different output
files.

Basename Determination

Most often, the output file basename is determined through any of the following, given from higher precedence to
lower:

• The --output_file command-line option.

• The output_file parameter option.

• Primary input file name.

• If the output is a DataModel, from the DataModel.meta.filename.

666 Chapter 15. Package Documentation

https://docs.python.org/3/library/constants.html#True

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

In all cases, if the originating file name has a known suffix on it, that suffix is removed and replaced by the Step’s own
suffix.

In very rare cases, when there is no other source for the basename, a basename of step_<step_name> is used. This
can happen when a Step is being programmatically used and only the save_results parameter option is given.

Sub-Steps and Output

Normally, the value of a parameter option is completely local to the Step: A Step, called from another Step or
Pipeline, can only access its own parameters. Hence, options such as save_results do not affect a called Step.

The exceptions to this are the parameters output_file and output_dir. If either of these parameters are queried
by a Step, but are not defined for that Step, values will be retrieved up through the parent. The reason is to provide
consistency in output from Step and Pipelines. All file names will have the same basename and will all appear in
the same directory.

As expected, if either parameter is specified for the Step in question, the local value will override the parent value.

Also, for output_file, there is another option, search_output_file, that can also control this behavior. If set to
False (https://docs.python.org/3/library/constants.html#False), a Step will never query its parent for its value.

Basenames, Associations, and Stage 3 Pipelines

Stage 3 pipelines, such as calwebb_image3 or calwebb_spec3, take associations as their primary input. In general, the
association defines what the output basename should be. A typical pattern used to handle associations is:

class MyStep(jwst.stpipe.step.Step):

spec = '' # Desired configuration parameters

def process(self, input):

with jwst.datamodels.open(input) as input_model:

If not already specified, retrieve the output
file name from the association.
if self.save_results and self.output_file is None:

try:
self.output_file = input_model.meta.asn_table.products[0].name

except AttributeError:
pass

Do awesome processing with final result
in `result`
result = final_calculation(input_model)

return (result)

Some pipelines, such as calwebb_spec3, call steps which are supposed to save their results, but whose basenames should
not be based on the association product name. An example is the OutlierDetectionStep step. For such steps, one
can prevent using the Pipeline.output_file specification by setting the parameter search_output_file=False.
When such steps then save their output, they will go through the standard basename search. If nothing else is specified,

15.1. Package Index 667

https://docs.python.org/3/library/constants.html#False

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

the basename will be based on DataModel.meta.filename that step’s result, creating appropriate names for that
step.

Output API: When More Control Is Needed

In summary, the standard output API, as described so far, is basically “set a few parameters, and let the Step framework
handle the rest”. However, there are always the exceptions that require finer control, such as saving intermediate files
or multiple files of different formats. This section discusses the method API and conventions to use in these situations.

Save That Model: Step.save_model

If a Step needs to save a DataModel before the step completes, use of Step.save_model is the recommended over
directly calling DataModel.save. Step.save_model uses the Step framework and hence will honor the following:

• If Step.save_results is False (https://docs.python.org/3/library/constants.html#False), nothing will happen.

• Will ensure that Step.output_dir is used.

• Will use Step.suffix if not otherwise specified.

• Will determine the output basename through the Step framework, if not otherwise specified.

The basic usage, in which nothing is overridden, is:

class MyStep(Step):

def process(self, input):
...
result = some_DataModel
self.save_model(result)

The most common use case, however, is for saving some intermediate results that would have a different suffix:

self.save_model(intermediate_result_datamodel, suffix='intermediate')

See jwst.stpipe.step.Step.save_model() for further information.

Make That Filename: Step.make_output_path

For the situations when a filename is needed to be constructed before saving, either to know what the filename will be
or for data that is not a DataModel, use Step.make_output_path. By default, calling make_output_path without
any arguments will return what the default output file name will be:

output_path = self.make_output_path()

This method encapsulates the following Step framework functions:

• Will ensure that Step.output_dir is used.

• Will use Step.suffix if not otherwise specified.

• Will determine the output basename through the Step framework, if not otherwise specified.

A typical use case is when a Step needs to save data that is not a DataModel. The current Step architecture does not
know how to handle these, so saving needs to be done explicitly. The pattern of usage would be:

668 Chapter 15. Package Documentation

https://docs.python.org/3/library/constants.html#False

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

A table need be saved and needs a different
suffix than what the Step defines.
table = some_astropy_table_data
if self.save_results:

table_path = self.make_output_path(suffix='cat', ext='ecsv')
table.save(table_path, format='ascii.ecsv', overwrite=True)

jwst.stpipe Package

Classes

Step alias of JwstStep
Pipeline alias of JwstPipeline

Step

jwst.stpipe.Step

alias of JwstStep

Pipeline

jwst.stpipe.Pipeline

alias of JwstPipeline

Class Inheritance Diagram

JwstPipeline

Pipeline

JwstStep

Step

15.1. Package Index 669

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

15.1.60 Stray Light Correction

Description

Class
jwst.straylight.StraylightStep

Alias
straylight

Assumption

The straylight correction is only valid for MIRI MRS data.

Overview

This routine removes contamination of MIRI MRS spectral data by the MIRI cross artifact feature produced by internal
reflections within the detector arrays. As discussed in depth for the MIRI Imager by A. Gáspár et al. 2021 (PASP,
133, 4504), the cross artifact manifests as a signal extending up to hundreds of pixels along the detector column and
row directions from bright sources. This signal has both smooth and structured components whose profiles vary as
a function of wavelength. Although the peak intensity of the cross artifact is at most 1% of the source intensity in
Channel 1 (decreasing toward longer wavelengths), the total integrated light in this feature can be of order 20% of the
total light from a given source.

In the MIRI MRS, such a signal extending along detector rows is more disruptive than for the MIRI imager. Since the
individual IFU slices are interleaved on the detector and staggered in wavelength from each other, the cross artifact
signal thus contaminates non-local regions in reconstructed data cubes (both non-local on the sky and offset in wave-
length space from bright emission lines). The purpose of this routine is thus to model the cross artifact feature in a
given science exposure and subtract it at the detector level prior to reformatting the data into three-dimensional cubes.

At the same time, this step also ensures that the median count rate (in DN/s) in regions of the detector that see no direct
light from the sky is zero for consistency with the applied flux calibration vectors.

Algorithm

The basic idea of the cross artifact correction is to convolve a given science detector image with a kernel function that
has been pre-calibrated based on observations of isolated sources and subtract the corresponding convolved image. As
such, there are no free parameters in this step when applied to science data.

In Channel 1, the kernel function is based on engineering observations of isolated bright stars and consists of a broad
low-amplitude Lorentzian function plus two pairs of double Gaussians. The low-amplitude Lorentzian describes the
broad wings of the kernel, and typically has a FWHM of 100 pixels or more:

𝑓𝐿𝑜𝑟 =
𝐴𝐿𝑜𝑟𝛾

2

𝛾2 + (𝑥− 𝑥0)2

where 𝛾 = 𝐹𝑊𝐻𝑀/2 and 𝑥0 is the column coordinate of a given pixel.

The two double Gaussian functions describe the structured component of the profile, in which two peaks are seen on
each side of a bright spectral trace on the detector. The relative offsets of these Gaussians (𝑑𝑥) are observed to be
fixed with respect to each other, with the separation of the secondary Gaussian from the bright trace being double the
separation of the first Gaussian and both increasing as a function of wavelength. The widths of the Gaussians (𝜎) are
also tied, with the secondary Gaussian having double the width of the first. The inner Gaussians are thus described by:

𝑓𝐺1 = 𝐴𝐺1𝑒𝑥𝑝
−(𝑥−𝑥0−𝑑𝑥)2

2𝜎2

670 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

𝑓𝐺3 = 𝐴𝐺1𝑒𝑥𝑝
−(𝑥−𝑥0+𝑑𝑥)2

2𝜎2

while the outer Gaussians are described by:

𝑓𝐺2 = 𝐴𝐺2𝑒𝑥𝑝
−(𝑥−𝑥0−2𝑑𝑥)2

8𝜎2

𝑓𝐺4 = 𝐴𝐺2𝑒𝑥𝑝
−(𝑥−𝑥0+2𝑑𝑥)2

8𝜎2

The best-fit parameters of these models derived from engineering data are recorded in the MRSXARTCORR reference
file and applied in a pixelwise manner to the detector data.

The kernel functions for Channels 2 and 3 rely upon engineering observations of bright extended sources, as the mag-
nitude of the correction is typically too small to be visible from point sources. These channels use only a Lorentzian
kernel with the Gaussian amplitudes set to zero as such structured components are less obvious at these longer wave-
lengths. In Channel 4 no correction appears to be necessary, and the amplitudes of all model components are set equal
to zero.

Step Arguments

The straylight step has no step-specific arguments.

Reference Files

The straylight step uses the MRSXARTCORR reference file, which stores vectors describing the appropriate cross-
artifact convolution kernel for each MRS band. In Channel 1 these vectors include power in a broad Lorentzian core
plus a pair of double-Gaussian profiles. In Channels 2 and 3 these vectors include only power in the broad Lorentzian,
while in Channel 4 there is no correction.

MRSXARTCORR reference file

REFTYPE
MRSXARTCORR

Data models
MirMrsXArtCorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirMrsXArtCorrModel.html#jwst.datamodels.MirMrsXArtCorrModel)

The MRSXARTCORR reference file contains parameter values used to model and subtract the cross-artifact in the
straylight step.

Reference Selection Keywords for MRSXARTCORR

CRDS selects appropriate MRSXARTCORR references based on the following keywords. MRSXARTCORR is not
applicable for instruments not in the table.

Instrument Keywords
MIRI INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS

15.1. Package Index 671

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MirMrsXArtCorrModel.html#jwst.datamodels.MirMrsXArtCorrModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for MRSXARTCORR

In addition to the standard reference file keywords listed above, the following keywords are required in MRSXART-
CORR reference files, because they are used as CRDS selectors (see Reference Selection Keywords for MRSXART-
CORR):

Keyword Data Model Name
EXP_TYPE model.meta.exposure.type

MIRI Reference File Format

The MIRI MRSXARTCORR reference files are FITS format, with 12 BINTABLE extensions. The FITS primary data
array is assumed to be empty. The format and content of the MIRI MRSXARTCORR reference file

EXTNAME XTENSION Dimensions
1A BINTABLE TFIELDS = 7
1B BINTABLE TFIELDS = 7
1C BINTABLE TFIELDS = 7
2A BINTABLE TFIELDS = 7
2B BINTABLE TFIELDS = 7
2C BINTABLE TFIELDS = 7
3A BINTABLE TFIELDS = 7
3B BINTABLE TFIELDS = 7
3C BINTABLE TFIELDS = 7
4A BINTABLE TFIELDS = 7
4B BINTABLE TFIELDS = 7
4C BINTABLE TFIELDS = 7

672 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

The formats of the individual table extensions are listed below.

Table Column Data type Units
CH1A YROW shortint pixels

LOR_FWHM float pixels
LOR_SCALE float N/A
GAU_FWHM float pixels
GAU_XOFF float pixels
GAU_SCALE1 float N/A
GAU_SCALE2 float N/A

CH1B YROW shortint pixels
LOR_FWHM float pixels
LOR_SCALE float N/A
GAU_FWHM float pixels
GAU_XOFF float pixels
GAU_SCALE1 float N/A
GAU_SCALE2 float N/A

CH1C YROW shortint pixels
LOR_FWHM float pixels
LOR_SCALE float N/A
GAU_FWHM float pixels
GAU_XOFF float pixels
GAU_SCALE1 float N/A
GAU_SCALE2 float N/A

CH2A YROW shortint pixels
LOR_FWHM float pixels
LOR_SCALE float N/A
GAU_FWHM float pixels
GAU_XOFF float pixels
GAU_SCALE1 float N/A
GAU_SCALE2 float N/A

CH2B YROW shortint pixels
LOR_FWHM float pixels
LOR_SCALE float N/A
GAU_FWHM float pixels
GAU_XOFF float pixels
GAU_SCALE1 float N/A
GAU_SCALE2 float N/A

CH2C YROW shortint pixels
LOR_FWHM float pixels
LOR_SCALE float N/A
GAU_FWHM float pixels
GAU_XOFF float pixels
GAU_SCALE1 float N/A
GAU_SCALE2 float N/A

CH3A YROW shortint pixels
LOR_FWHM float pixels
LOR_SCALE float N/A
GAU_FWHM float pixels
GAU_XOFF float pixels
GAU_SCALE1 float N/A
GAU_SCALE2 float N/A

continues on next page

15.1. Package Index 673

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Table 9 – continued from previous page
Table Column Data type Units
CH3B YROW shortint pixels

LOR_FWHM float pixels
LOR_SCALE float N/A
GAU_FWHM float pixels
GAU_XOFF float pixels
GAU_SCALE1 float N/A
GAU_SCALE2 float N/A

CH3C YROW shortint pixels
LOR_FWHM float pixels
LOR_SCALE float N/A
GAU_FWHM float pixels
GAU_XOFF float pixels
GAU_SCALE1 float N/A
GAU_SCALE2 float N/A

CH4A YROW shortint pixels
LOR_FWHM float pixels
LOR_SCALE float N/A
GAU_FWHM float pixels
GAU_XOFF float pixels
GAU_SCALE1 float N/A
GAU_SCALE2 float N/A

CH4B YROW shortint pixels
LOR_FWHM float pixels
LOR_SCALE float N/A
GAU_FWHM float pixels
GAU_XOFF float pixels
GAU_SCALE1 float N/A
GAU_SCALE2 float N/A

CH4C YROW shortint pixels
LOR_FWHM float pixels
LOR_SCALE float N/A
GAU_FWHM float pixels
GAU_XOFF float pixels
GAU_SCALE1 float N/A
GAU_SCALE2 float N/A

These reference files contain tables for each wavelength band giving the appropriate kernel properties to use to model
the cross-artifact for each band. These include Lorentzian plus Gaussian models.

The MIRI reference table contains parameters for each band in the corresponding EXTNAME extension.

674 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.straylight Package

Classes

StraylightStep([name, parent, config_file, ...]) StraylightStep: Performs straylight correction image us-
ing a Mask file.

StraylightStep

class jwst.straylight.StraylightStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

StraylightStep: Performs straylight correction image using a Mask file.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

Methods Summary

process(input) This is where real work happens.

15.1. Package Index 675

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Documentation

class_alias = 'straylight'

reference_file_types = ['mrsxartcorr']

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep StraylightStepStep

15.1.61 Superbias Subtraction

Description

Class
jwst.superbias.SuperBiasStep

Alias
superbias

The superbias subtraction step removes the fixed detector bias from a science data set by subtracting a superbias refer-
ence image.

Algorithm

The 2-D superbias reference image is subtracted from every group in every integration of the input science ramp data.
Any NaN’s that might be present in the superbias image are set to a value of zero before being subtracted from the
science data, such that those pixels effectively receive no correction.

The DQ array from the superbias reference file is combined with the science exposure “PIXELDQ” array using a
bitwise OR operation.

The ERR and GROUPDQ arrays in the science ramp data are unchanged.

676 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

NIRCam Frame 0

If the NIRCam frame zero data cube is present in the input data, the image for each integration has the superbias
reference image subtracted from it, in the same way as the regular science data.

Subarrays

If the subarray mode of the superbias reference file matches that of the science exposure, the reference data are directly
subtracted. If the superbias reference file contains full-frame data, while the science exposure is a subarray mode, the
corresponding subarray is extracted from the superbias reference data before being subtracted.

NIRSpec IRS2

No special handling is necessary for science data taken in the IRS2 readout mode, because matching IRS2 superbias
reference files are supplied in CRDS.

Step Arguments

The superbias subtraction step has no step-specific arguments.

Reference Files

The superbias subtraction step uses a SUPERBIAS reference file.

SUPERBIAS Reference File

REFTYPE
SUPERBIAS

Data model
SuperBiasModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.SuperBiasModel.html#jwst.datamodels.SuperBiasModel)

The SUPERBIAS reference file contains a 2-D image of the detector bias (“zeroth” read) structure.

Reference Selection Keywords for SUPERBIAS

CRDS selects appropriate SUPERBIAS references based on the following keywords. SUPERBIAS is not applicable
for instruments not in the table. All keywords used for file selection are required.

Instru-
ment

Keywords

FGS INSTRUME, DETECTOR, READPATT, SUBARRAY, DATE-OBS, TIME-OBS
NIRCam INSTRUME, DETECTOR, READPATT, SUBARRAY, DATE-OBS, TIME-OBS
NIRISS INSTRUME, DETECTOR, READPATT, SUBARRAY, DATE-OBS, TIME-OBS
NIR-
Spec

INSTRUME, DETECTOR, READPATT, SUBARRAY, SUBSTRT1, SUBSTRT2, SUBSIZE1, SUB-
SIZE2, DATE-OBS, TIME-OBS

15.1. Package Index 677

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.SuperBiasModel.html#jwst.datamodels.SuperBiasModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for SUPERBIAS

In addition to the standard reference file keywords listed above, the following keywords are required in SUPERBIAS
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for SUPERBIAS):

Keyword Data Model Name Instruments
DETECTOR model.meta.instrument.detector FGS, NIRCam, NIRISS, NIRSpec
READPATT model.meta.exposure.readpatt FGS, NIRCam, NIRISS, NIRSpec
SUBARRAY model.meta.subarray.name FGS, NIRCam, NIRISS, NIRSpec
SUBSTRT1 model.meta.subarray.xstart NIRSpec only
SUBSTRT2 model.meta.subarray.ystart NIRSpec only
SUBSIZE1 model.meta.subarray.xsize NIRSpec only
SUBSIZE2 model.meta.subarray.ysize NIRSpec only

Reference File Format

SUPERBIAS reference files are FITS format, with 3 IMAGE extensions and 1 BINTABLE extension. The FITS
primary HDU does not contain a data array. The format and content of the file is as follows:

EXTNAME XTENSION NAXIS Dimensions Data type
SCI IMAGE 2 ncols x nrows float
ERR IMAGE 2 ncols x nrows float
DQ IMAGE 2 ncols x nrows integer
DQ_DEF BINTABLE 2 TFIELDS = 4 N/A

The SCI array contains the super-bias image of the detector. The ERR array contains uncertainties in the super-bias
values and the DQ array contains data quality flags associated with the super-bias image.

678 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

The DQ_DEF extension contains the bit assignments used in the DQ array. It contains the following 4 columns:

TTYPE TFORM Description
BIT integer The bit number, starting at zero
VALUE integer The equivalent base-10 value of BIT
NAME string The mnemonic name of the data quality condition
DESCRIPTION string A description of the data quality condition

NOTE: For more information on standard bit definitions see: Data Quality Flags.

jwst.superbias Package

Classes

SuperBiasStep([name, parent, config_file, ...]) SuperBiasStep: Performs super-bias subtraction by sub-
tracting super-bias reference data from the input science
data model.

SuperBiasStep

class jwst.superbias.SuperBiasStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

SuperBiasStep: Performs super-bias subtraction by subtracting super-bias reference data from the input science
data model.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

15.1. Package Index 679

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'superbias'

reference_file_types = ['superbias']

spec

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep SuperBiasStepStep

680 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

15.1.62 TSO Aperture Photometry

Description

Class
jwst.tso_photometry.TSOPhotometryStep

Alias
tso_photometry

The tso_photometry step does aperture photometry with a circular aperture for the target. Background is computed
as the mean within a circular annulus. The output is a table (ASCII ecsv format) containing the time at the midpoint
of each integration and the photometry values.

Assumptions

This step is intended to be used for aperture photometry with time-series exposures. Only direct images should be used,
not spectra.

The target is assumed to have been placed at the aperture reference location, which is stored in the XREF_SCI and
YREF_SCI FITS keywords (note that these are 1-indexed values). Hence the step uses those keyword values as the
target location within the image.

Algorithm

The Astropy affiliated package photutils does the work.

If the input file was not averaged over integrations (i.e. a _calints product), and if the file contains an INT_TIMES table
extension, the times listed in the output table from this step will be extracted from column ‘int_mid_MJD_UTC’ of the
INT_TIMES extension. Otherwise, the times will be computed from the exposure start time, the integration time, and
the number of integrations. In either case, the times are Modified Julian Date, time scale UTC.

The output table contains these fields:

• MJD

• aperture_sum

• aperture_sum_err

• annulus_sum

• annulus_sum_err

• annulus_mean

• annulus_mean_err

• aperture_bkg

• aperture_bkg_err

• net_aperture_sum

• net_aperture_sum_err

15.1. Package Index 681

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Subarrays

If a subarray is used that is so small that the target aperture extends beyond the limits of the subarray, the entire area
of the subarray will be used for the target aperture, and no background subtraction will be done. A specific example is
SUB64 with NIRCam, using PUPIL = WLP8.

Step Arguments

The tso_photometry step has one step-specific argument:

• --save_catalog

If save_catalog is set to True (the default is False), the output table of times and photometry will be written to an
ecsv file with suffix “phot”.

Note that when this step is run as part of the calwebb_tso3 pipeline, the save_catalog argument should not be set,
because the output catalog will always be saved by the pipeline module itself. The save_catalog argument is useful
only when the tso_photometry step is run standalone.

Reference Files

The tso_photometry step uses a TSOPHOT reference file.

TSOPHOT Reference File

REFTYPE
TSOPHOT

Data model
TsoPhotModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.TsoPhotModel.html#jwst.datamodels.TsoPhotModel)

The TSOPHOT reference file contains photometry aperture radii for TSO imaging observation modes.

Reference Selection Keywords for TSOPHOT

CRDS selects appropriate TSOPHOT references based on the following keywords. TSOPHOT is not applicable for
instruments not in the table. All keywords used for file selection are required.

Instrument Keywords
MIRI INSTRUME, EXP_TYPE, TSOVISIT, DATE-OBS, TIME-OBS
NIRCam INSTRUME, EXP_TYPE, TSOVISIT, DATE-OBS, TIME-OBS

682 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.TsoPhotModel.html#jwst.datamodels.TsoPhotModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for TSOPHOT

In addition to the standard reference file keywords listed above, the following keywords are required in TSOPHOT
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for TSOPHOT):

Keyword Data Model Name
EXP_TYPE model.meta.exposure.type
TSOVISIT model.meta.visit.tsovisit

Reference File Format

TSOPHOT reference files are ASDF format. An object called ‘radii’ in a TSOPHOT file defines the radii that the
step needs. This object is a list of one or more dictionaries. Each such dictionary has four keys: ‘pupil’, ‘ra-
dius’, ‘radius_inner’, and ‘radius_outer’. The particular one of these dictionaries to use is selected by comparing
meta.instrument.pupil with the value corresponding to ‘pupil’ in each dictionary. If an exact match is found, that
dictionary will be used. If no match is found, the first dictionary with ‘pupil’: ‘ANY’ will be selected. The radii will
be taken from the values of keys ‘radius’, ‘radius_inner’, and ‘radius_outer’.

15.1. Package Index 683

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.tso_photometry Package

Classes

TSOPhotometryStep([name, parent, ...]) Perform circular aperture photometry on imaging Time
Series Observations (TSO).

TSOPhotometryStep

class jwst.tso_photometry.TSOPhotometryStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

Perform circular aperture photometry on imaging Time Series Observations (TSO).

Parameters
input (str or CubeModel) – Filename for a FITS image or association table, or a CubeModel.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

684 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

process(input_data) This is where real work happens.

Attributes Documentation

class_alias = 'tso_photometry'

reference_file_types = ['tsophot']

spec

save_catalog = boolean(default=False) # save exposure-level catalog

Methods Documentation

process(input_data)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep TSOPhotometryStepStep

15.1.63 TweakReg

Description

Class
jwst.tweakreg.TweakRegStep

Alias
tweakreg

15.1. Package Index 685

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Overview

This step creates image catalogs of point-like sources whose centroids are then used to compute corrections to the WCS
of the input images such that sky catalogs obtained from the image catalogs using the corrected WCS will align on the
sky.

Source Detection

If the meta.tweakreg_catalog attribute of input data models is a non-empty string and use_custom_catalogs
is True (https://docs.python.org/3/library/constants.html#True), then it will be interpreted as a file name of a user-
provided source catalog. The catalog must be in a format automatically recognized by read().

When the meta.tweakreg_catalog attribute of input data models is None
(https://docs.python.org/3/library/constants.html#None) or an empty string, then the tweakreg step will attempt
to detect sources in the input images. Stars are detected in the image with one of the following source detection
algorithms: photutils.detection.DAOStarFinder (default), photutils.detection.IRAFStarFinder, or
photutils.segmentation.SourceFinder in conjunction with photutils.segmentation.SourceCatalog.

