Data model attributes¶
The purpose of the data model is to abstract away the peculiarities of the underlying file format. The same data model may be used for data created from scratch in memory, loaded from FITS or ASDF files, or from some other future format.
Calling sequences of models¶
List of current models¶
The current models are as follows:
‘ABVegaOffsetModel’, ‘AmiLgModel’, ‘FgsImgApcorrModel’, ‘MirImgApcorrModel’, ‘NrcImgApcorrModel’, ‘NisImgApcorrModel’, ‘MirLrsApcorrModel’, ‘MirMrsApcorrModel’, ‘NrcWfssApcorrModel’, ‘NisWfssApcorrModel’, ‘NrsMosApcorrModel’, ‘NrsFsApcorrModel’, ‘NrsIfuApcorrModel’, ‘AsnModel’, ‘BarshadowModel’, ‘CameraModel’, ‘CollimatorModel’, ‘CombinedSpecModel’, ‘ContrastModel’, ‘CubeModel’, ‘DarkModel’, ‘DarkMIRIModel’, ‘DisperserModel’, ‘DistortionModel’, ‘DistortionMRSModel’, ‘DrizParsModel’, ‘Extract1dImageModel’, ‘Extract1dIFUModel’, ‘FilteroffsetModel’, ‘FlatModel’, ‘NirspecFlatModel’, ‘NirspecQuadFlatModel’, ‘FOREModel’, ‘FPAModel’, ‘FringeModel’, ‘GainModel’, ‘GLS_RampFitModel’, ‘GuiderRawModel’, ‘GuiderCalModel’, ‘IFUCubeModel’, ‘NirspecIFUCubeParsModel’, ‘MiriIFUCubeParsModel’, ‘IFUFOREModel’, ‘IFUImageModel’, ‘IFUPostModel’, ‘IFUSlicerModel’, ‘ImageModel’, ‘IPCModel’, ‘IRS2Model’, ‘LastFrameModel’, ‘Level1bModel’, ‘LinearityModel’, ‘MaskModel’, ‘ModelContainer’, ‘MSAModel’, ‘MultiCombinedSpecModel’, ‘MultiExposureModel’, ‘MultiExtract1dImageModel’, ‘MultiSlitModel’, ‘MultiSpecModel’, ‘NIRCAMGrismModel’, ‘NIRISSGrismModel’, ‘OTEModel’, ‘OutlierParsModel’, ‘PathlossModel’, ‘PersistenceSatModel’, ‘PixelAreaModel’, ‘NirspecSlitAreaModel’, ‘NirspecMosAreaModel’, ‘NirspecIfuAreaModel