DAOStarFinder is an implementation of the DAOFIND (http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?daofind) algorithm
(Stetson 1987, PASP 99, 191 (http://adsabs.harvard.edu/abs/1987PASP...99..191S)). It searches images for local density
maxima that have a peak amplitude greater than a specified threshold (the threshold is applied to a convolved image)
and have a size and shape similar to a defined 2D Gaussian kernel. DAOFind also provides an estimate of the object’s
roundness and sharpness, whose lower and upper bounds can be specified.

IRAFStarFinder is a Python implementation of the IRAF star finding algorithm, which also calculates the objects’
centroids, roundness, and sharpness. However, IRAFStarFinder uses image moments instead of 1-D Gaussian fits to
projected light distributions like DAOStarFinder.

SourceFinder implements a segmentation algorithm that identifies sources in an image based on a number of con-
nected pixels above a specified threshold value. The sources are deblended using a combination of multi-thresholding
and watershed segmentation. SourceCatalog finds the centroids of these sources, which are used as the retrieved star
positions.

Warning: It has been shown (STScI Technical Report JWST-STScI-008116, SM-12
(https://www.stsci.edu/~goudfroo/NIRISSdoc/Centroid_Accuracies_Precisions_NIRISS_v2.pdf)) that for un-
dersampled PSFs, e.g. for short-wavelength NIRISS imaging data, DAOStarFinder gives bad results no matter
the input parameters due to its use of 1-D Gaussian fits. IRAFStarFinder or SourceFinder should be used
instead.

Note: SourceFinder is likely to detect non-stellar sources such as galaxies because sources are not assumed to be
point-source-like. This may lead to mismatches between the derived source catalog and the reference catalog during
the alignment step.

686 Chapter 15. Package Documentation

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?daofind
http://adsabs.harvard.edu/abs/1987PASP...99..191S
https://www.stsci.edu/~goudfroo/NIRISSdoc/Centroid_Accuracies_Precisions_NIRISS_v2.pdf

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Custom Source Catalogs

Source detection built into the tweakreg step can be disabled by providing a file name to a custom source catalog in
the meta.tweakreg_catalog attribute of input data models. The catalog must be in a format automatically recog-
nized by read(). The catalog must contain either 'x' and 'y' or 'xcentroid' and 'ycentroid' columns which
indicate source image coordinates (in pixels). Pixel coordinates are 0-indexed. An optional column in the catalog is
the 'weight' column, which when present, will be used in fitting.

For the tweakreg step to use user-provided input source catalogs, use_custom_catalogs parameter of the tweakreg
step must be set to True (https://docs.python.org/3/library/constants.html#True).

In addition to setting the meta.tweakreg_catalog attribute of input data models to the custom catalog file name, the
tweakreg_step also supports two other ways of supplying custom source catalogs to the step:

1. Adding tweakreg_catalog attribute to the members of the input ASN table - see ModelContainer for more
details. Catalog file names are relative to ASN file path.

2. Providing a simple two-column text file, specified via step’s parameter catfile, that contains input data models’
file names in the first column and the file names of the corresponding catalogs in the second column. Catalog
file names are relative to catfile file path.

Specifying custom source catalogs via either the input ASN file or catfile will update input data models’ meta.
tweakreg_catalog attributes to the catalog file names provided in either in the ASN file or catfile.

Note: When custom source catalogs are provided via both catfile and ASN file members’ attributes, the catfile
takes precedence and catalogs specified via ASN file are ignored altogether.

Note:
1. Providing a data model file name in the catfile and leaving the corresponding source cata-

log file name empty – same as setting 'tweakreg_catalog' in the ASN file to an empty string
"" – would set the corresponding input data model’s meta.tweakreg_catalog attribute to None
(https://docs.python.org/3/library/constants.html#None). In this case, tweakreg_step will automatically gen-
erate a source catalog for that data model.

2. If an input data model is not listed in the catfile or does not have the 'tweakreg_catalog' attribute pro-
vided in the ASN file, then the catalog file name in that model’s meta.tweakreg_catalog attribute will be
used. If model.meta.tweakreg_catalog is None (https://docs.python.org/3/library/constants.html#None),
tweakreg_step will automatically generate a source catalog for that data model.

Alignment

The source catalogs for each input image are compared to each other and linear (affine) coordinate transformations that
align these catalogs are derived. This fit ensures that all the input images are aligned relative to each other. This step
produces a combined source catalog for the entire set of input images as if they were combined into a single mosaic.

If the step parameter abs_refcat is set to ‘GAIADR3’, ‘GAIADR2’, or ‘GAIADR1’, an astrometric reference catalog
then gets generated by querying a GAIA-based astrometric catalog web service for all astrometrically measured sources
in the combined field-of-view of the set of input images. This catalog is generated from the catalogs available through
the STScI MAST Catalogs (https://outerspace.stsci.edu/display/MASTDATA/Catalog+Access) and has the ability to
account for proper motion to a given epoch. The epoch is computed from the observation date and time of the input
data.

15.1. Package Index 687

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://outerspace.stsci.edu/display/MASTDATA/Catalog+Access

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

The combined source catalog derived in the first step then gets cross-matched and fit to this astrometric reference
catalog. The pipeline initially supports fitting to the GAIADR3 catalog, with the option to select the GAIADR2 or
GAIADR1 instead. The results of this one fit then gets back-propagated to all the input images to align them all to the
astrometric reference frame while maintaining the relative alignment between the images.

For this part of alignment, instead of ‘GAIADR1’, ‘GAIADR2’, or ‘GAIADR3’, users can supply an external reference
catalog by providing a path to an existing file. A user-supplied catalog must contain 'RA' and 'DEC' columns indicating
reference source world coordinates (in degrees). An optional column in the catalog is the 'weight' column, which
when present, will be used in fitting. The catalog must be in a format automatically recognized by read().

Grouping

Images taken at the same time (e.g., NIRCam images from all short-wave detectors) can be aligned together; that is,
a single correction can be computed and applied to all these images because any error in telescope pointing will be
identical in all these images and it is assumed that the relative positions of (e.g., NIRCam) detectors do not change.
Identification of images that belong to the same “exposure” and therefore can be grouped together is based on several
attributes described in ModelContainer. This grouping is performed automatically in the tweakreg step using the
models_grouped property, which assigns a group ID to each input image model in meta.group_id.

However, when detector calibrations are not accurate, alignment of groups of images may fail (or result in poor align-
ment). In this case, it may be desirable to align each image independently. This can be achieved either by setting the
image_model.meta.group_id attribute to a unique string or integer value for each image, or by adding the group_id
attribute to the members of the input ASN table - see ModelContainer for more details.

Note: Group ID (group_id) is used by both tweakreg and skymatch steps and so modifying it for one step will
affect the results in another step. If it is desirable to apply different grouping strategies to the tweakreg and skymatch
steps, one may need to run each step individually and provide a different ASN as input to each step.

WCS Correction

The linear coordinate transformation computed in the previous step is used to define tangent-plane corrections that need
to be applied to the GWCS pipeline in order to correct input image WCS. This correction is implemented by inserting
a v2v3corr frame with tangent plane corrections into the GWCS pipeline of the image’s WCS.

Step Arguments

The tweakreg step has the following optional arguments:

Source finding parameters:
• save_catalogs: A boolean indicating whether or not the catalogs should be written out. This parameter is

ignored for input data models whose meta.tweakreg_catalog is a non-empty string pointing to a user-supplied
source catalog. (Default=False)

• use_custom_catalogs: A boolean that indicates whether to ignore source catalog in the input data model’s
meta.tweakreg_catalog attribute. If False (https://docs.python.org/3/library/constants.html#False), new
catalogs will be generated by the tweakreg step. (Default=False)

• catalog_format: A str (https://docs.python.org/3/library/stdtypes.html#str) indicating catalog output file for-
mat. (Default= 'ecsv')

• catfile: Name of the file with a list of custom user-provided catalogs. (Default= '')

688 Chapter 15. Package Documentation

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• bkg_boxsize: A positive int (https://docs.python.org/3/library/functions.html#int) indicating the background
mesh box size in pixels. (Default=400)

• starfinder: A str (https://docs.python.org/3/library/stdtypes.html#str) indicating the source detection algo-
rithm to use. Allowed values: 'iraf', 'dao', 'segmentation'. (Default= 'dao')

• snr_threshold: A float (https://docs.python.org/3/library/functions.html#float) value indicating SNR
threshold above the background. Required for all star finders. (Default=10.0)

Additional source finding parameters for DAO and IRAF:
• kernel_fwhm: A float (https://docs.python.org/3/library/functions.html#float) value indicating the Gaussian

kernel FWHM in pixels. (Default=2.5)

• minsep_fwhm: A float (https://docs.python.org/3/library/functions.html#float) value indicating the minimum
separation between detected objects in units of number of FWHMs. (Default=0.0)

• sigma_radius: A float (https://docs.python.org/3/library/functions.html#float) value indicating the trunca-
tion radius of the Gaussian kernel in units of number of FWHMs. (Default=2.5)

• sharplo: A float (https://docs.python.org/3/library/functions.html#float) value indicating The lower bound
on sharpness for object detection. (Default=0.2)

• sharphi: A float (https://docs.python.org/3/library/functions.html#float) value indicating the upper bound on
sharpness for object detection. (Default=1.0)

• roundlo: A float (https://docs.python.org/3/library/functions.html#float) value indicating the lower bound on
roundness for object detection. (Default=-1.0)

• roundhi: A float (https://docs.python.org/3/library/functions.html#float) value indicating the upper bound on
roundness for object detection. (Default=1.0)

• brightest: A positive int (https://docs.python.org/3/library/functions.html#int) value indicating the number
of brightest objects to keep. If None, keep all objects above the threshold. (Default=200)

• peakmax: A float (https://docs.python.org/3/library/functions.html#float) value used to filter out objects with
pixel values >= peakmax. (Default=None)

Additional source finding parameters for segmentation:
• npixels: An int (https://docs.python.org/3/library/functions.html#int) value indicating the minimum number

of connected pixels that comprises a segment (Default=10)

• connectivity: An int (https://docs.python.org/3/library/functions.html#int) value indicating the connectivity
defining the neighborhood of a pixel. Options are 4, i.e., connected pixels touch along edges, or 8, i.e, connected
pixels touch along edges or corners (Default=8)

• nlevels: An int (https://docs.python.org/3/library/functions.html#int) value indicating the number of multi-
thresholding levels for deblending (Default=32)

• contrast: A float (https://docs.python.org/3/library/functions.html#float) value indicating the fraction of to-
tal source flux an object must have to be deblended (Default=0.001)

• multithresh_mode: A str (https://docs.python.org/3/library/stdtypes.html#str) indicating the multi-
thresholding mode. Allowed values: 'exponential', 'linear', 'sinh'. (Default= 'exponential')

• localbkg_width: An int (https://docs.python.org/3/library/functions.html#int) value indicating the width of
rectangular annulus used to compute local background around each source. If set to 0, then local background
will not be subtracted. (Default=0)

• apermask_method: A str (https://docs.python.org/3/library/stdtypes.html#str) indicating the method used to
handle neighboring sources when performing aperture photometry. Allowed values: 'correct', 'mask',
'none'. (Default= 'correct')

15.1. Package Index 689

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• kron_params: A tuple of float (https://docs.python.org/3/library/functions.html#float) values indicating the
parameters defining Kron aperture. If None, the parameters (2.5, 1.4, 0.0) are used. (Default=None)

Optimize alignment order:
• enforce_user_order: a boolean value indicating whether or not take the first image as a reference image and

then align the rest of the images to that reference image in the order in which input images have been provided
or to optimize order in which images are aligned. (Default=False)

Reference Catalog parameters:
• expand_refcat: A boolean indicating whether or not to expand reference catalog with new sources from other

input images that have been already aligned to the reference image. (Default=False)

Object matching parameters:
• minobj: A positive int (https://docs.python.org/3/library/functions.html#int) indicating minimum number of

objects acceptable for matching. (Default=15)

• searchrad: A float (https://docs.python.org/3/library/functions.html#float) indicating the search radius in
arcsec for a match. (Default=2.0)

• use2dhist: A boolean indicating whether to use 2D histogram to find initial offset. (Default=True)

• separation: Minimum object separation in arcsec. (Default=1.0)

• tolerance: Matching tolerance for xyxymatch in arcsec. (Default=0.7)

• xoffset: Initial guess for X offset in arcsec. (Default=0.0)

• yoffset: Initial guess for Y offset in arcsec. (Default=0.0)

Catalog fitting parameters:
• fitgeometry: A str (https://docs.python.org/3/library/stdtypes.html#str) value indicating the type of affine

transformation to be considered when fitting catalogs. Allowed values:

– 'shift': x/y shifts only

– 'rshift': rotation and shifts

– 'rscale': rotation and scale

– 'general': shift, rotation, and scale

The default value is “rshift”.

Note: Mathematically, alignment of images observed in different tangent planes requires
fitgeometry='general' in order to fit source catalogs in the different images even if mis-alignment is
caused only by a shift or rotation in the tangent plane of one of the images.

However, under certain circumstances, such as small alignment errors or minimal dithering during observa-
tions that keep tangent planes of the images to be aligned almost parallel, then it may be more robust to use a
fitgeometry setting with fewer degrees of freedom such as 'rshift', especially for “ill-conditioned” source
catalogs such as catalogs with very few sources, or large errors in source positions, or sources placed along a
line or bunched in a corner of the image (not spread across/covering the entire image).

• nclip: A non-negative integer number of clipping iterations to use in the fit. (Default=3)

• sigma: A positive float (https://docs.python.org/3/library/functions.html#float) indicating the clipping limit,
in sigma units, used when performing fit. (Default=3.0)

690 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Absolute Astrometric fitting parameters:
Parameters used for absolute astrometry to a reference catalog.

• abs_refcat: String indicating what astrometric catalog should be used. Currently supported
options: ‘GAIADR1’, ‘GAIADR2’, ‘GAIADR3’, a path to an existing reference catalog, None
(https://docs.python.org/3/library/constants.html#None), or ''. See jwst.tweakreg.tweakreg_step.
SINGLE_GROUP_REFCAT for an up-to-date list of supported built-in reference catalogs.

When abs_refcat is None (https://docs.python.org/3/library/constants.html#None) or an empty string, align-
ment to the absolute astrometry catalog will be turned off. (Default= '')

• abs_minobj: A positive int (https://docs.python.org/3/library/functions.html#int) indicating minimum number
of objects acceptable for matching. (Default=15)

• abs_searchrad: A float (https://docs.python.org/3/library/functions.html#float) indicating the search radius
in arcsec for a match. It is recommended that a value larger than searchrad be used for this parameter (e.g. 3
times larger) (Default=6.0)

• abs_use2dhist: A boolean indicating whether to use 2D histogram to find initial offset. It is strongly recom-
mended setting this parameter to True (https://docs.python.org/3/library/constants.html#True). Otherwise the
initial guess for the offsets will be set to zero (Default=True)

• abs_separation: Minimum object separation in arcsec. It is recommended that a value smaller than
separation be used for this parameter (e.g. 10 times smaller) (Default=0.1)

• abs_tolerance: Matching tolerance for xyxymatch in arcsec. (Default=0.7)

• abs_fitgeometry: A str (https://docs.python.org/3/library/stdtypes.html#str) value indicating the type of
affine transformation to be considered when fitting catalogs. Allowed values:

– 'shift': x/y shifts only

– 'rshift': rotation and shifts

– 'rscale': rotation and scale

– 'general': shift, rotation, and scale

The default value is “rshift”. Note that the same conditions/restrictions that apply to fitgeometry also apply to
abs_fitgeometry.

• abs_nclip: A non-negative integer number of clipping iterations to use in the fit. (Default = 3)

• abs_sigma: A positive float (https://docs.python.org/3/library/functions.html#float) indicating the clipping
limit, in sigma units, used when performing fit. (Default=3.0)

• save_abs_catalog: A boolean specifying whether or not to write out the astrometric catalog used for the fit
as a separate product. (Default=False)

Further Documentation

The underlying algorithms as well as formats of source catalogs are described in more detail at

https://tweakwcs.readthedocs.io/en/latest/

Further description of the input parameters and algorithms for star finding can be found at the following links:

• DAOStarFinder (https://photutils.readthedocs.io/en/stable/api/photutils.detection.DAOStarFinder.html)

• IRAFStarFinder (https://photutils.readthedocs.io/en/stable/api/photutils.detection.IRAFStarFinder.html)

• SourceFinder (https://photutils.readthedocs.io/en/stable/api/photutils.segmentation.SourceFinder.html)

15.1. Package Index 691

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://tweakwcs.readthedocs.io/en/latest/
https://photutils.readthedocs.io/en/stable/api/photutils.detection.DAOStarFinder.html
https://photutils.readthedocs.io/en/stable/api/photutils.detection.IRAFStarFinder.html
https://photutils.readthedocs.io/en/stable/api/photutils.segmentation.SourceFinder.html

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• SourceCatalog (https://photutils.readthedocs.io/en/stable/api/photutils.segmentation.SourceCatalog.html)

Reference Files

The tweakreg step uses the PARS-TWEAKREGSTEP parameter reference file.

PARS-TWEAKREGSTEP Parameter Reference File

REFTYPE
PARS-TWEAKREGSTEP

Data model
N/A

Reference Selection Keywords

CRDS selects appropriate pars-tweakregstep references based on the following keywords.

Instrument Keywords
FGS EXP_TYPE
MIRI EXP_TYPE, FILTER
NIRCAM EXP_TYPE, FILTER, PUPIL
NIRISS EXP_TYPE, FILTER, PUPIL

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Also See:

692 Chapter 15. Package Documentation

https://photutils.readthedocs.io/en/stable/api/photutils.segmentation.SourceCatalog.html

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

tweakreg_catalog

The tweakreg_catalog module provides functions for generating catalogs of sources from images.

jwst.tweakreg.tweakreg_catalog Module

Functions

make_tweakreg_catalog(model, snr_threshold) Create a catalog of point-line sources to be used for im-
age alignment in tweakreg.

make_tweakreg_catalog

jwst.tweakreg.tweakreg_catalog.make_tweakreg_catalog(model, snr_threshold, bkg_boxsize=400,
starfinder='dao', starfinder_kwargs={})

Create a catalog of point-line sources to be used for image alignment in tweakreg.

Parameters
• model (ImageModel) – The input ImageModel of a single image. The input image is as-

sumed to be background subtracted.

• snr_threshold (float (https://docs.python.org/3/library/functions.html#float)) – The
signal-to-noise ratio per pixel above the background for which to consider a pixel as possi-
bly being part of a source.

• bkg_boxsize (float (https://docs.python.org/3/library/functions.html#float),
optional) – The background mesh box size in pixels.

• starfinder (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The
photutils star finder to use. Options are ‘dao’, ‘iraf’, or ‘segmentation’.

– ’dao’: photutils.detection.DAOStarFinder

– ’iraf’: photutils.detection.IRAFStarFinder

– ’segmentation’: photutils.segmentation.SourceFinder and photutils.
segmentation.SourceCatalog

• starfinder_kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict),
optional) – additional keyword arguments to be passed to the star finder. for ‘seg-
mentation’, these can be kwargs to photutils.segmentation.SourceFinder
and/or photutils.segmentation.SourceCatalog. for ‘dao’ or ‘iraf’, these are
kwargs to photutils.detection.DAOStarFinder or photutils.detection.
IRAFStarFinder, respectively. Defaults are as stated in the docstrings of those functions
unless noted here:

– ’dao’: fwhm=2.5

– ’iraf’: fwhm=2.5

– ’segmentation’: npixels=10, progress_bar=False

Returns
catalog – An astropy Table containing the source catalog.

15.1. Package Index 693

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Return type
Table

tweakreg_step

The tweakreg_step function (class name TweakRegStep) is the top-level function used to call the “tweakreg” oper-
ation from the JWST calibration pipeline.

jwst.tweakreg.tweakreg_step Module

JWST pipeline step for image alignment.

Authors
Mihai Cara

Classes

TweakRegStep([name, parent, config_file, ...]) TweakRegStep: Image alignment based on catalogs of
sources detected in input images.

TweakRegStep

class jwst.tweakreg.tweakreg_step.TweakRegStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

TweakRegStep: Image alignment based on catalogs of sources detected in input images.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

694 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'tweakreg'

reference_file_types = []

spec

save_catalogs = boolean(default=False) # Write out catalogs?
use_custom_catalogs = boolean(default=False) # Use custom user-provided␣
→˓catalogs?
catalog_format = string(default='ecsv') # Catalog output file format
catfile = string(default='') # Name of the file with a list of custom user-
→˓provided catalogs
starfinder = option('dao', 'iraf', 'segmentation', default='dao') # Star finder␣
→˓to use.
snr_threshold = float(default=10.0) # SNR threshold above the bkg for star␣
→˓finder
kwargs for DAOStarFinder and IRAFStarFinder, only used if starfinder is 'dao'␣
→˓or 'iraf'
kernel_fwhm = float(default=2.5) # Gaussian kernel FWHM in pixels
minsep_fwhm = float(default=0.0) # Minimum separation between detected objects␣
→˓in FWHM
sigma_radius = float(default=1.5) # Truncation radius of the Gaussian kernel in␣
→˓units of sigma
sharplo = float(default=0.2) # The lower bound on sharpness for object␣
→˓detection.
sharphi = float(default=1.0) # The upper bound on sharpness for object␣
→˓detection.
roundlo = float(default=-1.0) # The lower bound on roundness for object␣
→˓detection.
roundhi = float(default=1.0) # The upper bound on roundness for object␣
→˓detection.
brightest = integer(default=200) # Keep top ``brightest`` objects
peakmax = float(default=None) # Filter out objects with pixel values >=␣
→˓``peakmax``

(continues on next page)

15.1. Package Index 695

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

kwargs for SourceCatalog and SourceFinder, only used if starfinder is
→˓'segmentation'
npixels = integer(default=10) # Minimum number of connected pixels
connectivity = option(4, 8, default=8) # The connectivity defining the␣
→˓neighborhood of a pixel
nlevels = integer(default=32) # Number of multi-thresholding levels for␣
→˓deblending
contrast = float(default=0.001) # Fraction of total source flux an object must␣
→˓have to be deblended
multithresh_mode = option('exponential', 'linear', 'sinh', default='exponential
→˓') # Multi-thresholding mode
localbkg_width = integer(default=0) # Width of rectangular annulus used to␣
→˓compute local background around each source
apermask_method = option('correct', 'mask', 'none', default='correct') # How to␣
→˓handle neighboring sources
kron_params = float_list(min=2, max=3, default=None) # Parameters defining Kron␣
→˓aperture
continue args for rest of step
bkg_boxsize = integer(default=400) # The background mesh box size in pixels.
enforce_user_order = boolean(default=False) # Align images in user specified␣
→˓order?
expand_refcat = boolean(default=False) # Expand reference catalog with new␣
→˓sources?
minobj = integer(default=15) # Minimum number of objects acceptable for matching
searchrad = float(default=2.0) # The search radius in arcsec for a match
use2dhist = boolean(default=True) # Use 2d histogram to find initial offset?
separation = float(default=1.0) # Minimum object separation for xyxymatch in␣
→˓arcsec
tolerance = float(default=0.7) # Matching tolerance for xyxymatch in arcsec
xoffset = float(default=0.0), # Initial guess for X offset in arcsec
yoffset = float(default=0.0) # Initial guess for Y offset in arcsec
fitgeometry = option('shift', 'rshift', 'rscale', 'general', default='rshift')
→˓# Fitting geometry
nclip = integer(min=0, default=3) # Number of clipping iterations in fit
sigma = float(min=0.0, default=3.0) # Clipping limit in sigma units
abs_refcat = string(default='') # Catalog file name or one of: "'GAIADR3'", "
→˓'GAIADR2'", or "'GAIADR1'", or None, or ''
save_abs_catalog = boolean(default=False) # Write out used absolute␣
→˓astrometric reference catalog as a separate product
abs_minobj = integer(default=15) # Minimum number of objects acceptable for␣
→˓matching when performing absolute astrometry
abs_searchrad = float(default=6.0) # The search radius in arcsec for a match␣
→˓when performing absolute astrometry
We encourage setting this parameter to True. Otherwise, xoffset and yoffset␣
→˓will be set to zero.
abs_use2dhist = boolean(default=True) # Use 2D histogram to find initial offset␣
→˓when performing absolute astrometry?
abs_separation = float(default=0.1) # Minimum object separation in arcsec when␣
→˓performing absolute astrometry
abs_tolerance = float(default=0.7) # Matching tolerance for xyxymatch in arcsec␣
→˓when performing absolute astrometry
Fitting geometry when performing absolute astrometry

(continues on next page)

696 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

abs_fitgeometry = option('shift', 'rshift', 'rscale', 'general', default='rshift
→˓')
abs_nclip = integer(min=0, default=3) # Number of clipping iterations in fit␣
→˓when performing absolute astrometry
abs_sigma = float(min=0.0, default=3.0) # Clipping limit in sigma units when␣
→˓performing absolute astrometry
output_use_model = boolean(default=True) # When saving use `DataModel.meta.
→˓filename`

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep TweakRegStepStep

Utility Functions

Currently, the utils module provides helpful functions for manually applying corrections to an imaging WCS.

jwst.tweakreg.utils Module

Functions

adjust_wcs(wcs[, delta_ra, delta_dec, ...]) Apply corrections to an imaging WCS of 'cal' data mod-
els.

transfer_wcs_correction(to_image, from_image) Applies the same total WCS correction that was applied
by tweakreg (!) to the WCS in the from_image data
model to the WCS of the to_image data model.

15.1. Package Index 697

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

adjust_wcs

jwst.tweakreg.utils.adjust_wcs(wcs, delta_ra=0.0, delta_dec=0.0, delta_roll=0.0, scale_factor=1.0)
Apply corrections to an imaging WCS of ‘cal’ data models.

Warning: This function is not designed to handle neither FITS WCS nor GWCS of resampled images. It
is designed specifically for GWCS of calibrated imaging data models that can be used as input to Stage 3 of
the JWST pipeline (with suffixes ‘_cal’, ‘_tweakreg’, ‘_skymatch’).

Warning: This function modifies the WCS of calibrated imaging data models in a way that is NOT com-
patible with tweakreg: once a WCS was modified using adjust_wcs(), the corresponding imaging data
model (whose WCS was modified) no longer be aligned using the tweakreg step.

Parameters
• wcs (gwcs.WCS) – WCS object to be adjusted. Must be an imaging JWST WCS of a cali-

brated data model.

• delta_ra (float (https://docs.python.org/3/library/functions.html#float), astropy.
units.Quantity, optional) – Additional rotation (in degrees if units not provided) to
be applied along the longitude direction.

• delta_dec (float (https://docs.python.org/3/library/functions.html#float), astropy.
units.Quantity, optional) – Additional rotation (in degrees if units not provided) to
be applied along the latitude direction.

• delta_roll (float (https://docs.python.org/3/library/functions.html#float), astropy.
units.Quantity, optional) – Additional rotation (in degrees if units not provided) to
be applied to the telescope roll angle (rotation about V1 axis).

• scale_factor (float (https://docs.python.org/3/library/functions.html#float),
optional) – A multiplicative scale factor to be applied to the current scale (if any)
in the WCS. If input wcs does not have a scale factor applied, it is assumed to be 1. The
scale factor is applied in a tangent plane perpendicular to the V1 axis of the telescope.

Returns
wcs – Adjusted WCS object.

Return type
gwcs.WCS

transfer_wcs_correction

jwst.tweakreg.utils.transfer_wcs_correction(to_image, from_image, matrix=None, shift=None)
Applies the same total WCS correction that was applied by tweakreg (!) to the WCS in the from_image
data model to the WCS of the to_image data model. In some ways this function is analogous function to the
tweakback function for HST available in the drizzlepac package (https://github.com/spacetelescope/drizzlepac).

One fundamental difference between this function and tweakback is that JWST data models do not keep a history
of data’s WCS via alternative WCS as it is done in HST data and so it is impossible to select and apply only one
particular WCS correction if there were multiple corrections previously applied to a WCS. The tangent-plane
correction in JWST WCS is cumulative/total correction. If you would like to apply a specific/custom correction,

698 Chapter 15. Package Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://github.com/spacetelescope/drizzlepac

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

you can do that via matrix and shift arguments which is defined in the reference tangent plane provided by
the from_image’s WCS.

When providing your own corrections via matrix and shift arguments, this function is similar to the
adjust_wcs() function but provides an alternative way of specifying corrections via affine transformations
in a reference tangent plane.

Warning: Upon return, if the to_image argument is an ImageModel it will be modified with an updated
ImageModel.meta.wcs WCS model. If to_image argument is a file name of an ImageModel, that model
will be read in, its WCS will be updated, and the updated model will be written out to the same file. BACKUP
the file in to_image argument before calling this function.

Warning: This function does not support input data models whose WCS were modified by adjust_wcs().
Only WCS corrections computed by either the tweakreg step or by tweakwcs package are supported.

Parameters
• to_image (str (https://docs.python.org/3/library/stdtypes.html#str), ImageModel) – Im-

age model to which the correction should be applied/transferred to.

Warning: If it is a string file name then, upon return, this file will be overwritten with
a data model with an updated WCS.

• from_image (str (https://docs.python.org/3/library/stdtypes.html#str), ImageModel,
gwcs.wcs.WCS (https://gwcs.readthedocs.io/en/stable/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS))
– A data model whose WCS was previously corrected. This data model plays two roles:
1) it is the reference WCS which provides a tangent plane in which corrections have been
defined, and 2) it provides WCS corrections to be applied to to_image’s WCS.

If the WCS of the from_image data model does not contain corrections, then both matrix
and shift arguments must be supplied.

• matrix (2D list, 2D numpy.ndarray, None, optional) – A 2D matrix part of an
affine transformation defined in the tangent plane derived from the from_image’s WCS.

Note: When provided, shift argument must also be provided in which case matrix and
shift arguments override the correction (if present) from the from_file’s WCS.

• shift (list (https://docs.python.org/3/library/stdtypes.html#list), numpy.ndarray
(https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray),
None, optional) – A list of length 2 representing the translational part of an affine
transformation (in arcsec) defined in the tangent plane derived from the from_image’s
WCS.

Note: When provided, matrix argument must also be provided in which case matrix and
shift arguments override the correction (if present) from the from_file’s WCS.

Returns
• Upon return, if the to_image argument is an ImageModel it will be

15.1. Package Index 699

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://gwcs.readthedocs.io/en/stable/api/gwcs.wcs.WCS.html#gwcs.wcs.WCS
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• modified with an updated ImageModel.meta.wcs WCS model.

• If to_image argument is a file name of an ImageModel, that

• model will be read in, its WCS will be updated, and the updated model

• will be written to the same file. BACKUP the file in to_image

• argument before calling this function.

astrometric_utils

The astrometric_utils module provides functions for generating astrometric catalogs of sources for the field-of-
view covered by a set of images.

jwst.tweakreg.astrometric_utils Module

Functions

compute_radius(wcs) Compute the radius from the center to the furthest edge
of the WCS.

create_astrometric_catalog(input_models[, ...]) Create an astrometric catalog that covers the inputs' field-
of-view.

get_catalog(ra, dec[, epoch, sr, catalog]) Extract catalog from VO web service.

compute_radius

jwst.tweakreg.astrometric_utils.compute_radius(wcs)
Compute the radius from the center to the furthest edge of the WCS.

create_astrometric_catalog

jwst.tweakreg.astrometric_utils.create_astrometric_catalog(input_models, catalog='GAIADR3',
output='ref_cat.ecsv', gaia_only=False,
table_format='ascii.ecsv',
existing_wcs=None,
num_sources=None, epoch=None)

Create an astrometric catalog that covers the inputs’ field-of-view.

Parameters
• input_models (list of JwstDataModel) – Each datamodel must have a ~gwcs.WCS object.

• catalog (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – Name of
catalog to extract astrometric positions for sources in the input images’ field-of-view. Default:
GAIADR3. Options available are documented on the catalog web page.

• output (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – Filename
to give to the astrometric catalog read in from the master catalog web service. If None, no
file will be written out.

700 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• gaia_only (bool (https://docs.python.org/3/library/functions.html#bool), optional) –
Specify whether or not to only use sources from GAIA in output catalog

• existing_wcs (model) – existing WCS object specified by the user as generated by
resample.resample_utils.make_output_wcs

• num_sources (int (https://docs.python.org/3/library/functions.html#int)) – Maximum
number of brightest/faintest sources to return in catalog. If num_sources is negative, return
that number of the faintest sources. By default, all sources are returned.

• epoch (float (https://docs.python.org/3/library/functions.html#float), optional) – Ref-
erence epoch used to update the coordinates for proper motion (in decimal year). If None
(https://docs.python.org/3/library/constants.html#None) then the epoch is obtained from the
metadata.

Notes

This function will point to astrometric catalog web service defined through the use of the ASTROMET-
RIC_CATALOG_URL environment variable.

Returns
ref_table – Astropy Table object of the catalog

Return type
Table

get_catalog

jwst.tweakreg.astrometric_utils.get_catalog(ra, dec, epoch=2016.0, sr=0.1, catalog='GAIADR3')
Extract catalog from VO web service.

Parameters
• ra (float (https://docs.python.org/3/library/functions.html#float)) – Right Ascension (RA)

of center of field-of-view (in decimal degrees)

• dec (float (https://docs.python.org/3/library/functions.html#float)) – Declination (Dec) of
center of field-of-view (in decimal degrees)

• epoch (float (https://docs.python.org/3/library/functions.html#float), optional) – Ref-
erence epoch used to update the coordinates for proper motion (in decimal year). Default:
2016.0

• sr (float (https://docs.python.org/3/library/functions.html#float), optional) – Search
radius (in decimal degrees) from field-of-view center to use for sources from catalog. De-
fault: 0.1 degrees

• catalog (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – Name of
catalog to query, as defined by web-service. Default: ‘GAIADR3’

Returns
csv – CSV object of returned sources with all columns as provided by catalog

Return type
CSV object

15.1. Package Index 701

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Variables

TIMEOUT Primary function for creating an astrometric reference
catalog.

TIMEOUT

jwst.tweakreg.astrometric_utils.TIMEOUT = 30.0

Primary function for creating an astrometric reference catalog.

jwst.tweakreg Package

This package provides support for image alignment.

Classes

TweakRegStep([name, parent, config_file, ...]) TweakRegStep: Image alignment based on catalogs of
sources detected in input images.

TweakRegStep

class jwst.tweakreg.TweakRegStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

TweakRegStep: Image alignment based on catalogs of sources detected in input images.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

702 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'tweakreg'

reference_file_types = []

spec

save_catalogs = boolean(default=False) # Write out catalogs?
use_custom_catalogs = boolean(default=False) # Use custom user-provided␣
→˓catalogs?
catalog_format = string(default='ecsv') # Catalog output file format
catfile = string(default='') # Name of the file with a list of custom user-
→˓provided catalogs
starfinder = option('dao', 'iraf', 'segmentation', default='dao') # Star finder␣
→˓to use.
snr_threshold = float(default=10.0) # SNR threshold above the bkg for star␣
→˓finder
kwargs for DAOStarFinder and IRAFStarFinder, only used if starfinder is 'dao'␣
→˓or 'iraf'
kernel_fwhm = float(default=2.5) # Gaussian kernel FWHM in pixels
minsep_fwhm = float(default=0.0) # Minimum separation between detected objects␣
→˓in FWHM
sigma_radius = float(default=1.5) # Truncation radius of the Gaussian kernel in␣
→˓units of sigma
sharplo = float(default=0.2) # The lower bound on sharpness for object␣
→˓detection.
sharphi = float(default=1.0) # The upper bound on sharpness for object␣
→˓detection.
roundlo = float(default=-1.0) # The lower bound on roundness for object␣
→˓detection.
roundhi = float(default=1.0) # The upper bound on roundness for object␣
→˓detection.
brightest = integer(default=200) # Keep top ``brightest`` objects
peakmax = float(default=None) # Filter out objects with pixel values >=␣
→˓``peakmax``

(continues on next page)

15.1. Package Index 703

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

kwargs for SourceCatalog and SourceFinder, only used if starfinder is
→˓'segmentation'
npixels = integer(default=10) # Minimum number of connected pixels
connectivity = option(4, 8, default=8) # The connectivity defining the␣
→˓neighborhood of a pixel
nlevels = integer(default=32) # Number of multi-thresholding levels for␣
→˓deblending
contrast = float(default=0.001) # Fraction of total source flux an object must␣
→˓have to be deblended
multithresh_mode = option('exponential', 'linear', 'sinh', default='exponential
→˓') # Multi-thresholding mode
localbkg_width = integer(default=0) # Width of rectangular annulus used to␣
→˓compute local background around each source
apermask_method = option('correct', 'mask', 'none', default='correct') # How to␣
→˓handle neighboring sources
kron_params = float_list(min=2, max=3, default=None) # Parameters defining Kron␣
→˓aperture
continue args for rest of step
bkg_boxsize = integer(default=400) # The background mesh box size in pixels.
enforce_user_order = boolean(default=False) # Align images in user specified␣
→˓order?
expand_refcat = boolean(default=False) # Expand reference catalog with new␣
→˓sources?
minobj = integer(default=15) # Minimum number of objects acceptable for matching
searchrad = float(default=2.0) # The search radius in arcsec for a match
use2dhist = boolean(default=True) # Use 2d histogram to find initial offset?
separation = float(default=1.0) # Minimum object separation for xyxymatch in␣
→˓arcsec
tolerance = float(default=0.7) # Matching tolerance for xyxymatch in arcsec
xoffset = float(default=0.0), # Initial guess for X offset in arcsec
yoffset = float(default=0.0) # Initial guess for Y offset in arcsec
fitgeometry = option('shift', 'rshift', 'rscale', 'general', default='rshift')
→˓# Fitting geometry
nclip = integer(min=0, default=3) # Number of clipping iterations in fit
sigma = float(min=0.0, default=3.0) # Clipping limit in sigma units
abs_refcat = string(default='') # Catalog file name or one of: "'GAIADR3'", "
→˓'GAIADR2'", or "'GAIADR1'", or None, or ''
save_abs_catalog = boolean(default=False) # Write out used absolute␣
→˓astrometric reference catalog as a separate product
abs_minobj = integer(default=15) # Minimum number of objects acceptable for␣
→˓matching when performing absolute astrometry
abs_searchrad = float(default=6.0) # The search radius in arcsec for a match␣
→˓when performing absolute astrometry
We encourage setting this parameter to True. Otherwise, xoffset and yoffset␣
→˓will be set to zero.
abs_use2dhist = boolean(default=True) # Use 2D histogram to find initial offset␣
→˓when performing absolute astrometry?
abs_separation = float(default=0.1) # Minimum object separation in arcsec when␣
→˓performing absolute astrometry
abs_tolerance = float(default=0.7) # Matching tolerance for xyxymatch in arcsec␣
→˓when performing absolute astrometry
Fitting geometry when performing absolute astrometry

(continues on next page)

704 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

(continued from previous page)

abs_fitgeometry = option('shift', 'rshift', 'rscale', 'general', default='rshift
→˓')
abs_nclip = integer(min=0, default=3) # Number of clipping iterations in fit␣
→˓when performing absolute astrometry
abs_sigma = float(min=0.0, default=3.0) # Clipping limit in sigma units when␣
→˓performing absolute astrometry
output_use_model = boolean(default=True) # When saving use `DataModel.meta.
→˓filename`

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep TweakRegStepStep

15.1.64 Wavelength Correction

Description

Class
jwst.wavecorr.WavecorrStep

Alias
wavecorr

The wavelength correction (wavecorr) step in the calwebb_spec2 pipeline updates the wavelength assignments for
NIRSpec fixed-slit (FS) and MOS point sources that are known to be off center (in the dispersion direction) in their slit.

NIRSpec MOS

For NIRSpec MOS exposures (EXP_TYPE=”NRS_MSASPEC”), wavelength assignments created during extract_2d
are based on a source that’s perfectly centered in a slitlet. Most sources, however, are not centered in every slitlet
in a real observation. The MSA meta data assigned to each slitlet in the extract_2d step includes estimates of the
source x (dispersion) and y (cross-dispersion) location within the slitlet. These are recorded in the “SRCXPOS” and
“SRCYPOS” keywords in the SCI extension header of each slitlet in a FITS product.

The wavecorr step loops over all slit instances in the input science product and applies a wavelength correction to
slits that contain a point source. The point source determination is based on the value of the “SRCTYPE” keyword

15.1. Package Index 705

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

populated for each slit by the srctype step. The computation of the correction is based on the “SRCXPOS” value. A
value of 0.0 indicates a perfectly centered source, and ranges from -0.5 to +0.5 for sources at the extreme edges of a
slit. The computation uses calibration data from the WAVECORR reference file. The correction is computed as a 2-D
grid of wavelength offsets, which is applied to the original 2-D grid of wavelengths associated with each slit.

NIRSpec Fixed Slit (FS)

Fixed slit data do not have an a priori estimate of the source location within a given slit, so the estimated source location
is computed by the wavecorr step. It uses the target coordinates in conjunction with the aperture reference point in
V2/V3 space to estimate the fractional location of the source within the given slit. Note that this computation can only
be performed for the primary slit in the exposure, which is given in the “FXD_SLIT” keyword. The positions of sources
in any additional slits cannot be estimated and therefore the wavelength correction is only applied to the primary slit.

The estimated position of the source within the primary slit (in the dispersion direction) is then used in the same manner
as described above for MOS slitlets to compute offsets to be added to the nominal wavelength grid for the primary slit.

Upon successful completion of the step, the status keyword “S_WAVCOR” is set to “COMPLETE”.

Step Arguments

The Wavecorr step has no step-specific arguments.

Reference Files

The wavecorr step uses the WAVECORR reference file, which only applies to NIRSpec fixed-slit (FS) and MOS
exposures.

WAVECORR Reference File

REFTYPE
WAVECORR

Data model
WaveCorrModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.WaveCorrModel.html#jwst.datamodels.WaveCorrModel)

The WAVECORR reference file contains pixel offset values as a function of wavelength and source offset
within a NIRSpec slit. It is used when applying the NIRSpec wavelength zero-point correction to fixed-slit
(EXP_TYPE=”NRS_FIXEDSLIT”), bright object TSO (EXP_TYPE=”NRS_BRIGHTOBJ”), and MSA/MOS spectra
(EXP_TYPE=”NRS_MSASPEC”). This is an optional correction that is turned on by default. It can be turned off by
specifying apply_wavecorr=False when running the step.

Reference Selection Keywords for WAVECORR

CRDS selects appropriate WAVECORR references based on the following keywords. WAVECORR is not applicable
for instruments not in the table. Non-standard keywords used for file selection are required.

Instrument Keywords
NIRSpec INSTRUME, EXP_TYPE, DATE-OBS, TIME-OBS

706 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.WaveCorrModel.html#jwst.datamodels.WaveCorrModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

Type Specific Keywords for WAVECORR

In addition to the standard reference file keywords listed above, the following keywords are required in WAVECORR
reference files, because they are used as CRDS selectors (see Reference Selection Keywords for WAVECORR):

Keyword Data Model Name
EXP_TYPE model.meta.exposure.type

Reference File Format

WAVECORR reference files are in ASDF format, with the format and contents specified by the WaveCorrModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.WaveCorrModel.html#jwst.datamodels.WaveCorrModel)
data model schema.

jwst.wavecorr Package

Classes

WavecorrStep([name, parent, config_file, ...]) This step applies wavelength offsets to off-center NIR-
Spec sources.

15.1. Package Index 707

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.WaveCorrModel.html#jwst.datamodels.WaveCorrModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

WavecorrStep

class jwst.wavecorr.WavecorrStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: JwstStep

This step applies wavelength offsets to off-center NIRSpec sources.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

Methods Summary

process(step_input) This is where real work happens.

Attributes Documentation

class_alias = 'wavecorr'

reference_file_types = ['wavecorr']

spec

708 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

process(step_input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep WavecorrStepStep

15.1.65 WFS Combine

Description

The wfs_combine step combines a pair of dithered Wavefront Sensing and Control (WFS&C) images. The input
images are aligned with one another and then combined using a pixel replacement technique, described in detail below.
The images are aligned to only the nearest integer pixel in each direction. No sub-pixel resampling is done.

Due to the WFS dither patterns oscillating between two locations, the first image of the pair will oscillate between the
two dither locations. Because the WSS software works in pixel space, we need to change which input image is “image
1” to get star to have the same pixel location in the output image. When the input parameter “flip_dithers” is set to
True (the default) and the x offset between image 1 and image 2 is negative, the two images will be switched before
any processing is performed.

Algorithm

Creation of the output combined image is a three-step process: first the offsets between the images are computed using
the World Coordinate System, then the offsets are used to shift image 2 to be in alignment with image 1, and finally the
aligned data from the two images are combined.

Computing Offsets

The WCS transforms of each image are used to compute the RA/Dec values for the center pixel in image 1, and then
the pixel indexes of those RA/Dec values are computed in image 2. The difference in the pixel indexes, rounded to the
nearest whole pixel, is used as the nominal offsets in the x/y image axes.

If the optional argument “–do_refine” is set to True, the nominal offsets are empirically refined using a cross-correlation
technique. The steps in the refinement are as follows:

1. Create a smoothed version of image 1 using a Gaussian kernel.

2. Find the approximate centroid of the source in image 1 by computing the mean pixel coordinates, separately in
the x and y axes, of all pixel values that are above 50% of the peak signal in the smoothed image.

15.1. Package Index 709

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

3. Create subarrays from image 1 and 2 centered on the computed source centroid.

4. Create the cross-correlation image of the two input images.

5.Find the peak intensity of the cross-correlation image and use this to determine the
refined offset.

6.Use the find the difference between the cross-correlation pixel offsets and the WCS offsets.
Add these deltas to the nominal offsets computed from the WCS info to form the refined offsets.

Creating the Combined Image

The image 2 data are shifted using the pixel offsets computed above, in order to align it with image 1. For each pixel
location in image 1, the output combined image is populated using the following logic:

1. If the pixel values in both image 1 and 2 are good, i.e. DQ=0, the output SCI and ERR image values are the
average of the input SCI and ERR values, respectively, and the output DQ is set to 0.

2. If the image 1 pixel is bad (DQ>0) and the image 2 pixel is good, the output SCI and ERR image values are
copied from image 2, and the output DQ is set to 0.

3. If the image 1 pixel is good (DQ=0) and the image 2 pixel is bad, the output SCI and ERR image values are
copied from image 1, and the output DQ is set to 0.

4. If both image 1 and 2 pixels are bad (DQ>0), the output SCI and ERR image values are set to 0 and the output
DQ contains the combination of input DQ values, as well as the “DO_NOT_USE” flag.

Upon successful completion of this step, the status keyword S_WFSCOM will be set to “COMPLETE” in the output
image header.

Inputs

2D calibrated images

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)

File suffix
_cal

The input to wfs_combine is a pair of calibrated (“_cal”) exposures, specified via an ASN file. The ASN file may
contain a list of several combined products to be created, in which case the step will loop over each set of inputs,
creating a combined output for each pair.

Outputs

2D combined image

Data model
ImageModel (https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel)

File suffix
_wfscmb

The output is the combined image, using the product type suffix “_wfscmb.”

710 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel
https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.ImageModel.html#jwst.datamodels.ImageModel

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Step Arguments

The wfs_combine step has one step-specific argument:

--do_refine boolean default=False

If set to True, the nominal image offsets computed from the WCS information are refined using image cross-correlation.
See the algorithm description section for details.

–flip_dithers boolean default=True

When set to True the output star in the combined image from the pairs of WFS images will always be at the same pixel
location.

–psf_size float default=100

The largest PSF size in pixels to use for the alignment. This is only used when do_refine==True.

–blur_size flost default=10

The smoothing that is applied for the initial centroiding. his is only used when do_refine==True.

–n_size int default=2

This controls the size of the box used to interpolate in the input images. Should never need to be changed.

Reference File

The wfs_combine step does not use any reference files.

jwst.wfs_combine Package

Classes

WfsCombineStep([name, parent, config_file, ...]) This step combines pairs of dithered PSF images

WfsCombineStep

class jwst.wfs_combine.WfsCombineStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

This step combines pairs of dithered PSF images

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

15.1. Package Index 711

https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

spec

Methods Summary

process(input_table) This is where real work happens.

Attributes Documentation

class_alias = 'calwebb_wfs-image3'

spec

do_refine = boolean(default=False)
flip_dithers = boolean(default=True) # change the sign and switch order of␣
→˓images when x offset is negative
psf_size = integer(default=100)
blur_size = integer(default=10)
n_size = integer(default=2)
suffix = string(default="wfscmb")

Methods Documentation

process(input_table)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep WfsCombineStepStep

712 Chapter 15. Package Documentation

https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

15.1.66 WFSS Contamination Correction

Description

Class
jwst.wfss_contam.WfssContamStep

Alias
wfss_contam

The Wide Field Slitless Spectroscopy (WFSS) contamination correction (wfss_contam) step is applied to grism expo-
sures in an attempt to correct effects due to overlapping spectral traces, which often happens in observations of crowded
fields. It is to be applied to individual grism exposures in the latter stages of the calwebb_spec2 pipeline.

Briefly, source fluxes from a direct image of the field are used to simulate grism spectra for each source. Each source
spectrum is then corrected for contamination by subtracting the simulated spectra of nearby sources. Details of the
procedures and all input/output products are given in the following sections.

Inputs

The method utilized to perform the correction requires several input data products, including:

1) The grism data to be corrected. The step is applied near the end of the calwebb_spec2 pipeline, after the appli-
cation of the extract_2d and srctype steps, but before the photom step. Thus individual 2D cutouts exist for each
identified source in the grism image, and the data are still in units of countrate.

2) The resampled direct image (i2d product) of the field, usually obtained from the same WFSS observation as
the grism image. The name of the direct image to use is retrieved from the “DIRIMAGE” keyword in the input
grism image, which should’ve been populated at the beginning of the calwebb_spec2 pipeline from an entry in
the “spec2” input ASN file.

3) The segmentation map (segm product) created from the direct image during calwebb_image3 processing. The
name of the segmentation map to use is retrieved from the “SEGMFILE” keyword in the input grism image,
which should’ve been populated at the beginning of the calwebb_spec2 pipeline from an entry in the “spec2”
input ASN file.

The Method

Here we describe the steps used to perform the contamination correction.

1) First, a full-frame intermediate image, matching the size and shape of the grism image to be corrected, is created
and populated with simulated spectra of all known sources in the field. The simulated spectra are created as
follows:

a) The segmentation (segm) file is searched for pixels with non-zero values and lists of pixels belonging to
each source are created.

b) The fluxes of each pixel in the lists are loaded from the direct image (i2d), creating a list of per-pixel flux
values for each source.

c) A list of wavelength values is created for each source, which will be used to create the simulated spec-
tra. The wavelength values span the range given by minimum and maximum wavelengths read from the
WAVELENGTHRANGE reference file and are order-dependent.

d) The direct image pixel locations and wavelengths for each source are transformed into dispersed pixel
locations within the grism image using the WCS transforms of the input grism image.

15.1. Package Index 713

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

e) The flux of each direct image pixel belonging to each source is “dispersed” into the list of grism image
pixel locations, thus creating a simulated spectrum.

f) The initial simulated spectra are in flux-calibrated units, so each spectrum is divided by the sensitivity curve
from the PHOTOM reference file, to convert the simulated spectra to units of countrates, thus matching the
units of the observed grism data.

g) The simulated spectrum for each source is stored in the full-frame image.

h) Steps c-g are repeated for all spectral orders defined in the WAVELENGTHRANGE reference file.

2) 2D cutouts are created from the full-frame simulated grism image, matching the cutouts of each source in the
input grism data.

3) For each source cutout, the simulated spectrum of the primary source is removed from the simulated cutout,
leaving only the simulated spectra of any nearby contaminating sources.

4) The simulated contamination cutout is subtracted from the observed source cutout, thereby removing the signal
from contaminating spectra.

Outputs

There is one primary output and two optional outputs from the step:

1) The primary output is the contamination-corrected grism data, in the form of a MultiSlitModel
(https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel)
data model. In the calwebb_spec2 pipeline flow, this data model is passed along to the photom step for further
processing.

2) If the step argument --save_simulated_image is set to True (https://docs.python.org/3/library/constants.html#True),
the full-frame image containing all simulated spectra (the result of step 1 above) is saved to a file. See Step
Arguments.

3) If the step argument --save_contam_images is set to True (https://docs.python.org/3/library/constants.html#True),
the simulated contamination cutouts (the result of step 3 above) are saved to a file. See Step Arguments.

Step Arguments

The wfss_contam step uses the following optional arguments.

--save_simulated_image
A boolean indicating whether the full-frame simulated grism image containing all simulated spectra within the
field-of-view should be saved to a file. The file name uses a product type suffix of “simul”. Defaults to False.

--save_contam_images
A boolean indicating whether the estimated contamination images for each source cutout should be saved to a
file. The file name uses a product type suffix of “contam”. The resulting file has one SCI extension for each
source contained in the input grism image. Defaults to False.

--maximum_cores
The fraction of available cores that will be used for multi-processing in this step. The default value is ‘none’
which does not use multi-processing. The other options are ‘quarter’, ‘half’, and ‘all’. Note that these fractions
refer to the total available cores and on most CPUs these include physical and virtual cores.

714 Chapter 15. Package Documentation

https://stdatamodels.readthedocs.io/en/latest/api/jwst.datamodels.MultiSlitModel.html#jwst.datamodels.MultiSlitModel
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Reference Files

The wfss_contam step uses the WAVELENGTHRANGE reference file, which provides minimum and maximum
wavelengths for each spectral order, and the PHOTOM reference file, which provides the sensitivity curve for each
grism order.

WAVELENGTHRANGE

PHOTOM

jwst.wfss_contam Package

Classes

WfssContamStep([name, parent, config_file, ...]) This Step performs contamination correction of WFSS
spectra.

WfssContamStep

class jwst.wfss_contam.WfssContamStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

This Step performs contamination correction of WFSS spectra.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

reference_file_types

spec

15.1. Package Index 715

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Summary

process(input_model, *args, **kwargs) This is where real work happens.

Attributes Documentation

class_alias = 'wfss_contam'

reference_file_types = ['photom', 'wavelengthrange']

spec

save_simulated_image = boolean(default=False) # Save full-frame simulated image
save_contam_images = boolean(default=False) # Save source contam estimates
maximum_cores = option('none', 'quarter', 'half', 'all', default='none')
skip = boolean(default=True)

Methods Documentation

process(input_model, *args, **kwargs)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep WfssContamStepStep

15.1.67 White Light Curve Generation

Description

Class
jwst.white_light.WhiteLightStep

Alias
white_light

716 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Overview

The white_light step sums the spectroscopic flux over all wavelengths in each integration of a multi-integration
extracted spectrum product to produce an integrated (“white”) flux as a function of time for the target. This is to be ap-
plied to the _x1dints product in a spectroscopic Time-Series Observation (TSO), as part of the calwebb_tso3 pipeline.
Minimum and maximum wavelengths may be provided to limit the summation to specified wavelength bounds, with
limits inclusive.

Input details

The input should be in the form of an _x1dints product, which contains extracted spectra from multiple integrations
for a given target.

Algorithm

The algorithm performs a simple sum of the flux values over all wavelengths for each extracted spectrum contained
in the input product. If provided, min_wavelength and max_wavelength will modify the bounds of the sum to the
specified bounds.

Output product

The output product is a table of time vs. integrated flux values, stored in the form of a ASCII ECSV (Extended Comma-
Separated Value) file. The product type suffix is _whtlt.

Step Arguments

The white_light step has two step-specific arguments to allow wavelength limits during the flux summation. One or
both may be specified.

--min_wavelength
If min_wavelength is specified, the white_light step will sum from the specified wavelength to either a
specified max_wavelength or the end of the flux array.

--max_wavelength
If max_wavelength is specified, the white_light step will sum from either a specified min_wavelength or
the beginning of the flux array to the specified wavelength.

Reference File

The white_light step uses the PARS-WHITELIGHTSTEP parameter reference file.

15.1. Package Index 717

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

PARS-WHITELIGHTSTEP Parameter Reference File

REFTYPE
PARS-WHITELIGHTSTEP

Data model
N/A

Reference Selection Keywords

CRDS selects appropriate pars-whitelightstep references based on the following keywords.

Instrument Keywords
MIRI EXP_TYPE
NIRCAM EXP_TYPE, FILTER, PUPIL
NIRSPEC EXP_TYPE

Standard Keywords

The following table lists the keywords that are required to be present in all reference files. The first column gives the
FITS keyword names. The second column gives the jwst data model name for each keyword, which is useful when
using data models in creating and populating a new reference file. The third column gives the equivalent meta tag in
ASDF reference file headers, which is the same as the name within the data model meta tree (second column).

FITS Keyword Data Model Name ASDF meta tag
AUTHOR model.meta.author author
DATAMODL model.meta.model_type model_type
DATE model.meta.date date
DESCRIP model.meta.description description
FILENAME model.meta.filename N/A
INSTRUME model.meta.instrument.name instrument: {name}
PEDIGREE model.meta.pedigree pedigree
REFTYPE model.meta.reftype reftype
TELESCOP model.meta.telescope telescope
USEAFTER model.meta.useafter useafter

NOTE: More information on standard required keywords can be found here: Standard Required Keywords

jwst.white_light Package

Classes

WhiteLightStep([name, parent, config_file, ...]) WhiteLightStep: Computes integrated flux as a function
of time for a multi-integration spectroscopic observa-
tion.

718 Chapter 15. Package Documentation

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

WhiteLightStep

class jwst.white_light.WhiteLightStep(name=None, parent=None, config_file=None,
_validate_kwds=True, **kws)

Bases: JwstStep

WhiteLightStep: Computes integrated flux as a function of time for a multi-integration spectroscopic observa-
tion.

Create a Step instance.

Parameters
• name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) – The name of

the Step instance. Used in logging messages and in cache filenames. If not provided, one
will be generated based on the class name.

• parent (Step instance, optional) – The parent step of this step. Used to determine a
fully-qualified name for this step, and to determine the mode in which to run this step.

• config_file (str path, optional) – The path to the config file that this step was ini-
tialized with. Use to determine relative path names of other config files.

• **kws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) – Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

class_alias

spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

class_alias = 'white_light'

spec

min_wavelength = float(default=None) # Default wavelength minimum for␣
→˓integration
max_wavelength = float(default=None) # Default wavelength maximum for␣
→˓integration
output_ext = string(default='.ecsv') # Output file type
suffix = string(default='whtlt') # Default suffix for output files

15.1. Package Index 719

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Methods Documentation

process(input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

JwstStep WhiteLightStepStep

720 Chapter 15. Package Documentation

PYTHON MODULE INDEX

j
jwst.ami.ami_analyze_step, 87
jwst.ami.ami_average_step, 90
jwst.ami.ami_normalize_step, 93
jwst.assign_mtwcs, 96
jwst.assign_wcs, 104
jwst.associations, 142
jwst.associations.asn_from_list, 134
jwst.associations.asn_gather, 135
jwst.associations.lib.constraint, 187
jwst.associations.lib.dms_base, 181
jwst.associations.lib.rules_level2b, 163
jwst.associations.lib.rules_level3, 171
jwst.associations.mkpool, 136
jwst.background, 201
jwst.barshadow, 209
jwst.charge_migration, 212
jwst.combine_1d, 215
jwst.coron.align_refs_step, 80
jwst.coron.hlsp_step, 321
jwst.coron.klip_step, 336
jwst.coron.stack_refs_step, 636
jwst.cube_build.cube_build_step, 232
jwst.dark_current, 239
jwst.dq_init, 244
jwst.emicorr, 249
jwst.exp_to_source, 252
jwst.extract_1d, 269
jwst.extract_2d, 282
jwst.firstframe, 293
jwst.fits_generator, 292
jwst.flatfield, 304
jwst.fringe, 308
jwst.gain_scale, 312
jwst.group_scale, 315
jwst.guider_cds, 318
jwst.imprint, 323
jwst.ipc, 327
jwst.jump, 332
jwst.lastframe, 362
jwst.lib.engdb_direct, 342
jwst.lib.engdb_lib, 345

jwst.lib.engdb_mast, 339
jwst.lib.engdb_tools, 338
jwst.lib.set_telescope_pointing, 347
jwst.lib.v1_calculate, 360
jwst.linearity, 367
jwst.master_background, 375
jwst.model_blender, 392
jwst.model_blender.blender, 384
jwst.model_blender.blendmeta, 382
jwst.model_blender.blendrules, 386
jwst.mrs_imatch, 396
jwst.mrs_imatch.mrs_imatch_step, 393
jwst.msaflagopen, 401
jwst.nsclean, 405
jwst.outlier_detection, 426
jwst.outlier_detection.outlier_detection, 417
jwst.outlier_detection.outlier_detection_ifu,

421
jwst.outlier_detection.outlier_detection_spec,

424
jwst.outlier_detection.outlier_detection_step,

412
jwst.pathloss, 439
jwst.persistence, 448
jwst.photom, 462
jwst.pipeline, 501
jwst.pixel_replace, 516
jwst.ramp_fitting, 521
jwst.refpix, 548
jwst.resample, 562
jwst.resample.resample, 557
jwst.resample.resample_step, 555
jwst.resample.resample_utils, 561
jwst.reset, 569
jwst.residual_fringe.residual_fringe_step,

574
jwst.rscd, 579
jwst.saturation, 584
jwst.skymatch, 611
jwst.skymatch.region, 608
jwst.skymatch.skyimage, 596
jwst.skymatch.skymatch, 593

721

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.skymatch.skymatch_step, 591
jwst.skymatch.skystatistics, 606
jwst.source_catalog, 624
jwst.spectral_leak.spectral_leak_step, 629
jwst.srctype, 633
jwst.stpipe, 669
jwst.straylight, 675
jwst.superbias, 679
jwst.tso_photometry, 684
jwst.tweakreg, 702
jwst.tweakreg.astrometric_utils, 700
jwst.tweakreg.tweakreg_catalog, 693
jwst.tweakreg.tweakreg_step, 694
jwst.tweakreg.utils, 697
jwst.wavecorr, 707
jwst.wfs_combine, 711
jwst.wfss_contam, 715
jwst.white_light, 718

722 Python Module Index

INDEX

Symbols
__call__() (jwst.skymatch.skystatistics.SkyStats

method), 607

A
abs_deriv() (in module

jwst.outlier_detection.outlier_detection),
418

acid (jwst.associations.lib.dms_base.DMSBaseMixin at-
tribute), 183

add() (jwst.associations.Association method), 147
add_rule() (jwst.associations.AssociationRegistry

method), 153
add_rules_kws() (jwst.model_blender.blendrules.KeywordRules

method), 390
add_wcs() (in module jwst.lib.set_telescope_pointing),

348
adjust_wcs() (in module jwst.tweakreg.utils), 698
algorithm (jwst.pixel_replace.PixelReplaceStep at-

tribute), 516
algorithm (jwst.ramp_fitting.RampFitStep attribute),

522
AlignRefsStep (class in jwst.coron.align_refs_step), 80
all() (jwst.associations.lib.constraint.Constraint static

method), 191
allow_default (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 356
Ami3Pipeline (class in jwst.pipeline), 501
AmiAnalyzeStep (class in jwst.ami.ami_analyze_step),

87
AmiAverageStep (class in jwst.ami.ami_average_step),

90
AmiNormalizeStep (class in

jwst.ami.ami_normalize_step), 93
any() (jwst.associations.lib.constraint.Constraint static

method), 191
append() (jwst.associations.lib.constraint.Constraint

method), 191
append() (jwst.skymatch.skyimage.SkyGroup method),

602
apply() (jwst.model_blender.blendrules.KeywordRules

method), 390

apply_apcorr (jwst.extract_1d.Extract1dStep attribute),
270

apply_background_2d() (in module
jwst.mrs_imatch.mrs_imatch_step), 394

as_reprdict() (jwst.lib.set_telescope_pointing.TransformParameters
method), 357

asn_from_list() (in module
jwst.associations.asn_from_list), 134

asn_gather() (in module jwst.associations.asn_gather),
135

Asn_Lv2CoronAsRate (class in
jwst.associations.lib.rules_level2b), 163

Asn_Lv2FGS (class in jwst.associations.lib.rules_level2b),
164

Asn_Lv2Image (class in
jwst.associations.lib.rules_level2b), 164

Asn_Lv2ImageNonScience (class in
jwst.associations.lib.rules_level2b), 165

Asn_Lv2ImageSpecial (class in
jwst.associations.lib.rules_level2b), 165

Asn_Lv2ImageTSO (class in
jwst.associations.lib.rules_level2b), 165

Asn_Lv2MIRLRSFixedSlitNod (class in
jwst.associations.lib.rules_level2b), 166

Asn_Lv2NRSFSS (class in
jwst.associations.lib.rules_level2b), 166

Asn_Lv2NRSIFUNod (class in
jwst.associations.lib.rules_level2b), 167

Asn_Lv2NRSLAMPImage (class in
jwst.associations.lib.rules_level2b), 167

Asn_Lv2NRSLAMPSpectral (class in
jwst.associations.lib.rules_level2b), 167

Asn_Lv2NRSMSA (class in
jwst.associations.lib.rules_level2b), 168

Asn_Lv2Spec (class in
jwst.associations.lib.rules_level2b), 168

Asn_Lv2SpecImprint (class in
jwst.associations.lib.rules_level2b), 168

Asn_Lv2SpecSpecial (class in
jwst.associations.lib.rules_level2b), 169

Asn_Lv2SpecTSO (class in
jwst.associations.lib.rules_level2b), 169

723

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

Asn_Lv2WFSC (class in
jwst.associations.lib.rules_level2b), 170

Asn_Lv2WFSSNIS (class in
jwst.associations.lib.rules_level2b), 169

Asn_Lv2WFSSNRC (class in
jwst.associations.lib.rules_level2b), 170

Asn_Lv3ACQ_Reprocess (class in
jwst.associations.lib.rules_level3), 172

Asn_Lv3AMI (class in jwst.associations.lib.rules_level3),
173

Asn_Lv3Image (class in
jwst.associations.lib.rules_level3), 173

Asn_Lv3ImageBackground (class in
jwst.associations.lib.rules_level3), 173

Asn_Lv3MIRCoron (class in
jwst.associations.lib.rules_level3), 174

Asn_Lv3MIRMRS (class in
jwst.associations.lib.rules_level3), 174

Asn_Lv3MIRMRSBackground (class in
jwst.associations.lib.rules_level3), 175

Asn_Lv3NRCCoron (class in
jwst.associations.lib.rules_level3), 175

Asn_Lv3NRCCoronImage (class in
jwst.associations.lib.rules_level3), 176

Asn_Lv3NRSFSS (class in
jwst.associations.lib.rules_level3), 177

Asn_Lv3NRSIFU (class in
jwst.associations.lib.rules_level3), 177

Asn_Lv3NRSIFUBackground (class in
jwst.associations.lib.rules_level3), 177

Asn_Lv3SlitlessSpectral (class in
jwst.associations.lib.rules_level3), 178

Asn_Lv3SpecAux (class in
jwst.associations.lib.rules_level3), 178

Asn_Lv3SpectralSource (class in
jwst.associations.lib.rules_level3), 178

Asn_Lv3SpectralTarget (class in
jwst.associations.lib.rules_level3), 179

Asn_Lv3TSO (class in jwst.associations.lib.rules_level3),
179

Asn_Lv3WFSCMB (class in
jwst.associations.lib.rules_level3), 180

Asn_Lv3WFSSNIS (class in
jwst.associations.lib.rules_level3), 180

asn_name (jwst.associations.Association attribute), 146
asn_name (jwst.associations.lib.dms_base.DMSBaseMixin

attribute), 183
asn_rule (jwst.associations.Association attribute), 146
AssignMTWcsStep (class in jwst.assign_mtwcs), 96
AssignWcsStep (class in jwst.assign_wcs), 108
Association (class in jwst.associations), 144
AssociationError, 150
AssociationNotAConstraint, 150
AssociationNotValidError, 150

AssociationPool (class in jwst.associations), 150
AssociationRegistry (class in jwst.associations), 151
associations (jwst.associations.Main attribute), 155
AttrConstraint (class in

jwst.associations.lib.constraint), 187

B
BackgroundStep (class in jwst.background), 201
BarShadowStep (class in jwst.barshadow), 209
base_url (jwst.lib.engdb_direct.EngdbDirect attribute),

343
base_url (jwst.lib.engdb_lib.EngdbABC attribute), 346
base_url (jwst.lib.engdb_mast.EngdbMast attribute),

340
bkg_fit (jwst.extract_1d.Extract1dStep attribute), 269
bkg_order (jwst.extract_1d.Extract1dStep attribute),

270
bkg_sigma_clip (jwst.extract_1d.Extract1dStep at-

tribute), 270
bkg_suffix (jwst.background.BackgroundStep at-

tribute), 202
blend_output_metadata()

(jwst.resample.resample.ResampleData
method), 559

blendmodels() (in module
jwst.model_blender.blendmeta), 382

blot_median() (jwst.outlier_detection.outlier_detection.OutlierDetection
method), 419

BOTH (jwst.associations.ListCategory attribute), 155
build_suffix() (jwst.outlier_detection.outlier_detection.OutlierDetection

method), 419
build_tab_schema() (in module

jwst.model_blender.blendmeta), 383

C
cache() (jwst.lib.engdb_mast.EngdbMast method), 341
cache_as_local() (jwst.lib.engdb_mast.EngdbMast

method), 341
calc_bounding_polygon()

(jwst.skymatch.skyimage.SkyImage method),
600

calc_func (jwst.lib.set_telescope_pointing.Methods at-
tribute), 353

calc_sky() (jwst.skymatch.skyimage.SkyGroup
method), 602

calc_sky() (jwst.skymatch.skyimage.SkyImage
method), 600

calc_sky() (jwst.skymatch.skystatistics.SkyStats
method), 607

calc_transforms() (in module
jwst.lib.set_telescope_pointing), 350

calc_transforms_ops_tr_202111() (in module
jwst.lib.set_telescope_pointing), 350

724 Index

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

calc_wcs() (in module jwst.lib.set_telescope_pointing),
350

calc_wcs_over_time() (in module
jwst.lib.set_telescope_pointing), 351

callback() (jwst.associations.RegistryMarker static
method), 160

cat_headers() (in module
jwst.model_blender.blendmeta), 383

center_xy (jwst.extract_1d.Extract1dStep attribute),
270

ChargeMigrationStep (class in
jwst.charge_migration), 212

check_and_set() (jwst.associations.lib.constraint.AttrConstraint
method), 188

check_and_set() (jwst.associations.lib.constraint.Constraint
method), 191

check_and_set() (jwst.associations.lib.constraint.ConstraintTrue
method), 192

check_and_set() (jwst.associations.lib.constraint.SimpleConstraint
method), 194

check_and_set_constraints()
(jwst.associations.Association method), 147

check_input() (jwst.outlier_detection.outlier_detection_step.OutlierDetectionStep
method), 414

check_input() (jwst.outlier_detection.OutlierDetectionStep
method), 427

class_alias (jwst.ami.ami_analyze_step.AmiAnalyzeStep
attribute), 88

class_alias (jwst.ami.ami_average_step.AmiAverageStep
attribute), 91

class_alias (jwst.ami.ami_normalize_step.AmiNormalizeStep
attribute), 94

class_alias (jwst.assign_mtwcs.AssignMTWcsStep at-
tribute), 97

class_alias (jwst.assign_wcs.AssignWcsStep at-
tribute), 109

class_alias (jwst.background.BackgroundStep at-
tribute), 202

class_alias (jwst.barshadow.BarShadowStep at-
tribute), 210

class_alias (jwst.charge_migration.ChargeMigrationStep
attribute), 213

class_alias (jwst.combine_1d.Combine1dStep at-
tribute), 216

class_alias (jwst.coron.align_refs_step.AlignRefsStep
attribute), 81

class_alias (jwst.coron.hlsp_step.HlspStep attribute),
322

class_alias (jwst.coron.klip_step.KlipStep attribute),
337

class_alias (jwst.coron.stack_refs_step.StackRefsStep
attribute), 637

class_alias (jwst.cube_build.cube_build_step.CubeBuildStep
attribute), 234

class_alias (jwst.dark_current.DarkCurrentStep
attribute), 240

class_alias (jwst.dq_init.DQInitStep attribute), 245
class_alias (jwst.emicorr.EmiCorrStep attribute), 250
class_alias (jwst.extract_1d.Extract1dStep attribute),

273
class_alias (jwst.extract_2d.Extract2dStep attribute),

283
class_alias (jwst.firstframe.FirstFrameStep attribute),

294
class_alias (jwst.flatfield.FlatFieldStep attribute), 305
class_alias (jwst.fringe.FringeStep attribute), 309
class_alias (jwst.gain_scale.GainScaleStep attribute),

313
class_alias (jwst.group_scale.GroupScaleStep at-

tribute), 316
class_alias (jwst.guider_cds.GuiderCdsStep at-

tribute), 319
class_alias (jwst.imprint.ImprintStep attribute), 324
class_alias (jwst.ipc.IPCStep attribute), 328
class_alias (jwst.jump.JumpStep attribute), 333
class_alias (jwst.lastframe.LastFrameStep attribute),

363
class_alias (jwst.linearity.LinearityStep attribute), 368
class_alias (jwst.master_background.MasterBackgroundMosStep

attribute), 378
class_alias (jwst.master_background.MasterBackgroundStep

attribute), 376
class_alias (jwst.mrs_imatch.mrs_imatch_step.MRSIMatchStep

attribute), 396
class_alias (jwst.mrs_imatch.MRSIMatchStep at-

tribute), 397
class_alias (jwst.msaflagopen.MSAFlagOpenStep at-

tribute), 402
class_alias (jwst.nsclean.NSCleanStep attribute), 406
class_alias (jwst.outlier_detection.outlier_detection_step.OutlierDetectionStep

attribute), 413
class_alias (jwst.outlier_detection.OutlierDetectionScaledStep

attribute), 429
class_alias (jwst.outlier_detection.OutlierDetectionStackStep

attribute), 430
class_alias (jwst.outlier_detection.OutlierDetectionStep

attribute), 427
class_alias (jwst.pathloss.PathLossStep attribute), 440
class_alias (jwst.persistence.PersistenceStep at-

tribute), 449
class_alias (jwst.photom.PhotomStep attribute), 463
class_alias (jwst.pipeline.Ami3Pipeline attribute), 502
class_alias (jwst.pipeline.Coron3Pipeline attribute),

503
class_alias (jwst.pipeline.DarkPipeline attribute), 504
class_alias (jwst.pipeline.Detector1Pipeline at-

tribute), 505
class_alias (jwst.pipeline.GuiderPipeline attribute),

Index 725

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

506
class_alias (jwst.pipeline.Image2Pipeline attribute),

507
class_alias (jwst.pipeline.Image3Pipeline attribute),

509
class_alias (jwst.pipeline.Spec2Pipeline attribute),

510
class_alias (jwst.pipeline.Spec3Pipeline attribute),

511
class_alias (jwst.pipeline.Tso3Pipeline attribute), 513
class_alias (jwst.pixel_replace.PixelReplaceStep at-

tribute), 517
class_alias (jwst.ramp_fitting.RampFitStep attribute),

522
class_alias (jwst.refpix.RefPixStep attribute), 549
class_alias (jwst.resample.resample_step.ResampleStep

attribute), 556
class_alias (jwst.resample.ResampleSpecStep at-

tribute), 565
class_alias (jwst.resample.ResampleStep attribute),

563
class_alias (jwst.reset.ResetStep attribute), 570
class_alias (jwst.residual_fringe.residual_fringe_step.ResidualFringeStep

attribute), 575
class_alias (jwst.rscd.RscdStep attribute), 580
class_alias (jwst.saturation.SaturationStep attribute),

585
class_alias (jwst.skymatch.skymatch_step.SkyMatchStep

attribute), 592
class_alias (jwst.skymatch.SkyMatchStep attribute),

612
class_alias (jwst.source_catalog.SourceCatalogStep

attribute), 625
class_alias (jwst.spectral_leak.spectral_leak_step.SpectralLeakStep

attribute), 630
class_alias (jwst.srctype.SourceTypeStep attribute),

634
class_alias (jwst.straylight.StraylightStep attribute),

676
class_alias (jwst.superbias.SuperBiasStep attribute),

680
class_alias (jwst.tso_photometry.TSOPhotometryStep

attribute), 685
class_alias (jwst.tweakreg.tweakreg_step.TweakRegStep

attribute), 695
class_alias (jwst.tweakreg.TweakRegStep attribute),

703
class_alias (jwst.wavecorr.WavecorrStep attribute),

708
class_alias (jwst.wfs_combine.WfsCombineStep

attribute), 712
class_alias (jwst.wfss_contam.WfssContamStep

attribute), 716
class_alias (jwst.white_light.WhiteLightStep at-

tribute), 719
cli() (jwst.associations.Main class method), 156
COARSE (jwst.lib.set_telescope_pointing.Methods at-

tribute), 353
COARSE_TR_202111 (jwst.lib.set_telescope_pointing.Methods

attribute), 353
Combine1dStep (class in jwst.combine_1d), 215
compute_AET_entry() (jwst.skymatch.region.Edge

method), 610
compute_GET_entry() (jwst.skymatch.region.Edge

method), 610
compute_radius() (in module

jwst.tweakreg.astrometric_utils), 700
configure() (jwst.associations.Main method), 156
configure() (jwst.lib.engdb_direct.EngdbDirect

method), 344
configure() (jwst.lib.engdb_mast.EngdbMast method),

341
Constraint (class in jwst.associations.lib.constraint),

189
Constraint_TargetAcq (class in

jwst.associations.lib.dms_base), 182
Constraint_TSO (class in

jwst.associations.lib.dms_base), 182
Constraint_WFSC (class in

jwst.associations.lib.dms_base), 182
constraints (jwst.associations.lib.constraint.Constraint

attribute), 189
ConstraintTrue (class in

jwst.associations.lib.constraint), 192
convert_dtype() (in module

jwst.model_blender.blendmeta), 383
copy() (jwst.associations.lib.constraint.Constraint

method), 191
copy() (jwst.skymatch.skyimage.SkyImage method), 601
Coron3Pipeline (class in jwst.pipeline), 502
correction_pars (jwst.flatfield.FlatFieldStep at-

tribute), 304
correction_pars (jwst.master_background.MasterBackgroundMosStep

attribute), 378
create() (jwst.associations.Association class method),

147
create() (jwst.associations.lib.dms_base.DMSBaseMixin

class method), 184
create_astrometric_catalog() (in module

jwst.tweakreg.astrometric_utils), 700
create_median() (jwst.outlier_detection.outlier_detection.OutlierDetection

method), 419
create_optional_results_model()

(jwst.outlier_detection.outlier_detection_ifu.OutlierDetectionIFU
method), 422

CubeBuildStep (class in
jwst.cube_build.cube_build_step), 232

current_product (jwst.associations.lib.dms_base.DMSBaseMixin

726 Index

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

attribute), 183

D
DarkCurrentStep (class in jwst.dark_current), 240
DarkPipeline (class in jwst.pipeline), 504
data (jwst.associations.Association attribute), 145
dec (jwst.lib.set_telescope_pointing.WCSRef attribute),

360
decode_context() (in module

jwst.resample.resample_utils), 561
default (jwst.lib.set_telescope_pointing.Methods

attribute), 353
DEFAULT_EVALUATE (jwst.associations.Association at-

tribute), 146
DEFAULT_FORCE_UNIQUE (jwst.associations.Association

attribute), 146
default_format (jwst.lib.engdb_direct.EngdbDirect at-

tribute), 343
default_pa_v3 (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 356
DEFAULT_REQUIRE_CONSTRAINT

(jwst.associations.Association attribute),
146

default_suffix (jwst.outlier_detection.outlier_detection.OutlierDetection
attribute), 419

default_suffix (jwst.outlier_detection.outlier_detection_spec.OutlierDetectionSpec
attribute), 425

detect_outliers() (jwst.outlier_detection.outlier_detection.OutlierDetection
method), 420

detector (jwst.lib.set_telescope_pointing.TransformParameters
attribute), 356

Detector1Pipeline (class in jwst.pipeline), 505
dms_product_name (jwst.associations.lib.rules_level3.Asn_Lv3MIRMRS

attribute), 175
dms_product_name (jwst.associations.lib.rules_level3.Asn_Lv3MIRMRSBackground

attribute), 175
dms_product_name (jwst.associations.lib.rules_level3.Asn_Lv3NRCCoronImage

attribute), 176
dms_product_name (jwst.associations.lib.rules_level3.Asn_Lv3NRSFSS

attribute), 177
dms_product_name (jwst.associations.lib.rules_level3.Asn_Lv3SpectralSource

attribute), 179
dms_product_name (jwst.associations.lib.rules_level3.Asn_Lv3WFSCMB

attribute), 180
dms_product_name (jwst.associations.lib.rules_level3.Asn_Lv3WFSSNIS

attribute), 181
DMSBaseMixin (class in jwst.associations.lib.dms_base),

182
do_detection() (jwst.outlier_detection.outlier_detection.OutlierDetection

method), 420
do_detection() (jwst.outlier_detection.outlier_detection_ifu.OutlierDetectionIFU

method), 422
do_detection() (jwst.outlier_detection.outlier_detection_spec.OutlierDetectionSpec

method), 425

do_drizzle() (jwst.resample.resample.ResampleData
method), 559

DQInitStep (class in jwst.dq_init), 244
drizzle_arrays() (jwst.resample.resample.ResampleData

static method), 559
dry_run (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 356
dump() (jwst.associations.Association method), 147
dup_names (jwst.associations.lib.constraint.Constraint

attribute), 190

E
EmiCorrStep (class in jwst.emicorr), 249
endtime (jwst.lib.engdb_direct.EngdbDirect attribute),

343
endtime (jwst.lib.engdb_lib.EngdbABC attribute), 346
endtime (jwst.lib.engdb_mast.EngdbMast attribute), 340
ENGDB_Service() (in module jwst.lib.engdb_tools), 339
engdb_url (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 356
EngDB_Value (class in jwst.lib.engdb_lib), 345
EngdbABC (class in jwst.lib.engdb_lib), 345
EngdbDirect (class in jwst.lib.engdb_direct), 343
EngdbMast (class in jwst.lib.engdb_mast), 339
eq() (jwst.associations.lib.constraint.SimpleConstraint

method), 194
EXISTING (jwst.associations.ListCategory attribute), 155
exp_to_source() (in module jwst.exp_to_source), 252
exp_type (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 356
extend() (jwst.associations.ProcessQueueSorted

method), 160
Extract1dStep (class in jwst.extract_1d), 269
Extract2dStep (class in jwst.extract_2d), 282
extract_filenames_from_product() (in module

jwst.model_blender.blendmeta), 384

F
fgsid (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 356
finalize() (jwst.associations.Association method), 148
finalize() (jwst.associations.lib.rules_level3.Asn_Lv3SpectralTarget

method), 179
find_keywords_in_section() (in module

jwst.model_blender.blendrules), 387
first() (in module jwst.model_blender.blendrules), 388
FirstFrameStep (class in jwst.firstframe), 293
flag_cr() (in module

jwst.outlier_detection.outlier_detection),
417

flag_outliers() (jwst.outlier_detection.outlier_detection_ifu.OutlierDetectionIFU
method), 422

flat_suffix (jwst.flatfield.FlatFieldStep attribute), 305
FlatFieldStep (class in jwst.flatfield), 304

Index 727

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

flatten_input() (jwst.ami.ami_average_step.AmiAverageStep
method), 91

float_one() (in module
jwst.model_blender.blendrules), 388

force_subtract (jwst.master_background.MasterBackgroundMosStep
attribute), 379

found_values (jwst.associations.lib.constraint.AttrConstraint
attribute), 188

FringeStep (class in jwst.fringe), 308
from_asdf() (jwst.lib.set_telescope_pointing.Transforms

class method), 359
from_items (jwst.associations.lib.dms_base.DMSBaseMixin

attribute), 183
fsmcorr_units (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 356
fsmcorr_version (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 356
func (jwst.lib.set_telescope_pointing.Methods attribute),

353

G
GainScaleStep (class in jwst.gain_scale), 312
generate() (in module jwst.associations), 142
generate() (jwst.associations.Main method), 157
get_all_attr() (jwst.associations.lib.constraint.Constraint

method), 191
get_blended_metadata() (in module

jwst.model_blender.blendmeta), 384
get_catalog() (in module

jwst.tweakreg.astrometric_utils), 701
get_data() (jwst.skymatch.skyimage.DataAccessor

method), 604
get_data() (jwst.skymatch.skyimage.NDArrayInMemoryAccessor

method), 604
get_data() (jwst.skymatch.skyimage.NDArrayMappedAccessor

method), 605
get_data_shape() (jwst.skymatch.skyimage.DataAccessor

method), 604
get_data_shape() (jwst.skymatch.skyimage.NDArrayInMemoryAccessor

method), 604
get_data_shape() (jwst.skymatch.skyimage.NDArrayMappedAccessor

method), 605
get_drizpars() (jwst.resample.resample_step.ResampleStep

method), 556
get_drizpars() (jwst.resample.ResampleStep method),

564
get_edges() (jwst.skymatch.region.Polygon method),

610
get_exposure_type()

(jwst.associations.lib.dms_base.DMSBaseMixin
method), 184

get_exposure_type()
(jwst.associations.lib.rules_level2b.Asn_Lv2MIRLRSFixedSlitNod
method), 166

get_meta() (jwst.lib.engdb_direct.EngdbDirect
method), 344

get_meta() (jwst.lib.engdb_lib.EngdbABC method),
346

get_meta() (jwst.lib.engdb_mast.EngdbMast method),
341

get_spectral_order_wrange() (in module
jwst.assign_wcs), 105

get_values() (jwst.lib.engdb_direct.EngdbDirect
method), 344

get_values() (jwst.lib.engdb_lib.EngdbABC method),
346

get_values() (jwst.lib.engdb_mast.EngdbMast
method), 341

GLOBAL_CONSTRAINT (jwst.associations.Association at-
tribute), 146

GroupScaleStep (class in jwst.group_scale), 315
guide_star_wcs (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 356
GuiderCdsStep (class in jwst.guider_cds), 318
GuiderPipeline (class in jwst.pipeline), 506

H
hash (jwst.associations.ProcessList attribute), 159
HlspStep (class in jwst.coron.hlsp_step), 321

I
id (jwst.associations.lib.constraint.Constraint attribute),

190
id (jwst.skymatch.skyimage.SkyGroup attribute), 602
id (jwst.skymatch.skyimage.SkyImage attribute), 599
ifu_autocen (jwst.extract_1d.Extract1dStep attribute),

271
ifu_rfcorr (jwst.extract_1d.Extract1dStep attribute),

271
ifu_rscale (jwst.extract_1d.Extract1dStep attribute),

271
ifu_set_srctype (jwst.extract_1d.Extract1dStep

attribute), 271
image (jwst.skymatch.skyimage.SkyImage attribute), 599
Image2Pipeline (class in jwst.pipeline), 507
Image3Pipeline (class in jwst.pipeline), 508
image_exptypes (jwst.pipeline.Image2Pipeline at-

tribute), 507
image_shape (jwst.skymatch.skyimage.SkyImage at-

tribute), 599
ImprintStep (class in jwst.imprint), 323
index_of() (jwst.model_blender.blendrules.KeywordRules

method), 390
insert() (jwst.skymatch.skyimage.SkyGroup method),

603
instance (jwst.associations.Association attribute), 144
int_one() (in module jwst.model_blender.blendrules),

388

728 Index

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

interpret() (jwst.model_blender.blendrules.KwRule
method), 392

interpret_attr_line() (in module
jwst.model_blender.blendrules), 388

interpret_entry() (in module
jwst.model_blender.blendrules), 388

interpret_rules() (jwst.model_blender.blendrules.KeywordRules
method), 390

intersection() (jwst.skymatch.region.Edge method),
610

intersection() (jwst.skymatch.skyimage.SkyGroup
method), 603

intersection() (jwst.skymatch.skyimage.SkyImage
method), 601

INVALID_VALUES (jwst.associations.Association at-
tribute), 146

ioregistry (jwst.associations.Association attribute),
146

IPCStep (class in jwst.ipc), 327
is_item_ami() (jwst.associations.lib.dms_base.DMSBaseMixin

method), 184
is_item_coron() (jwst.associations.lib.dms_base.DMSBaseMixin

method), 185
is_item_coron() (jwst.associations.lib.rules_level2b.Asn_Lv2CoronAsRate

method), 164
is_item_coron() (jwst.associations.lib.rules_level3.Asn_Lv3NRCCoronImage

method), 176
is_item_member() (jwst.associations.Association

method), 148
is_item_member() (jwst.associations.lib.dms_base.DMSBaseMixin

method), 185
is_item_tso() (jwst.associations.lib.dms_base.DMSBaseMixin

method), 185
is_marked() (jwst.associations.RegistryMarker static

method), 161
is_member() (jwst.associations.lib.dms_base.DMSBaseMixin

method), 185
is_parallel() (jwst.skymatch.region.Edge method),

610
is_sky_valid (jwst.skymatch.skyimage.SkyImage

attribute), 599
is_valid (jwst.associations.Association attribute), 146
item_getattr() (jwst.associations.lib.dms_base.DMSBaseMixin

method), 185
items() (jwst.associations.Association method), 148

J
j2fgs_transpose (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 356
JumpStep (class in jwst.jump), 332
jwst.ami.ami_analyze_step

module, 87
jwst.ami.ami_average_step

module, 90

jwst.ami.ami_normalize_step
module, 93

jwst.assign_mtwcs
module, 96

jwst.assign_wcs
module, 104

jwst.associations
module, 142

jwst.associations.asn_from_list
module, 134

jwst.associations.asn_gather
module, 135

jwst.associations.lib.constraint
module, 187

jwst.associations.lib.dms_base
module, 181

jwst.associations.lib.rules_level2b
module, 163

jwst.associations.lib.rules_level3
module, 171

jwst.associations.mkpool
module, 136

jwst.background
module, 201

jwst.barshadow
module, 209

jwst.charge_migration
module, 212

jwst.combine_1d
module, 215

jwst.coron.align_refs_step
module, 80

jwst.coron.hlsp_step
module, 321

jwst.coron.klip_step
module, 336

jwst.coron.stack_refs_step
module, 636

jwst.cube_build.cube_build_step
module, 232

jwst.dark_current
module, 239

jwst.dq_init
module, 244

jwst.emicorr
module, 249

jwst.exp_to_source
module, 252

jwst.extract_1d
module, 269

jwst.extract_2d
module, 282

jwst.firstframe
module, 293

Index 729

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.fits_generator
module, 292

jwst.flatfield
module, 304

jwst.fringe
module, 308

jwst.gain_scale
module, 312

jwst.group_scale
module, 315

jwst.guider_cds
module, 318

jwst.imprint
module, 323

jwst.ipc
module, 327

jwst.jump
module, 332

jwst.lastframe
module, 362

jwst.lib.engdb_direct
module, 342

jwst.lib.engdb_lib
module, 345

jwst.lib.engdb_mast
module, 339

jwst.lib.engdb_tools
module, 338

jwst.lib.set_telescope_pointing
module, 347

jwst.lib.v1_calculate
module, 360

jwst.linearity
module, 367

jwst.master_background
module, 375

jwst.model_blender
module, 392

jwst.model_blender.blender
module, 384

jwst.model_blender.blendmeta
module, 382

jwst.model_blender.blendrules
module, 386

jwst.mrs_imatch
module, 396

jwst.mrs_imatch.mrs_imatch_step
module, 393

jwst.msaflagopen
module, 401

jwst.nsclean
module, 405

jwst.outlier_detection
module, 426

jwst.outlier_detection.outlier_detection
module, 417

jwst.outlier_detection.outlier_detection_ifu
module, 421

jwst.outlier_detection.outlier_detection_spec
module, 424

jwst.outlier_detection.outlier_detection_step
module, 412

jwst.pathloss
module, 439

jwst.persistence
module, 448

jwst.photom
module, 462

jwst.pipeline
module, 501

jwst.pixel_replace
module, 516

jwst.ramp_fitting
module, 521

jwst.refpix
module, 548

jwst.resample
module, 562

jwst.resample.resample
module, 557

jwst.resample.resample_step
module, 555

jwst.resample.resample_utils
module, 561

jwst.reset
module, 569

jwst.residual_fringe.residual_fringe_step
module, 574

jwst.rscd
module, 579

jwst.saturation
module, 584

jwst.skymatch
module, 611

jwst.skymatch.region
module, 608

jwst.skymatch.skyimage
module, 596

jwst.skymatch.skymatch
module, 593

jwst.skymatch.skymatch_step
module, 591

jwst.skymatch.skystatistics
module, 606

jwst.source_catalog
module, 624

jwst.spectral_leak.spectral_leak_step
module, 629

730 Index

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.srctype
module, 633

jwst.stpipe
module, 669

jwst.straylight
module, 675

jwst.superbias
module, 679

jwst.tso_photometry
module, 684

jwst.tweakreg
module, 702

jwst.tweakreg.astrometric_utils
module, 700

jwst.tweakreg.tweakreg_catalog
module, 693

jwst.tweakreg.tweakreg_step
module, 694

jwst.tweakreg.utils
module, 697

jwst.wavecorr
module, 707

jwst.wfs_combine
module, 711

jwst.wfss_contam
module, 715

jwst.white_light
module, 718

jwst_velocity (jwst.lib.set_telescope_pointing.TransformParameters
attribute), 356

K
keys() (jwst.associations.Association method), 148
KeywordRules (class in jwst.model_blender.blendrules),

390
KlipStep (class in jwst.coron.klip_step), 336
KwRule (class in jwst.model_blender.blendrules), 391

L
last() (in module jwst.model_blender.blendrules), 388
LastFrameStep (class in jwst.lastframe), 363
libpath() (in module jwst.associations), 143
LinearityStep (class in jwst.linearity), 367
ListCategory (class in jwst.associations), 154
load() (jwst.associations.Association class method), 148
load() (jwst.associations.AssociationRegistry method),

153
load_asn() (in module jwst.associations), 143
log_increment (jwst.extract_1d.Extract1dStep at-

tribute), 270

M
m_eci2fgs1 (jwst.lib.set_telescope_pointing.Transforms

attribute), 358

m_eci2gs (jwst.lib.set_telescope_pointing.Transforms at-
tribute), 358

m_eci2j (jwst.lib.set_telescope_pointing.Transforms at-
tribute), 358

m_eci2siaf (jwst.lib.set_telescope_pointing.Transforms
attribute), 358

m_eci2sifov (jwst.lib.set_telescope_pointing.Transforms
attribute), 358

m_eci2v (jwst.lib.set_telescope_pointing.Transforms at-
tribute), 358

m_fgs12sifov (jwst.lib.set_telescope_pointing.Transforms
attribute), 358

m_fgsx2gs (jwst.lib.set_telescope_pointing.Transforms
attribute), 358

m_gs2gsapp (jwst.lib.set_telescope_pointing.Transforms
attribute), 358

m_j2fgs1 (jwst.lib.set_telescope_pointing.Transforms at-
tribute), 358

m_sifov2v (jwst.lib.set_telescope_pointing.Transforms
attribute), 359

m_sifov_fsm_delta (jwst.lib.set_telescope_pointing.Transforms
attribute), 359

m_v2siaf (jwst.lib.set_telescope_pointing.Transforms
attribute), 359

Main (class in jwst.associations), 155
main() (in module jwst.associations), 144
make_tweakreg_catalog() (in module

jwst.tweakreg.tweakreg_catalog), 693
mark() (jwst.associations.RegistryMarker static

method), 161
mask (jwst.skymatch.skyimage.SkyImage attribute), 600
MasterBackgroundMosStep (class in

jwst.master_background), 377
MasterBackgroundStep (class in

jwst.master_background), 375
match() (in module jwst.skymatch.skymatch), 593
match() (jwst.associations.AssociationRegistry method),

153
match_constraint() (jwst.associations.Association

method), 149
matched (jwst.associations.lib.constraint.AttrConstraint

attribute), 188
matched (jwst.associations.lib.constraint.Constraint at-

tribute), 189
maxdate() (in module jwst.model_blender.blendrules),

388
maxdatetime() (in module

jwst.model_blender.blendrules), 389
maxtime() (in module jwst.model_blender.blendrules),

389
member_ids (jwst.associations.lib.dms_base.DMSBaseMixin

attribute), 183
merge() (jwst.model_blender.blendrules.KeywordRules

method), 391

Index 731

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

meta (jwst.associations.Association attribute), 145
metablender() (in module

jwst.model_blender.blender), 384
method (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 356
Methods (class in jwst.lib.set_telescope_pointing), 352
mindate() (in module jwst.model_blender.blendrules),

389
mindatetime() (in module

jwst.model_blender.blendrules), 389
mintime() (in module jwst.model_blender.blendrules),

389
mkpool() (in module jwst.associations.mkpool), 136
mnemonics (jwst.lib.set_telescope_pointing.Methods at-

tribute), 353
module

jwst.ami.ami_analyze_step, 87
jwst.ami.ami_average_step, 90
jwst.ami.ami_normalize_step, 93
jwst.assign_mtwcs, 96
jwst.assign_wcs, 104
jwst.associations, 142
jwst.associations.asn_from_list, 134
jwst.associations.asn_gather, 135
jwst.associations.lib.constraint, 187
jwst.associations.lib.dms_base, 181
jwst.associations.lib.rules_level2b, 163
jwst.associations.lib.rules_level3, 171
jwst.associations.mkpool, 136
jwst.background, 201
jwst.barshadow, 209
jwst.charge_migration, 212
jwst.combine_1d, 215
jwst.coron.align_refs_step, 80
jwst.coron.hlsp_step, 321
jwst.coron.klip_step, 336
jwst.coron.stack_refs_step, 636
jwst.cube_build.cube_build_step, 232
jwst.dark_current, 239
jwst.dq_init, 244
jwst.emicorr, 249
jwst.exp_to_source, 252
jwst.extract_1d, 269
jwst.extract_2d, 282
jwst.firstframe, 293
jwst.fits_generator, 292
jwst.flatfield, 304
jwst.fringe, 308
jwst.gain_scale, 312
jwst.group_scale, 315
jwst.guider_cds, 318
jwst.imprint, 323
jwst.ipc, 327
jwst.jump, 332

jwst.lastframe, 362
jwst.lib.engdb_direct, 342
jwst.lib.engdb_lib, 345
jwst.lib.engdb_mast, 339
jwst.lib.engdb_tools, 338
jwst.lib.set_telescope_pointing, 347
jwst.lib.v1_calculate, 360
jwst.linearity, 367
jwst.master_background, 375
jwst.model_blender, 392
jwst.model_blender.blender, 384
jwst.model_blender.blendmeta, 382
jwst.model_blender.blendrules, 386
jwst.mrs_imatch, 396
jwst.mrs_imatch.mrs_imatch_step, 393
jwst.msaflagopen, 401
jwst.nsclean, 405
jwst.outlier_detection, 426
jwst.outlier_detection.outlier_detection,

417
jwst.outlier_detection.outlier_detection_ifu,

421
jwst.outlier_detection.outlier_detection_spec,

424
jwst.outlier_detection.outlier_detection_step,

412
jwst.pathloss, 439
jwst.persistence, 448
jwst.photom, 462
jwst.pipeline, 501
jwst.pixel_replace, 516
jwst.ramp_fitting, 521
jwst.refpix, 548
jwst.resample, 562
jwst.resample.resample, 557
jwst.resample.resample_step, 555
jwst.resample.resample_utils, 561
jwst.reset, 569
jwst.residual_fringe.residual_fringe_step,

574
jwst.rscd, 579
jwst.saturation, 584
jwst.skymatch, 611
jwst.skymatch.region, 608
jwst.skymatch.skyimage, 596
jwst.skymatch.skymatch, 593
jwst.skymatch.skymatch_step, 591
jwst.skymatch.skystatistics, 606
jwst.source_catalog, 624
jwst.spectral_leak.spectral_leak_step,

629
jwst.srctype, 633
jwst.stpipe, 669
jwst.straylight, 675

732 Index

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.superbias, 679
jwst.tso_photometry, 684
jwst.tweakreg, 702
jwst.tweakreg.astrometric_utils, 700
jwst.tweakreg.tweakreg_catalog, 693
jwst.tweakreg.tweakreg_step, 694
jwst.tweakreg.utils, 697
jwst.wavecorr, 707
jwst.wfs_combine, 711
jwst.wfss_contam, 715
jwst.white_light, 718

MRSIMatchStep (class in jwst.mrs_imatch), 397
MSAFlagOpenStep (class in jwst.msaflagopen), 401
multi() (in module jwst.model_blender.blendrules), 389
multi1() (in module jwst.model_blender.blendrules),

389
multislit_to_container() (in module

jwst.exp_to_source), 253

N
n_adjacent_cols (jwst.pixel_replace.PixelReplaceStep

attribute), 516
new_product() (jwst.associations.lib.dms_base.DMSBaseMixin

method), 186
next (jwst.skymatch.region.Edge attribute), 609
niriss_soss_set_input() (in module

jwst.assign_wcs), 105
NONSCIENCE (jwst.associations.ListCategory attribute),

155
notall() (jwst.associations.lib.constraint.Constraint

static method), 191
notany() (jwst.associations.lib.constraint.Constraint

static method), 191
nrs_ifu_wcs() (in module jwst.assign_wcs), 105
nrs_wcs_set_input() (in module jwst.assign_wcs),

105
NSCleanStep (class in jwst.nsclean), 406

O
obsend (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 356
obsstart (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 356
obstime (jwst.lib.engdb_lib.EngDB_Value attribute),

345
OPS (jwst.lib.set_telescope_pointing.Methods attribute),

353
OPS_TR_202111 (jwst.lib.set_telescope_pointing.Methods

attribute), 353
orphaned (jwst.associations.Main attribute), 156
OutlierDetection (class in

jwst.outlier_detection.outlier_detection),
418

OutlierDetectionIFU (class in
jwst.outlier_detection.outlier_detection_ifu),
421

OutlierDetectionScaledStep (class in
jwst.outlier_detection), 428

OutlierDetectionSpec (class in
jwst.outlier_detection.outlier_detection_spec),
424

OutlierDetectionStackStep (class in
jwst.outlier_detection), 429

OutlierDetectionStep (class in
jwst.outlier_detection), 426

OutlierDetectionStep (class in
jwst.outlier_detection.outlier_detection_step),
412

OutputTooLargeError, 557
override (jwst.lib.set_telescope_pointing.Transforms at-

tribute), 359
override_transforms

(jwst.lib.set_telescope_pointing.TransformParameters
attribute), 356

P
pa (jwst.lib.set_telescope_pointing.WCSRef attribute),

360
parse_args() (jwst.associations.Main method), 157
PathLossStep (class in jwst.pathloss), 439
pcs_mode (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 356
PersistenceStep (class in jwst.persistence), 448
PhotomStep (class in jwst.photom), 462
Pipeline (in module jwst.stpipe), 669
pix_area (jwst.skymatch.skyimage.SkyImage attribute),

600
PixelReplaceStep (class in jwst.pixel_replace), 516
pointing (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 356
poly_area (jwst.skymatch.skyimage.SkyImage attribute),

600
polygon (jwst.skymatch.skyimage.SkyGroup attribute),

602
polygon (jwst.skymatch.skyimage.SkyImage attribute),

600
pool (jwst.associations.Main attribute), 155
populate() (jwst.associations.AssociationRegistry

method), 154
prefetch_references

(jwst.master_background.MasterBackgroundMosStep
attribute), 378

prefetch_references (jwst.pipeline.Coron3Pipeline
attribute), 503

preserve() (jwst.associations.lib.constraint.Constraint
method), 192

Index 733

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

process() (jwst.ami.ami_analyze_step.AmiAnalyzeStep
method), 88

process() (jwst.ami.ami_average_step.AmiAverageStep
method), 91

process() (jwst.ami.ami_normalize_step.AmiNormalizeStep
method), 94

process() (jwst.assign_mtwcs.AssignMTWcsStep
method), 97

process() (jwst.assign_wcs.AssignWcsStep method),
109

process() (jwst.background.BackgroundStep method),
202

process() (jwst.barshadow.BarShadowStep method),
210

process() (jwst.charge_migration.ChargeMigrationStep
method), 213

process() (jwst.combine_1d.Combine1dStep method),
216

process() (jwst.coron.align_refs_step.AlignRefsStep
method), 81

process() (jwst.coron.hlsp_step.HlspStep method), 322
process() (jwst.coron.klip_step.KlipStep method), 337
process() (jwst.coron.stack_refs_step.StackRefsStep

method), 637
process() (jwst.cube_build.cube_build_step.CubeBuildStep

method), 235
process() (jwst.dark_current.DarkCurrentStep

method), 241
process() (jwst.dq_init.DQInitStep method), 245
process() (jwst.emicorr.EmiCorrStep method), 250
process() (jwst.extract_1d.Extract1dStep method), 274
process() (jwst.extract_2d.Extract2dStep method), 284
process() (jwst.firstframe.FirstFrameStep method), 294
process() (jwst.flatfield.FlatFieldStep method), 305
process() (jwst.fringe.FringeStep method), 309
process() (jwst.gain_scale.GainScaleStep method), 313
process() (jwst.group_scale.GroupScaleStep method),

316
process() (jwst.guider_cds.GuiderCdsStep method),

319
process() (jwst.imprint.ImprintStep method), 324
process() (jwst.ipc.IPCStep method), 328
process() (jwst.jump.JumpStep method), 334
process() (jwst.lastframe.LastFrameStep method), 363
process() (jwst.linearity.LinearityStep method), 368
process() (jwst.master_background.MasterBackgroundMosStep

method), 378
process() (jwst.master_background.MasterBackgroundStep

method), 376
process() (jwst.mrs_imatch.mrs_imatch_step.MRSIMatchStep

method), 396
process() (jwst.mrs_imatch.MRSIMatchStep method),

398
process() (jwst.msaflagopen.MSAFlagOpenStep

method), 402
process() (jwst.nsclean.NSCleanStep method), 407
process() (jwst.outlier_detection.outlier_detection_step.OutlierDetectionStep

method), 414
process() (jwst.outlier_detection.OutlierDetectionScaledStep

method), 429
process() (jwst.outlier_detection.OutlierDetectionStackStep

method), 430
process() (jwst.outlier_detection.OutlierDetectionStep

method), 427
process() (jwst.pathloss.PathLossStep method), 440
process() (jwst.persistence.PersistenceStep method),

450
process() (jwst.photom.PhotomStep method), 463
process() (jwst.pipeline.Ami3Pipeline method), 502
process() (jwst.pipeline.Coron3Pipeline method), 503
process() (jwst.pipeline.DarkPipeline method), 504
process() (jwst.pipeline.Detector1Pipeline method),

506
process() (jwst.pipeline.GuiderPipeline method), 507
process() (jwst.pipeline.Image2Pipeline method), 508
process() (jwst.pipeline.Image3Pipeline method), 509
process() (jwst.pipeline.Spec2Pipeline method), 510
process() (jwst.pipeline.Spec3Pipeline method), 512
process() (jwst.pipeline.Tso3Pipeline method), 513
process() (jwst.pixel_replace.PixelReplaceStep

method), 517
process() (jwst.ramp_fitting.RampFitStep method), 523
process() (jwst.refpix.RefPixStep method), 549
process() (jwst.resample.resample_step.ResampleStep

method), 556
process() (jwst.resample.ResampleSpecStep method),

565
process() (jwst.resample.ResampleStep method), 564
process() (jwst.reset.ResetStep method), 570
process() (jwst.residual_fringe.residual_fringe_step.ResidualFringeStep

method), 575
process() (jwst.rscd.RscdStep method), 580
process() (jwst.saturation.SaturationStep method), 586
process() (jwst.skymatch.skymatch_step.SkyMatchStep

method), 593
process() (jwst.skymatch.SkyMatchStep method), 613
process() (jwst.source_catalog.SourceCatalogStep

method), 625
process() (jwst.spectral_leak.spectral_leak_step.SpectralLeakStep

method), 630
process() (jwst.srctype.SourceTypeStep method), 634
process() (jwst.straylight.StraylightStep method), 676
process() (jwst.superbias.SuperBiasStep method), 680
process() (jwst.tso_photometry.TSOPhotometryStep

method), 685
process() (jwst.tweakreg.tweakreg_step.TweakRegStep

method), 697
process() (jwst.tweakreg.TweakRegStep method), 705

734 Index

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

process() (jwst.wavecorr.WavecorrStep method), 709
process() (jwst.wfs_combine.WfsCombineStep

method), 712
process() (jwst.wfss_contam.WfssContamStep method),

716
process() (jwst.white_light.WhiteLightStep method),

720
process_exposure_product()

(jwst.pipeline.Image2Pipeline method), 508
process_exposure_product()

(jwst.pipeline.Spec2Pipeline method), 510
ProcessItem (class in jwst.associations), 157
ProcessList (class in jwst.associations), 158
ProcessQueue (class in jwst.associations), 159
ProcessQueueSorted (class in jwst.associations), 159

R
ra (jwst.lib.set_telescope_pointing.WCSRef attribute),

360
radec (jwst.skymatch.skyimage.SkyGroup attribute), 602
radec (jwst.skymatch.skyimage.SkyImage attribute), 600
RampFitStep (class in jwst.ramp_fitting), 521
read() (jwst.associations.AssociationPool class

method), 151
read_user_input() (jwst.cube_build.cube_build_step.CubeBuildStep

method), 235
reduce (jwst.associations.lib.constraint.Constraint at-

tribute), 189
reduce_func (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 356
reference_file_types

(jwst.ami.ami_analyze_step.AmiAnalyzeStep
attribute), 88

reference_file_types
(jwst.assign_wcs.AssignWcsStep attribute),
109

reference_file_types
(jwst.background.BackgroundStep attribute),
202

reference_file_types
(jwst.barshadow.BarShadowStep attribute),
210

reference_file_types
(jwst.coron.align_refs_step.AlignRefsStep
attribute), 81

reference_file_types
(jwst.cube_build.cube_build_step.CubeBuildStep
attribute), 234

reference_file_types
(jwst.dark_current.DarkCurrentStep attribute),
240

reference_file_types (jwst.dq_init.DQInitStep
attribute), 245

reference_file_types (jwst.emicorr.EmiCorrStep at-
tribute), 250

reference_file_types (jwst.extract_1d.Extract1dStep
attribute), 273

reference_file_types (jwst.extract_2d.Extract2dStep
attribute), 283

reference_file_types (jwst.flatfield.FlatFieldStep at-
tribute), 305

reference_file_types (jwst.fringe.FringeStep at-
tribute), 309

reference_file_types
(jwst.gain_scale.GainScaleStep attribute),
313

reference_file_types (jwst.ipc.IPCStep attribute),
328

reference_file_types (jwst.jump.JumpStep at-
tribute), 333

reference_file_types (jwst.linearity.LinearityStep
attribute), 368

reference_file_types
(jwst.mrs_imatch.mrs_imatch_step.MRSIMatchStep
attribute), 396

reference_file_types
(jwst.mrs_imatch.MRSIMatchStep attribute),
397

reference_file_types
(jwst.msaflagopen.MSAFlagOpenStep at-
tribute), 402

reference_file_types (jwst.pathloss.PathLossStep
attribute), 440

reference_file_types
(jwst.persistence.PersistenceStep attribute),
449

reference_file_types (jwst.photom.PhotomStep at-
tribute), 463

reference_file_types (jwst.pipeline.Tso3Pipeline at-
tribute), 513

reference_file_types
(jwst.ramp_fitting.RampFitStep attribute),
522

reference_file_types (jwst.refpix.RefPixStep at-
tribute), 549

reference_file_types
(jwst.resample.resample_step.ResampleStep
attribute), 556

reference_file_types (jwst.resample.ResampleStep
attribute), 563

reference_file_types (jwst.reset.ResetStep attribute),
570

reference_file_types
(jwst.residual_fringe.residual_fringe_step.ResidualFringeStep
attribute), 575

reference_file_types (jwst.rscd.RscdStep attribute),
580

Index 735

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

reference_file_types
(jwst.saturation.SaturationStep attribute),
585

reference_file_types
(jwst.skymatch.skymatch_step.SkyMatchStep
attribute), 592

reference_file_types (jwst.skymatch.SkyMatchStep
attribute), 612

reference_file_types
(jwst.source_catalog.SourceCatalogStep
attribute), 625

reference_file_types
(jwst.spectral_leak.spectral_leak_step.SpectralLeakStep
attribute), 630

reference_file_types (jwst.straylight.StraylightStep
attribute), 676

reference_file_types (jwst.superbias.SuperBiasStep
attribute), 680

reference_file_types
(jwst.tso_photometry.TSOPhotometryStep
attribute), 685

reference_file_types
(jwst.tweakreg.tweakreg_step.TweakRegStep
attribute), 695

reference_file_types (jwst.tweakreg.TweakRegStep
attribute), 703

reference_file_types (jwst.wavecorr.WavecorrStep
attribute), 708

reference_file_types
(jwst.wfss_contam.WfssContamStep attribute),
716

RefPixStep (class in jwst.refpix), 548
registry (jwst.associations.Association attribute), 146
RegistryMarker (class in jwst.associations), 160
resample_many_to_many()

(jwst.resample.resample.ResampleData
method), 560

resample_many_to_one()
(jwst.resample.resample.ResampleData
method), 560

resample_variance_array()
(jwst.resample.resample.ResampleData
method), 560

ResampleData (class in jwst.resample.resample), 557
ResampleSpecStep (class in jwst.resample), 564
ResampleStep (class in jwst.resample), 562
ResampleStep (class in jwst.resample.resample_step),

555
reset_sequence() (jwst.associations.lib.dms_base.DMSBaseMixin

class method), 186
ResetStep (class in jwst.reset), 569
ResidualFringeStep (class in

jwst.residual_fringe.residual_fringe_step),
574

response (jwst.lib.engdb_direct.EngdbDirect attribute),
343

response (jwst.lib.engdb_lib.EngdbABC attribute), 346
response (jwst.lib.engdb_mast.EngdbMast attribute),

340
restore() (jwst.associations.lib.constraint.Constraint

method), 192
retries (jwst.lib.engdb_mast.EngdbMast attribute), 340
RscdStep (class in jwst.rscd), 579
rule() (jwst.associations.RegistryMarker static

method), 161
rule_set (jwst.associations.AssociationRegistry at-

tribute), 152
RULES (jwst.associations.ListCategory attribute), 155
rules (jwst.associations.Main attribute), 155

S
SaturationStep (class in jwst.saturation), 585
save() (jwst.associations.Main method), 157
save_background (jwst.master_background.MasterBackgroundMosStep

attribute), 379
scan() (jwst.skymatch.region.Polygon method), 610
scan() (jwst.skymatch.region.Region method), 608
schema() (jwst.associations.RegistryMarker static

method), 162
schema_file (jwst.associations.Association attribute),

145
sequence (jwst.associations.lib.dms_base.DMSBaseMixin

attribute), 182
set_builtin_skystat()

(jwst.skymatch.skyimage.SkyImage method),
601

set_data() (jwst.skymatch.skyimage.DataAccessor
method), 604

set_data() (jwst.skymatch.skyimage.NDArrayInMemoryAccessor
method), 604

set_data() (jwst.skymatch.skyimage.NDArrayMappedAccessor
method), 605

set_pars_from_parent()
(jwst.master_background.MasterBackgroundMosStep
method), 379

set_session() (jwst.lib.engdb_direct.EngdbDirect
method), 344

set_session() (jwst.lib.engdb_mast.EngdbMast
method), 342

setup_output() (jwst.pipeline.Detector1Pipeline
method), 506

siaf (jwst.lib.set_telescope_pointing.TransformParameters
attribute), 357

siaf_db (jwst.lib.set_telescope_pointing.TransformParameters
attribute), 357

SimpleConstraint (class in
jwst.associations.lib.constraint), 192

skip_step() (jwst.flatfield.FlatFieldStep method), 305

736 Index

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

sky (jwst.skymatch.skyimage.SkyGroup attribute), 602
sky (jwst.skymatch.skyimage.SkyImage attribute), 600
SkyMatchStep (class in jwst.skymatch), 612
skystat (jwst.skymatch.skyimage.SkyImage attribute),

600
smoothing_length (jwst.extract_1d.Extract1dStep at-

tribute), 269
soss_atoca (jwst.extract_1d.Extract1dStep attribute),

271
soss_bad_pix (jwst.extract_1d.Extract1dStep attribute),

272
soss_estimate (jwst.extract_1d.Extract1dStep at-

tribute), 272
soss_max_grid_size (jwst.extract_1d.Extract1dStep

attribute), 272
soss_modelname (jwst.extract_1d.Extract1dStep at-

tribute), 272
soss_n_os (jwst.extract_1d.Extract1dStep attribute),

271
soss_rtol (jwst.extract_1d.Extract1dStep attribute),

272
soss_threshold (jwst.extract_1d.Extract1dStep at-

tribute), 271
soss_tikfac (jwst.extract_1d.Extract1dStep attribute),

271
soss_transform (jwst.extract_1d.Extract1dStep at-

tribute), 271
soss_wave_grid_in (jwst.extract_1d.Extract1dStep at-

tribute), 272
soss_wave_grid_out (jwst.extract_1d.Extract1dStep

attribute), 272
soss_width (jwst.extract_1d.Extract1dStep attribute),

272
SourceCatalogStep (class in jwst.source_catalog), 624
SourceTypeStep (class in jwst.srctype), 633
spec (jwst.ami.ami_analyze_step.AmiAnalyzeStep

attribute), 88
spec (jwst.ami.ami_average_step.AmiAverageStep

attribute), 91
spec (jwst.ami.ami_normalize_step.AmiNormalizeStep

attribute), 94
spec (jwst.assign_mtwcs.AssignMTWcsStep attribute),

97
spec (jwst.assign_wcs.AssignWcsStep attribute), 109
spec (jwst.background.BackgroundStep attribute), 202
spec (jwst.barshadow.BarShadowStep attribute), 210
spec (jwst.charge_migration.ChargeMigrationStep

attribute), 213
spec (jwst.combine_1d.Combine1dStep attribute), 216
spec (jwst.coron.align_refs_step.AlignRefsStep at-

tribute), 81
spec (jwst.coron.hlsp_step.HlspStep attribute), 322
spec (jwst.coron.klip_step.KlipStep attribute), 337
spec (jwst.coron.stack_refs_step.StackRefsStep attribute),

637
spec (jwst.cube_build.cube_build_step.CubeBuildStep

attribute), 234
spec (jwst.dark_current.DarkCurrentStep attribute), 240
spec (jwst.emicorr.EmiCorrStep attribute), 250
spec (jwst.extract_1d.Extract1dStep attribute), 273
spec (jwst.extract_2d.Extract2dStep attribute), 283
spec (jwst.flatfield.FlatFieldStep attribute), 305
spec (jwst.imprint.ImprintStep attribute), 324
spec (jwst.jump.JumpStep attribute), 333
spec (jwst.master_background.MasterBackgroundMosStep

attribute), 378
spec (jwst.master_background.MasterBackgroundStep

attribute), 376
spec (jwst.mrs_imatch.mrs_imatch_step.MRSIMatchStep

attribute), 396
spec (jwst.mrs_imatch.MRSIMatchStep attribute), 397
spec (jwst.msaflagopen.MSAFlagOpenStep attribute),

402
spec (jwst.nsclean.NSCleanStep attribute), 406
spec (jwst.outlier_detection.outlier_detection_step.OutlierDetectionStep

attribute), 413
spec (jwst.outlier_detection.OutlierDetectionScaledStep

attribute), 429
spec (jwst.outlier_detection.OutlierDetectionStackStep

attribute), 430
spec (jwst.outlier_detection.OutlierDetectionStep at-

tribute), 427
spec (jwst.pathloss.PathLossStep attribute), 440
spec (jwst.persistence.PersistenceStep attribute), 449
spec (jwst.photom.PhotomStep attribute), 463
spec (jwst.pipeline.Ami3Pipeline attribute), 502
spec (jwst.pipeline.Coron3Pipeline attribute), 503
spec (jwst.pipeline.Detector1Pipeline attribute), 505
spec (jwst.pipeline.Image2Pipeline attribute), 507
spec (jwst.pipeline.Image3Pipeline attribute), 509
spec (jwst.pipeline.Spec2Pipeline attribute), 510
spec (jwst.pipeline.Spec3Pipeline attribute), 511
spec (jwst.pipeline.Tso3Pipeline attribute), 513
spec (jwst.pixel_replace.PixelReplaceStep attribute), 517
spec (jwst.ramp_fitting.RampFitStep attribute), 522
spec (jwst.refpix.RefPixStep attribute), 549
spec (jwst.resample.resample_step.ResampleStep at-

tribute), 556
spec (jwst.resample.ResampleStep attribute), 563
spec (jwst.residual_fringe.residual_fringe_step.ResidualFringeStep

attribute), 575
spec (jwst.rscd.RscdStep attribute), 580
spec (jwst.saturation.SaturationStep attribute), 585
spec (jwst.skymatch.skymatch_step.SkyMatchStep at-

tribute), 592
spec (jwst.skymatch.SkyMatchStep attribute), 612
spec (jwst.source_catalog.SourceCatalogStep attribute),

625

Index 737

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

spec (jwst.srctype.SourceTypeStep attribute), 634
spec (jwst.superbias.SuperBiasStep attribute), 680
spec (jwst.tso_photometry.TSOPhotometryStep at-

tribute), 685
spec (jwst.tweakreg.tweakreg_step.TweakRegStep at-

tribute), 695
spec (jwst.tweakreg.TweakRegStep attribute), 703
spec (jwst.wavecorr.WavecorrStep attribute), 708
spec (jwst.wfs_combine.WfsCombineStep attribute), 712
spec (jwst.wfss_contam.WfssContamStep attribute), 716
spec (jwst.white_light.WhiteLightStep attribute), 719
Spec2Pipeline (class in jwst.pipeline), 509
Spec3Pipeline (class in jwst.pipeline), 511
SpectralLeakStep (class in

jwst.spectral_leak.spectral_leak_step), 629
StackRefsStep (class in jwst.coron.stack_refs_step),

636
start (jwst.skymatch.region.Edge attribute), 609
starttime (jwst.lib.engdb_direct.EngdbDirect at-

tribute), 343
starttime (jwst.lib.engdb_lib.EngdbABC attribute), 346
starttime (jwst.lib.engdb_mast.EngdbMast attribute),

340
Step (in module jwst.stpipe), 669
step_defs (jwst.master_background.MasterBackgroundMosStep

attribute), 378
step_defs (jwst.pipeline.Ami3Pipeline attribute), 502
step_defs (jwst.pipeline.Coron3Pipeline attribute), 503
step_defs (jwst.pipeline.DarkPipeline attribute), 504
step_defs (jwst.pipeline.Detector1Pipeline attribute),

505
step_defs (jwst.pipeline.GuiderPipeline attribute), 506
step_defs (jwst.pipeline.Image2Pipeline attribute), 507
step_defs (jwst.pipeline.Image3Pipeline attribute), 509
step_defs (jwst.pipeline.Spec2Pipeline attribute), 510
step_defs (jwst.pipeline.Spec3Pipeline attribute), 511
step_defs (jwst.pipeline.Tso3Pipeline attribute), 513
stop (jwst.skymatch.region.Edge attribute), 609
StraylightStep (class in jwst.straylight), 675
subtract_background (jwst.extract_1d.Extract1dStep

attribute), 270
SuperBiasStep (class in jwst.superbias), 679

T
TIMEOUT (in module jwst.tweakreg.astrometric_utils), 702
timeout (jwst.lib.engdb_mast.EngdbMast attribute), 340
to_asdf() (jwst.lib.set_telescope_pointing.Transforms

method), 359
to_process_items() (jwst.associations.ProcessItem

class method), 158
token (jwst.lib.engdb_mast.EngdbMast attribute), 341
tolerance (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 357

TRACK (jwst.lib.set_telescope_pointing.Methods at-
tribute), 353

TRACK_TR_202111 (jwst.lib.set_telescope_pointing.Methods
attribute), 353

transfer_wcs_correction() (in module
jwst.tweakreg.utils), 698

TransformParameters (class in
jwst.lib.set_telescope_pointing), 354

Transforms (class in jwst.lib.set_telescope_pointing),
357

Tso3Pipeline (class in jwst.pipeline), 512
TSOPhotometryStep (class in jwst.tso_photometry), 684
TweakRegStep (class in jwst.tweakreg), 702

U
update() (jwst.associations.ProcessList method), 159
update_AET() (jwst.skymatch.region.Polygon method),

611
update_asn() (jwst.associations.lib.dms_base.DMSBaseMixin

method), 186
update_degraded_status()

(jwst.associations.lib.dms_base.DMSBaseMixin
method), 186

update_exposure_times()
(jwst.resample.resample.ResampleData
method), 560

update_fits_wcs() (jwst.resample.resample_step.ResampleStep
method), 556

update_fits_wcs() (jwst.resample.ResampleStep
method), 564

update_fits_wcsinfo() (in module jwst.assign_wcs),
106

update_pointing() (jwst.lib.set_telescope_pointing.TransformParameters
method), 357

update_slit_metadata()
(jwst.resample.ResampleSpecStep method),
565

update_validity() (jwst.associations.lib.dms_base.DMSBaseMixin
method), 186

update_wcs() (in module
jwst.lib.set_telescope_pointing), 351

use_correction_pars (jwst.flatfield.FlatFieldStep at-
tribute), 304

use_source_posn (jwst.extract_1d.Extract1dStep
attribute), 270

useafter (jwst.lib.set_telescope_pointing.TransformParameters
attribute), 357

user_background (jwst.master_background.MasterBackgroundMosStep
attribute), 379

utility() (jwst.associations.RegistryMarker static
method), 162

V
v1_calculate_from_models() (in module

738 Index

JWST Pipeline Documentation, Release 0.1.dev50+g911b5c6.d20240306

jwst.lib.v1_calculate), 360
v1_calculate_over_time() (in module

jwst.lib.v1_calculate), 361
v3pa_at_gs (jwst.lib.set_telescope_pointing.TransformParameters

attribute), 357
validate() (jwst.associations.Association class

method), 149
validate() (jwst.associations.AssociationRegistry

method), 154
validate() (jwst.associations.lib.dms_base.DMSBaseMixin

class method), 186
validity (jwst.associations.lib.dms_base.DMSBaseMixin

attribute), 183
value (jwst.lib.engdb_lib.EngDB_Value attribute), 345
values() (jwst.associations.Association method), 150

W
WavecorrStep (class in jwst.wavecorr), 708
WCSRef (class in jwst.lib.set_telescope_pointing), 360
weighting (jwst.ramp_fitting.RampFitStep attribute),

522
WfsCombineStep (class in jwst.wfs_combine), 711
WfssContamStep (class in jwst.wfss_contam), 715
WhiteLightStep (class in jwst.white_light), 719
write() (jwst.associations.AssociationPool method),

151
write_to_asdf() (jwst.lib.set_telescope_pointing.Transforms

method), 359

Y
ymax (jwst.skymatch.region.Edge attribute), 609
ymin (jwst.skymatch.region.Edge attribute), 609

Z
zero() (in module jwst.model_blender.blendrules), 389

Index 739

	Installation
	Detailed Installation Instructions
	Installing Latest Release
	Installing Previous Releases
	Installing the Development Version from Github
	Upgrading Installed Version
	Installing with stenv

	Contributing and Reporting Issues
	Introduction to the JWST Pipeline
	Introduction
	Overview of Pipeline Code

	Reference Files, Parameter Files and CRDS
	Reference Files
	Parameter Files
	CRDS
	Reference Files Mappings (CRDS Context)
	CRDS Servers
	Setting CRDS Environment Variables in Python

	Parameters
	Universal Parameters
	Output Directory
	Output File
	Override Reference File
	Skip

	Pipeline/Step Parameters
	Pipeline/Step Parameters

	Running the JWST pipeline: Python Interface
	Overview of Running the Pipeline in Python
	CRDS Environment Variables
	Importing and Running Pipelines and Steps in Python

	Configuring a Pipeline/Step in Python
	Setting Step Parameters on a Pipeline or Individual Step
	Disabling all CRDS Step Parameters

	Overriding Reference Files
	Skipping a Pipeline Step

	Controlling Output File Behavior
	Saving Final Pipeline Results
	Saving Intermediate Step Results

	Advanced use - pipeline.run() vs. pipeline.call

	Running the JWST pipeline: Command Line Interface (strun)
	CRDS Environment Variables
	Overview of Running the Pipeline with strun
	Exit Status
	Configuring a Pipeline/Step with strun

	Setting Step Parameters on a Pipeline or Individual Step
	Overriding Reference Files
	Skipping a Pipeline Step
	Controlling Output File Behavior with strun

	Saving Intermediate Pipeline Results to a File
	Setting Output File Name
	Setting Output File Directory

	Available Pipelines
	Pipeline/Step Suffix Definitions
	For More Information

	Input and Output File Conventions
	Input Files
	Output Files
	Output Files and Associations
	Individual Step Outputs

	Logging Configuration
	JWST Datamodels
	Datamodels and the JWST pipeline

	CRDS PUB Server Freeze and Deprecation
	Why and When
	Transition Procedure

	Data Products Information
	Processing Levels and Product Stages
	File Naming Schemes
	Exposure file names
	Stage 3 file names
	Optional Components

	Segmented Products

	Data Product Types
	Stage 0 and Stage 1 Data Products
	Stage 2 Data Products
	Stage 3 Data Products

	Common Features
	Science products
	Uncalibrated raw data: uncal
	Ramp data: ramp
	Countrate data: rate and rateints
	Background-subtracted data: bsub and bsubints
	Calibrated data: cal and calints
	Cosmic-Ray flagged data: crf and crfints
	Resampled 2-D data: i2d and s2d
	Resampled 3-D (IFU) data: s3d
	Extracted 1-D spectroscopic data: x1d and x1dints
	Combined 1-D spectroscopic data: c1d
	Source catalog: cat
	Segmentation map: segm
	Photometry catalog: phot
	White-light photometric timeseries: whtlt
	Stacked PSF data: psfstack
	Aligned PSF data: psfalign
	PSF-subtracted data: psfsub
	AMI data: ami, amiavg, and aminorm

	Non-science products
	Dark exposure: dark
	Charge trap state data: trapsfilled
	WFS&C combined image: wfscmb

	Guide star data products
	File naming
	ID mode
	Flight reference stars table
	Planned reference stars table

	ACQ1 mode
	ACQ2 mode
	Track mode
	Pointing table
	FGS Centroid Packet table
	Track Subarray table

	FineGuide mode

	Migrating deprecated products

	Error Propagation
	Description
	Stage 1 Pipelines
	ramp_fitting
	gain_scale

	Stage 2 Pipelines
	flat_field
	fringe
	barshadow
	pathloss
	photom

	Stage 3 pipelines
	outlier_detection
	resample/resample_spec
	wfs_combine

	Package Documentation
	Package Index
	Align PSF References
	Description
	Arguments
	Inputs
	3D calibrated images
	3D stacked PSF images

	Outputs
	4D aligned PSF images

	Reference Files
	PSFMASK Reference File
	Reference Selection Keywords for PSFMASK
	Standard Keywords
	Type Specific Keywords for PSFMASK
	Reference File Format

	jwst.coron.align_refs_step Module
	Classes
	AlignRefsStep

	Class Inheritance Diagram

	AMI Analyze
	Description
	Arguments
	Inputs
	2D calibrated image

	Outputs
	LG model parameters

	Reference Files
	THROUGHPUT Reference File
	Reference Selection Keywords for THROUGHPUT
	Standard Keywords
	Type Specific Keywords for THROUGHPUT
	Reference File Format

	AMI unit tests
	test_ami_interface
	test_ami_analyze
	utils module tests:
	leastsqnrm module tests:
	hexee module tests:
	analyticnrm2 module tests:
	webb_psf module test:

	jwst.ami.ami_analyze_step Module
	Classes
	AmiAnalyzeStep

	Class Inheritance Diagram

	AMI Average
	Description
	Arguments
	Inputs
	LG model parameters

	Outputs
	Average LG model parameters

	Reference Files
	jwst.ami.ami_average_step Module
	Classes
	AmiAverageStep

	Class Inheritance Diagram

	AMI Normalize
	Description
	Arguments
	Inputs
	LG model parameters

	Outputs
	Normalized LG model parameters

	Reference Files
	jwst.ami.ami_normalize_step Module
	Classes
	AmiNormalizeStep

	Class Inheritance Diagram

	Assign Moving Target WCS
	Description
	jwst.assign_mtwcs Package
	Classes
	AssignMTWcsStep

	Class Inheritance Diagram

	Assign WCS
	Description
	Basic WCS keywords and the transform from v2v3 to world
	Using the WCS interactively
	WCS of slitless grism exposures
	Corrections Due to Spacecraft Motion

	Step Arguments
	Reference Files
	Reference file types used by assign_wcs

	How To Create Reference files in ASDF format
	Create a transform
	Create the reference file
	Save a transform to an ASDF file

	WCS reference file information per EXP_TYPE
	jwst.assign_wcs Package
	Functions
	nrs_wcs_set_input
	nrs_ifu_wcs
	get_spectral_order_wrange
	niriss_soss_set_input
	update_fits_wcsinfo

	Classes
	AssignWcsStep

	Class Inheritance Diagram

	Associations
	Association Overview
	What are Associations?
	Associations and JWST
	Association Pools

	Usage
	Utilities

	JWST Associations
	JWST Conventions
	Association Naming
	Association Types
	Field Guide to File Names

	Science Data Processing Workflow
	General Workflow for Generating Association Products
	Wide Field Slitless Spectroscopy

	Stage 2 Associations: Technical Specifications
	Logical Structure
	Example Association
	Association Meta Keywords
	products Keyword
	members Keyword
	Editing the member list

	Stage 3 Associations: Technical Specifications
	Logical Structure
	Example Association
	Association Meta Keywords
	products Keyword
	members Keyword
	Editing the member list

	Stage 2 Associations: Rules
	Footnotes
	Notes
	History

	Stage3 Associations: Rules
	Data Grouping
	Rules

	Design
	Association Design
	Generator
	Algorithm
	Output
	Member Attributes that are Lists
	Association Candidates

	Associations and Rules
	Terminology
	Note About Loading
	Rules
	Rule Sets
	Where Rules Live: The AssociationRegistry

	Association Registry
	Association Pool

	Reference
	Association Commands
	asn_generate
	Command Line
	Association Candidates
	Default Rules
	DMS Workflow
	API
	asn_from_list
	Command Line
	Usage
	Level2 Associations
	Level3 Associations
	API
	jwst.associations.asn_from_list Module
	Functions
	asn_from_list
	asn_gather
	Command Line
	API
	jwst.associations.asn_gather Module
	Functions
	asn_gather
	asn_make_pool
	Command Line
	API
	jwst.associations.mkpool Module
	Functions
	mkpool

	Association Rules
	Association Dynamic Definition
	User-level API
	Core Keys
	Core Methods
	Creation
	Addition
	Saving and Loading
	Defining New Associations
	Class Naming
	Core Attributes
	data Attribute
	Instantiation
	Implementing create()
	Implementing add()
	Implementing dump() and load()

	Rule Registration
	jwst.associations Package
	Functions
	generate
	libpath
	load_asn
	main
	Classes
	Association
	AssociationError
	AssociationNotAConstraint
	AssociationNotValidError
	AssociationPool
	AssociationRegistry
	ListCategory
	Main
	ProcessItem
	ProcessList
	ProcessQueue
	ProcessQueueSorted
	RegistryMarker
	Class Inheritance Diagram

	jwst.associations.lib.rules_level2b Module
	Classes
	Asn_Lv2CoronAsRate
	Asn_Lv2FGS
	Asn_Lv2Image
	Asn_Lv2ImageNonScience
	Asn_Lv2ImageSpecial
	Asn_Lv2ImageTSO
	Asn_Lv2MIRLRSFixedSlitNod
	Asn_Lv2NRSFSS
	Asn_Lv2NRSIFUNod
	Asn_Lv2NRSLAMPImage
	Asn_Lv2NRSLAMPSpectral
	Asn_Lv2NRSMSA
	Asn_Lv2Spec
	Asn_Lv2SpecImprint
	Asn_Lv2SpecSpecial
	Asn_Lv2SpecTSO
	Asn_Lv2WFSSNIS
	Asn_Lv2WFSSNRC
	Asn_Lv2WFSC
	Class Inheritance Diagram

	jwst.associations.lib.rules_level3 Module
	Classes
	Asn_Lv3ACQ_Reprocess
	Asn_Lv3AMI
	Asn_Lv3Image
	Asn_Lv3ImageBackground
	Asn_Lv3MIRCoron
	Asn_Lv3MIRMRS
	Asn_Lv3MIRMRSBackground
	Asn_Lv3NRCCoron
	Asn_Lv3NRCCoronImage
	Asn_Lv3NRSFSS
	Asn_Lv3NRSIFU
	Asn_Lv3NRSIFUBackground
	Asn_Lv3SlitlessSpectral
	Asn_Lv3SpecAux
	Asn_Lv3SpectralSource
	Asn_Lv3SpectralTarget
	Asn_Lv3TSO
	Asn_Lv3WFSCMB
	Asn_Lv3WFSSNIS
	Class Inheritance Diagram

	jwst.associations.lib.dms_base Module
	Classes
	Constraint_TargetAcq
	Constraint_TSO
	Constraint_WFSC
	DMSBaseMixin
	Class Inheritance Diagram

	jwst.associations.lib.constraint Module
	Classes
	AttrConstraint
	Constraint
	ConstraintTrue
	SimpleConstraint
	Class Inheritance Diagram

	Background Step
	Description
	Imaging and Non-WFSS Spectroscopic Modes
	WFSS Mode

	Step Arguments
	Reference Files
	WFSS Background reference file
	Reference Selection Keywords for WFSSBKG
	Standard Keywords
	Type Specific Keywords for WFSSBKG
	Reference File Format

	WAVELENGTHRANGE Reference File
	Reference Selection Keywords for WAVELENGTHRANGE
	Standard Keywords
	Type Specific Keywords for WAVELENGTHRANGE
	Reference Selection Keywords for WAVELENGTHRANGE
	Reference File Format
	MIRI MRS
	NIRSpec
	NIRCam WFSS, NIRCam TSGRISM, NIRISS WFSS

	jwst.background Package
	Classes
	BackgroundStep

	Class Inheritance Diagram

	Background Subtraction
	Introduction
	Imaging Mode
	Spectroscopic Modes
	Image-from-Image Subtraction
	Master Background Subtraction

	Barshadow Correction
	Description
	Overview
	Input details
	Algorithm
	Output product

	Step Arguments
	Reference Files
	BARSHADOW Reference File
	Reference Selection Keywords for BARSHADOW
	Standard Keywords
	Type Specific Keywords for BARSHADOW
	Reference File Format

	jwst.barshadow Package
	Classes
	BarShadowStep

	Class Inheritance Diagram

	Charge Migration
	Description
	Overview
	Input details
	Algorithm
	Output product

	Arguments
	Reference Files
	jwst.charge_migration Package
	Classes
	ChargeMigrationStep

	Class Inheritance Diagram

	Combine 1D Spectra
	Description
	Input
	Output
	Step Arguments
	Reference File
	jwst.combine_1d Package
	Classes
	Combine1dStep

	Class Inheritance Diagram

	Cube Building
	Description
	Assumptions
	Instrument Information
	Terminology
	General IFU Terminology
	MIRI Spectral Range Divisions
	NIRSpec IFU Disperser and Filter Combinations

	Types of Output Cubes
	Output Cube Format
	Output Product Name
	Algorithm
	Weighting
	3-D drizzling
	Shepard’s method of weighting

	Step Arguments
	Cube Building for MIRI data
	Cube building for NIRSpec data
	Reference Files
	CUBEPAR reference file
	Reference Selection Keywords for CUBEPAR
	Standard Keywords
	Type Specific Keywords for CUBEPAR
	MIRI Reference File Format
	NIRSPec Reference File Format

	jwst.cube_build.cube_build_step Module
	Classes
	CubeBuildStep

	Class Inheritance Diagram

	Dark Current Subtraction
	Description
	Assumptions
	Algorithm
	Special Handling

	Subarrays
	JWST/NIRCam Target Acq Subarrays

	Step Arguments
	Reference File
	DARK Reference File
	Reference Selection Keywords for DARK
	Standard Keywords
	Type Specific Keywords for DARK
	Reference File Format
	Near-IR Detectors
	MIRI Detectors

	jwst.dark_current Package
	Classes
	DarkCurrentStep

	Class Inheritance Diagram

	Data Quality (DQ) Initialization
	Description
	NIRSpec IRS2

	Step Arguments
	Reference Files
	MASK Reference File
	Reference Selection Keywords for MASK
	Standard Keywords
	Type Specific Keywords for MASK
	Reference File Format

	jwst.dq_init Package
	Classes
	DQInitStep

	Class Inheritance Diagram

	MIRI EMI Correction
	Description
	Overview
	Input
	Output

	Step Arguments
	Reference Files
	EMICORR Reference File
	Reference Selection Keywords for EMICORR
	Standard Keywords
	EMICORR Reference File Format
	Frequency Selection

	jwst.emicorr Package
	Classes
	EmiCorrStep

	Class Inheritance Diagram

	Exposure to Source Conversion
	Description
	NIRSpec MOS
	NIRSpec Fixed-Slit
	NIRCam and NIRISS WFSS
	File Name Syntax

	jwst.exp_to_source Package
	Functions
	exp_to_source
	multislit_to_container

	Extract 1D Spectra
	Description
	Overview
	Input
	Output
	Extraction for 2D Slit Data
	Source Extraction Region
	Background Extraction Regions
	Source and Background Coefficient Lists

	Extraction for 3D IFU Data

	Step Arguments
	Reference File
	EXTRACT1D Reference File
	Reference Selection Keywords for EXTRACT1D
	Standard Keywords
	Type Specific Keywords for EXTRACT1D
	Reference File Format for non-IFU data
	Editing JSON Reference File Format for non-IFU data
	Reference File Format IFU data

	Example EXTRACT1D Reference File
	APCORR Reference File
	Reference Selection Keywords for APCORR
	Standard Keywords
	Type Specific Keywords for APCORR
	NON-IFU APCORR Reference File Format
	Row Selection
	IFU APCORR Reference File ASDF Format

	Reference Image Format
	jwst.extract_1d Package
	Classes
	Extract1dStep

	Class Inheritance Diagram

	Extract 2D Spectra
	Description
	Overview
	Assumptions
	Algorithm
	NIRSpec Fixed Slit and MOS
	NIRCam and NIRISS WFSS
	WFSS Examples
	NIRCam TSGRISM

	Step Arguments
	Reference Files
	WAVELENGTHRANGE Reference File
	Reference Selection Keywords for WAVELENGTHRANGE
	Standard Keywords
	Type Specific Keywords for WAVELENGTHRANGE
	Reference Selection Keywords for WAVELENGTHRANGE
	Reference File Format
	MIRI MRS
	NIRSpec
	NIRCam WFSS, NIRCam TSGRISM, NIRISS WFSS

	jwst.extract_2d Package
	Classes
	Extract2dStep

	Class Inheritance Diagram

	FITS Generator
	Description
	Overview
	Input details

	Command-line scripts
	create_data directory

	Create_data Proposal File Format
	Template file format
	Basic syntax
	Generator template
	file line
	HDUs
	Header
	Data
	A complete example

	jwst.fits_generator Package

	First Frame Correction
	Description
	Step Arguments
	Reference File
	jwst.firstframe Package
	Classes
	FirstFrameStep

	Class Inheritance Diagram

	Flatfield Correction
	Description
	Imaging and Non-NIRSpec Spectroscopic Data
	NIRSpec Spectroscopic Data
	NIRSpec Fixed-Slit Primary Slit

	Reference Files
	FLAT Reference File
	Reference Selection Keywords for FLAT
	Standard Keywords
	Type Specific Keywords for FLAT
	Reference File Format

	Reference Files for NIRSpec Spectroscopy
	FFLAT Reference File
	Reference Selection Keywords for FFLAT
	Fixed Slit
	MSA Spec
	IFU

	SFLAT Reference File
	Reference Selection Keywords for SFLAT
	Fixed Slit
	MSA Spec

	DFLAT Reference File
	Reference Selection Keywords for DFLAT

	Step Arguments
	jwst.flatfield Package
	Classes
	FlatFieldStep

	Class Inheritance Diagram

	Fringe Correction
	Description
	Step Arguments
	Reference Files
	FRINGE Reference File
	Reference Selection Keywords for FRINGE
	Standard Keywords
	Type Specific Keywords for FRINGE
	Reference File Format

	jwst.fringe Package
	Classes
	FringeStep

	Class Inheritance Diagram

	Gain Scale Correction
	Description
	Arguments
	Reference File
	GAIN reference file
	Reference Selection Keywords for GAIN
	Standard Keywords
	Type Specific Keywords for GAIN
	Reference File Format

	jwst.gain_scale Package
	Classes
	GainScaleStep

	Class Inheritance Diagram

	Group Scale Correction
	Description
	MIRI FASTGRPAVG mode

	Arguments
	Reference File
	jwst.group_scale Package
	Classes
	GroupScaleStep

	Class Inheritance Diagram

	Guider CDS Processing
	Description
	ID mode
	ACQ1, ACQ2, and TRACK modes
	FineGuide mode
	All modes

	Arguments
	Reference File
	jwst.guider_cds Package
	Classes
	GuiderCdsStep

	Class Inheritance Diagram

	HLSP Processing
	Description
	Arguments
	Inputs
	2D image

	Outputs
	2D SNR image
	Contrast table

	Reference Files
	jwst.coron.hlsp_step Module
	Classes
	HlspStep

	Class Inheritance Diagram

	Imprint Subtraction
	Description
	Step Arguments
	Reference File
	jwst.imprint Package
	Classes
	ImprintStep

	Class Inheritance Diagram

	IPC Correction
	Description
	Subarrays
	Step Arguments
	Reference Files
	IPC Reference File
	Reference Selection Keywords for IPC
	Standard Keywords
	Type Specific Keywords for IPC
	Reference File Format

	jwst.ipc Package
	Classes
	IPCStep

	Class Inheritance Diagram

	Jump Detection
	Description
	Assumptions
	Algorithm (https://stcal.readthedocs.io/en/latest/stcal/jump/description.html#jump-algorithm)
	Large Events (Snowballs and Showers)
	Multiprocessing
	Subarrays

	Arguments
	Reference File Types
	jwst.jump Package
	Classes
	JumpStep

	Class Inheritance Diagram

	KLIP Processing
	Description
	Arguments
	Inputs
	3D calibrated images
	4D aligned PSF images

	Outputs
	3D PSF-subtracted images

	Reference Files
	jwst.coron.klip_step Module
	Classes
	KlipStep

	Class Inheritance Diagram

	Library Utilities
	Engineering Database Interface
	jwst.lib.engdb_tools Module
	Interface
	Environmental Variables
	Functions
	ENGDB_Service

	jwst.lib.engdb_mast Module
	Classes
	EngdbMast

	jwst.lib.engdb_direct Module
	Classes
	EngdbDirect

	jwst.lib.engdb_lib Module
	Classes
	EngDB_Value
	EngdbABC

	Telescope Pointing Utilities
	jwst.lib.set_telescope_pointing Module
	Interface
	Transformation Matrices
	Functions
	add_wcs
	calc_transforms
	calc_transforms_ops_tr_202111
	calc_wcs
	calc_wcs_over_time
	update_wcs
	Classes
	Methods
	TransformParameters
	Transforms
	WCSRef

	jwst.lib.v1_calculate Module
	Functions
	v1_calculate_from_models
	v1_calculate_over_time

	Commands

	Last Frame Correction
	Description
	Step Arguments
	Reference File
	jwst.lastframe Package
	Classes
	LastFrameStep

	Class Inheritance Diagram

	Linearity Correction
	Description
	Assumptions
	Algorithm
	Special Handling

	NIRCam Frame 0
	Subarrays

	Arguments
	Reference File Types
	LINEARITY Reference File
	Reference Selection Keywords for LINEARITY
	Standard Keywords
	Type Specific Keywords for LINEARITY
	Reference File Format

	jwst.linearity Package
	Classes
	LinearityStep

	Class Inheritance Diagram

	Master Background Subtraction
	Description
	Inputs
	Nodded Point Sources
	Extended Source with Dedicated Background Exposures

	Creating the 1-D Master Background Spectrum
	Subtracting the Master Background
	NIRSpec Master Background Corrections
	NIRSpec IFU Mode
	NIRSpec Fixed-Slit Mode
	NIRSpec MOS Mode

	Step Arguments
	Reference Files
	jwst.master_background Package
	Classes
	MasterBackgroundStep
	MasterBackgroundMosStep

	Class Inheritance Diagram

	Model Blender
	Role of Model Blender
	Using model_blender
	Customizing the behavior
	Model Blender
	jwst.model_blender.blendmeta Module
	Functions
	blendmodels
	build_tab_schema
	cat_headers
	convert_dtype
	extract_filenames_from_product
	get_blended_metadata

	jwst.model_blender.blender Module
	Functions
	metablender

	Model Blender Rules
	jwst.model_blender.blendrules Module
	Functions
	find_keywords_in_section
	first
	float_one
	int_one
	interpret_attr_line
	interpret_entry
	last
	maxdate
	maxdatetime
	maxtime
	mindate
	mindatetime
	mintime
	multi
	multi1
	zero
	Classes
	KeywordRules
	KwRule

	jwst.model_blender Package

	MIRI MRS Sky Matching
	Description
	Overview
	Assumptions
	Algorithm

	Step Arguments
	Reference Files
	Also See
	LSQ Equation Construction and Solving
	jwst.mrs_imatch.mrs_imatch_step Module
	Functions
	apply_background_2d
	Classes
	MRSIMatchStep
	Class Inheritance Diagram

	jwst.mrs_imatch Package
	Classes
	MRSIMatchStep

	Class Inheritance Diagram

	MSAFlagOpen Correction
	Description
	Overview
	Background
	Algorithm

	Step Arguments
	Reference File
	MSAOPER Reference File
	Reference Selection Keywords for MSAOPER
	Standard Keywords
	Type Specific Keywords for MSAOPER
	Reference File Format

	jwst.msaflagopen Package
	Classes
	MSAFlagOpenStep

	Class Inheritance Diagram

	NSClean 1/f Correction
	Description
	Overview
	Assumptions
	Creation of an image mask
	IFU Slices
	MOS/FS Slits
	MSA Failed Open Shutters
	NaN Pixels
	Fixed-Slit Region Pixels
	Left/Right Reference Pixel Columns
	Outliers
	Mode-Specific Masking Steps

	Reference Files
	Step Arguments
	jwst.nsclean Package
	Classes
	NSCleanStep

	Class Inheritance Diagram

	Outlier Detection
	Description
	Reference Files
	PARS-OUTLIERDETECTIONSTEP Parameter Reference File
	Reference Selection Keywords
	Standard Keywords

	Step Arguments for Non-IFU data
	Step Arguments for IFU data
	Python Step Design: OutlierDetectionStep
	jwst.outlier_detection.outlier_detection_step Module
	Classes
	OutlierDetectionStep

	Class Inheritance Diagram

	Default Outlier Detection Algorithm
	Memory Model for Outlier Detection Algorithm
	Outlier Detection for TSO data
	Outlier Detection for IFU data
	jwst.outlier_detection.outlier_detection Module
	Functions
	flag_cr
	abs_deriv
	Classes
	OutlierDetection
	Class Inheritance Diagram

	Outlier Detection for IFU Data
	jwst.outlier_detection.outlier_detection_ifu Module
	Classes
	OutlierDetectionIFU
	Parameter
	Class Inheritance Diagram

	Outlier Detection for Slit-like Spectroscopic Data
	jwst.outlier_detection.outlier_detection_spec Module
	Classes
	OutlierDetectionSpec
	Class Inheritance Diagram

	jwst.outlier_detection Package
	Classes
	OutlierDetectionStep
	OutlierDetectionScaledStep
	OutlierDetectionStackStep

	Class Inheritance Diagram

	Pathloss Correction
	Description
	Overview
	Background
	Algorithm
	NIRSpec
	MIRI LRS
	NIRISS SOSS

	Error Propagation

	Step Arguments
	Reference File
	PATHLOSS Reference File
	Reference Selection Keywords for PATHLOSS
	Standard Keywords
	Type Specific Keywords for PATHLOSS
	Reference File Format
	MIRI LRS Fixed Slit
	NIRSpec IFU
	NIRSpec Fixed Slit
	NIRSpec MSASPEC
	NIRISS SOSS
	WCS Header Keywords
	NIRSpec
	NIRISS SOSS
	MIRI LRS

	jwst.pathloss Package
	Classes
	PathLossStep

	Class Inheritance Diagram

	Persistence Correction
	Description
	Input
	Output
	Step Arguments
	Reference Files
	TRAPDENSITY Reference File
	Reference Selection Keywords for TRAPDENSITY
	Standard Keywords
	Type Specific Keywords for TRAPDENSITY
	Reference File Format

	PERSAT Reference File
	Reference Selection Keywords for PERSAT
	Standard Keywords
	Type Specific Keywords for PERSAT
	Reference File Format

	TRAPPARS Reference File
	Reference Selection Keywords for TRAPPARS
	Standard Keywords
	Type Specific Keywords for TRAPPARS
	Reference File Format

	jwst.persistence Package
	Classes
	PersistenceStep

	Class Inheritance Diagram

	Photometric Calibration
	Description
	Imaging and non-IFU Spectroscopy
	Photom Data
	MIRI Imaging
	NIRSpec Fixed-Slit Primary Slit
	Pixel Area Data

	NIRSpec IFU
	MIRI MRS

	Arguments
	Reference Files
	PHOTOM Reference File
	Reference Selection Keywords for PHOTOM
	Standard Keywords
	Type Specific Keywords for PHOTOM
	Tabular PHOTOM Reference File Format
	Row Selection
	MIRI MRS Photom Reference File Format

	Constructing a PHOTOM Reference File
	AREA Reference File
	Reference Selection Keywords for AREA
	Standard Keywords
	Type Specific Keywords for AREA
	Reference File Format
	Imaging Modes
	NIRSpec Fixed-Slit Mode
	NIRSpec MOS Mode
	NIRSpec IFU Mode

	jwst.photom Package
	Classes
	PhotomStep

	Class Inheritance Diagram

	Pipeline Modules
	Pipeline Stages
	Pipelines vs. Exposure Type
	Wavefront Sensing and Control Images

	Configuration File Deprecation
	calwebb_detector1: Stage 1 Detector Processing
	Arguments
	Inputs
	4D raw data

	Outputs
	4D corrected ramp
	2D countrate product
	3D countrate product

	PARS-DETECTOR1PIPELINE Parameter Reference File
	Reference Selection Keywords
	Standard Keywords

	calwebb_image2: Stage 2 Imaging Processing
	Arguments
	Inputs
	2D or 3D countrate data

	Outputs
	2D or 3D background-subtracted data
	2D or 3D calibrated data
	2D resampled image

	PARS-IMAGE2PIPELINE Parameter Reference File
	Reference Selection Keywords
	Standard Keywords

	calwebb_spec2: Stage 2 Spectroscopic Processing
	Science Exposures
	NIRSpec Lamp Exposures
	Arguments
	Inputs
	2D or 3D countrate data

	Outputs
	2D or 3D background-subtracted data
	2D or 3D calibrated data
	2D resampled data
	3D resampled (IFU cube) data
	1D extracted spectral data

	PARS-SPEC2PIPELINE Parameter Reference File
	Reference Selection Keywords
	Standard Keywords

	calwebb_image3: Stage 3 Imaging Processing
	Arguments
	Inputs
	2D calibrated images

	Outputs
	CR-flagged exposures
	Resampled and combined 2D image
	Source catalog
	Segmentation map

	calwebb_spec3: Stage 3 Spectroscopic Processing
	Arguments
	Inputs
	2D calibrated data

	Outputs
	Source-based calibrated data
	CR-flagged exposures
	2D resampled and combined spectral data
	3D resampled and combined spectral data
	1D extracted spectral data
	1D combined spectral data

	calwebb_ami3: Stage 3 Aperture Masking Interferometry (AMI) Processing
	Arguments
	Inputs
	2D calibrated images

	Outputs
	Fringe parameter tables
	Averaged fringe parameters table
	Normalized fringe parameters table

	calwebb_coron3: Stage 3 Coronagraphic Processing
	Arguments
	Inputs
	3D calibrated images

	Outputs
	CR-flagged images
	3D stacked PSF images
	4D aligned PSF images
	3D PSF-subtracted images
	2D resampled image

	calwebb_tso3: Stage 3 Time-Series Observation(TSO) Processing
	Inputs
	3D calibrated images

	Outputs
	3D CR-flagged images
	Imaging photometry
	1D extracted spectral data
	Spectroscopic white-light photometry

	calwebb_dark: Dark Processing
	Arguments
	Inputs
	4D raw data

	Outputs
	4D corrected ramp

	PARS-DARKPIPELINE Reference File
	Reference Selection Keywords
	Standard Keywords

	calwebb_guider: Guide Star Processing
	Arguments
	Inputs
	4D raw data

	Outputs
	3D calibrated data

	calwebb_wfs-image2: Stage 2 WFS&C Processing
	Arguments
	Inputs
	2D countrate data

	Outputs
	2D calibrated data

	calwebb_wfs-image3: Stage 3 WFS&C Processing
	Arguments
	Inputs
	2D calibrated images

	Outputs
	2D combined image

	jwst.pipeline Package
	Classes
	Ami3Pipeline
	Coron3Pipeline
	DarkPipeline
	Detector1Pipeline
	GuiderPipeline
	Image2Pipeline
	Image3Pipeline
	Spec2Pipeline
	Spec3Pipeline
	Tso3Pipeline

	Class Inheritance Diagram

	Pixel Replacement
	Description
	Algorithms
	Adjacent Profile Approximation
	Minimum Gradient Estimator

	Step Arguments
	Reference File
	jwst.pixel_replace Package
	Classes
	PixelReplaceStep

	Class Inheritance Diagram

	Ramp Fitting
	Description
	Multiprocessing
	Output Products (https://stcal.readthedocs.io/en/latest/stcal/ramp_fitting/description.html#ramp-output-products)
	Special Cases (https://stcal.readthedocs.io/en/latest/stcal/ramp_fitting/description.html#ramp-special-cases)
	NIRCam Frame Zero
	Detailed Algorithms (https://stcal.readthedocs.io/en/latest/stcal/ramp_fitting/description.html#ramp-slopes-and-variances)
	Error Propagation (https://stcal.readthedocs.io/en/latest/stcal/ramp_fitting/description.html#ramp-error-propagation)
	Data Quality Propagation (https://stcal.readthedocs.io/en/latest/stcal/ramp_fitting/description.html#ramp-dq-propagation)
	Charge Migration Special Case

	Arguments
	Reference Files
	Appendix
	jwst.ramp_fitting Package
	Classes
	RampFitStep

	Class Inheritance Diagram

	Reference File Information
	Introduction
	Reference File Naming Convention
	Reference File Types
	Step Parameters Reference Types

	Standard Required Keywords
	Observing Mode Keywords
	Tracking Pipeline Progress
	Orientation of Detector Image
	P_pattern keywords

	Data Quality Flags
	Parameter Specification
	CRDS Integration in CAL Code
	Step Attribute .reference_file_types
	CRDS Prefetch
	Step Method .get_reference_file()

	Best Reference Matching
	CRDS Parameter Naming
	Example .pmap contents
	Example .imap contents
	Example .rmap contents
	Match Selector
	UseAfter Selector

	Defining Reference File Applicability
	Changing .rmaps to Reassign Reference Files
	More Complex Matching
	Match Parameter Combinations
	Weighted Matching

	More Information

	Reference Pixel Correction
	Description
	Overview
	Input details
	Algorithms
	NIR Detector Data
	MIR Detector Data

	NIRCam Frame 0
	Subarrays
	NIR Data
	For single amplifier readout (NOUTPUTS keyword = 1):
	For 4 amplifier readout (NOUTPUTS keyword = 4):
	MIR Data
	NIRSpec IRS2 Readout Mode

	Step Arguments
	Reference Files
	REFPIX Reference File
	Reference Selection Keywords for REFPIX
	Standard Keywords
	Type Specific Keywords for REFPIX
	Reference File Format

	jwst.refpix Package
	Classes
	RefPixStep

	Class Inheritance Diagram

	Resampling
	Description
	Context Image
	Spectroscopic Data
	References

	Step Arguments
	Reference File
	DRIZPARS Reference File
	Reference Selection Keywords for DRIZPARS
	Standard Keywords
	Type Specific Keywords for DRIZPARS
	Reference File Format

	Python Step Interface: ResampleStep()
	jwst.resample.resample_step Module
	Classes
	ResampleStep
	Class Inheritance Diagram

	Python Interface to Drizzle: ResampleData()
	jwst.resample.resample Module
	Classes
	OutputTooLargeError
	ResampleData
	Class Inheritance Diagram

	Resample Utilities
	jwst.resample.resample_utils Module
	Functions
	decode_context

	jwst.resample Package
	Classes
	ResampleStep
	ResampleSpecStep

	Class Inheritance Diagram

	Reset Correction
	Description
	Assumptions
	Background
	Algorithm

	Subarrays

	Reference File Types
	RESET Reference File
	Standard Keywords
	Reference File Format

	Step Arguments
	jwst.reset Package
	Classes
	ResetStep

	Class Inheritance Diagram

	Residual Fringe
	Description
	Assumptions
	Fringe Background Information

	Step Arguments
	Reference Files
	FRINGEFREQ reference file
	Reference Selection Keywords for FRINGEFREQ
	Standard Keywords
	Type Specific Keywords for FRINGEFREQ
	Reference File Format

	jwst.residual_fringe.residual_fringe_step Module
	Classes
	ResidualFringeStep

	Class Inheritance Diagram

	Reset Switch Charge Decay (RSCD) Correction
	Description
	Assumptions
	Background
	Algorithm

	Step Arguments
	Reference Files
	RSCD Reference File
	Reference Selection Keywords for RSCD
	Standard Keywords
	Type Specific Keywords for RSCD
	Reference File Format

	jwst.rscd Package
	Classes
	RscdStep

	Class Inheritance Diagram

	Saturation Detection
	Description
	Saturation Checking
	Charge Migration
	NIRSpec IRS2 Readouts
	NIRCam Frame 0
	Subarrays

	Step Arguments
	Reference Files
	SATURATION Reference File
	Reference Selection Keywords for SATURATION
	Standard Keywords
	Type Specific Keywords for SATURATION
	Reference File Format

	jwst.saturation Package
	Classes
	SaturationStep

	Class Inheritance Diagram

	SkyMatch
	Description
	Overview
	Assumptions
	Algorithms
	Examples
	Limitations and Discussions

	Step Arguments
	Reference File
	skymatch_step
	jwst.skymatch.skymatch_step Module
	Classes
	SkyMatchStep
	Class Inheritance Diagram

	skymatch
	jwst.skymatch.skymatch Module
	Functions
	match

	skyimage
	jwst.skymatch.skyimage Module
	Classes
	SkyImage
	SkyGroup
	DataAccessor
	NDArrayInMemoryAccessor
	NDArrayMappedAccessor
	Class Inheritance Diagram

	skystatistics
	jwst.skymatch.skystatistics Module
	Classes
	SkyStats
	Class Inheritance Diagram

	region
	jwst.skymatch.region Module
	Classes
	Region
	Edge
	Polygon
	Class Inheritance Diagram

	jwst.skymatch Package
	Classes
	SkyMatchStep

	Class Inheritance Diagram

	Source Catalog
	Description
	Source Detection
	Source Deblending
	Source Photometry and Properties
	Output Products
	Source Catalog Table
	Segmentation Map

	Arguments
	Reference File Types
	APCORR Reference File
	Reference Selection Keywords for APCORR
	Standard Keywords
	Type Specific Keywords for APCORR
	NON-IFU APCORR Reference File Format
	Row Selection
	IFU APCORR Reference File ASDF Format

	ABVEGAOFFSET Reference File
	Reference Selection Keywords for ABVEGAOFFSET
	Standard Keywords
	ABVEGAOFFSET Reference File Format
	Row Selection

	PARS-SOURCECATALOGSTEP Parameter Reference File
	Reference Selection Keywords
	Standard Keywords

	jwst.source_catalog Package
	Classes
	SourceCatalogStep

	Class Inheritance Diagram

	Spectral Leak
	Description
	Step Arguments
	Reference Files
	MRSPTCORR reference file
	Reference Selection Keywords for MRSPTCORR
	Standard Keywords
	Type Specific Keywords for MRSPTCORR
	MIRI Reference File Format

	jwst.spectral_leak.spectral_leak_step Module
	Classes
	SpectralLeakStep

	Class Inheritance Diagram

	Source Type (SRCTYPE) Determination
	Description
	Single Source Observations
	Multi-Source Observations
	NIRSpec MOS
	NIRCam and NIRISS WFSS

	Step Arguments
	Reference File
	jwst.srctype Package
	Classes
	SourceTypeStep

	Class Inheritance Diagram

	Stack PSF References
	Description
	Arguments
	Inputs
	3D calibrated images

	Outputs
	3D PSF image stack

	Reference Files
	jwst.coron.stack_refs_step Module
	Classes
	StackRefsStep

	Class Inheritance Diagram

	STPIPE
	For Users
	Steps
	Configuring a Step
	Running a Step from a parameter file
	Running a Step from the commandline
	Parameter Precedence
	Debugging
	CRDS Retrieval of Step Parameters
	Running a Step in Python
	Step.from_cmdline()
	call()
	run()

	Pipelines
	Configuring a Pipeline
	From a parameter file
	From Python
	Running a Pipeline
	From the commandline
	From Python
	Caching details
	Hooks

	Logging
	Logging configuration
	Examples

	ASDF Parameter Files
	File Contents
	Required Components
	Preamble
	class and name
	Parameters
	Formatting
	Optional Components
	Completeness
	Pipeline Configuration
	Python API
	Parameter Files as Reference Files
	META Block
	History
	JWST, Parameters and Parameter References

	Configuration (CFG) Files
	Executing a pipeline or pipeline step via call()
	Where are the results?

	Executing a pipeline or pipeline step directly, or via run()
	Parameter Files
	CFG Usage Deprecation Notice

	For Developers
	Steps
	Writing a step
	Inputs and outputs
	Input Files, Associations, and Directories
	Output Files and Directories
	Output Suffix
	The Python class
	The spec member
	Configspec types
	Interfacing with CRDS
	Making a simple commandline script for a step

	Pipelines
	Writing a Pipeline

	Logging
	Logging from a Step or Pipeline
	Logging from library code

	Step I/O Design
	API Summary
	Step command-line options
	Step configuration options
	Classes, Methods, Functions
	Design
	Input and JWST Conventions
	Input and Associations
	Input Source
	Output
	When Files are Created
	Output File Naming
	Basename Determination
	Sub-Steps and Output
	Basenames, Associations, and Stage 3 Pipelines
	Output API: When More Control Is Needed
	Save That Model: Step.save_model
	Make That Filename: Step.make_output_path

	jwst.stpipe Package
	Classes
	Step
	Pipeline
	Class Inheritance Diagram

	Stray Light Correction
	Description
	Assumption
	Overview
	Algorithm

	Step Arguments
	Reference Files
	MRSXARTCORR reference file
	Reference Selection Keywords for MRSXARTCORR
	Standard Keywords
	Type Specific Keywords for MRSXARTCORR
	MIRI Reference File Format

	jwst.straylight Package
	Classes
	StraylightStep

	Class Inheritance Diagram

	Superbias Subtraction
	Description
	Algorithm
	NIRCam Frame 0
	Subarrays
	NIRSpec IRS2

	Step Arguments
	Reference Files
	SUPERBIAS Reference File
	Reference Selection Keywords for SUPERBIAS
	Standard Keywords
	Type Specific Keywords for SUPERBIAS
	Reference File Format

	jwst.superbias Package
	Classes
	SuperBiasStep

	Class Inheritance Diagram

	TSO Aperture Photometry
	Description
	Assumptions
	Algorithm
	Subarrays

	Step Arguments
	Reference Files
	TSOPHOT Reference File
	Reference Selection Keywords for TSOPHOT
	Standard Keywords
	Type Specific Keywords for TSOPHOT
	Reference File Format

	jwst.tso_photometry Package
	Classes
	TSOPhotometryStep

	Class Inheritance Diagram

	TweakReg
	Description
	Overview
	Source Detection
	Custom Source Catalogs
	Alignment
	Grouping
	WCS Correction
	Step Arguments
	Further Documentation

	Reference Files
	PARS-TWEAKREGSTEP Parameter Reference File
	Reference Selection Keywords
	Standard Keywords

	tweakreg_catalog
	jwst.tweakreg.tweakreg_catalog Module
	Functions
	make_tweakreg_catalog

	tweakreg_step
	jwst.tweakreg.tweakreg_step Module
	Classes
	TweakRegStep
	Class Inheritance Diagram

	Utility Functions
	jwst.tweakreg.utils Module
	Functions
	adjust_wcs
	transfer_wcs_correction

	astrometric_utils
	jwst.tweakreg.astrometric_utils Module
	Functions
	compute_radius
	create_astrometric_catalog
	get_catalog
	Variables
	TIMEOUT

	jwst.tweakreg Package
	Classes
	TweakRegStep

	Class Inheritance Diagram

	Wavelength Correction
	Description
	NIRSpec MOS
	NIRSpec Fixed Slit (FS)

	Step Arguments
	Reference Files
	WAVECORR Reference File
	Reference Selection Keywords for WAVECORR
	Standard Keywords
	Type Specific Keywords for WAVECORR
	Reference File Format

	jwst.wavecorr Package
	Classes
	WavecorrStep

	Class Inheritance Diagram

	WFS Combine
	Description
	Algorithm
	Computing Offsets
	Creating the Combined Image

	Inputs
	2D calibrated images

	Outputs
	2D combined image

	Step Arguments
	Reference File
	jwst.wfs_combine Package
	Classes
	WfsCombineStep

	Class Inheritance Diagram

	WFSS Contamination Correction
	Description
	Inputs
	The Method
	Outputs

	Step Arguments
	Reference Files
	jwst.wfss_contam Package
	Classes
	WfssContamStep

	Class Inheritance Diagram

	White Light Curve Generation
	Description
	Overview
	Input details
	Algorithm
	Output product

	Step Arguments
	Reference File
	PARS-WHITELIGHTSTEP Parameter Reference File
	Reference Selection Keywords
	Standard Keywords

	jwst.white_light Package
	Classes
	WhiteLightStep

	Class Inheritance Diagram

	Python Module Index
	Index

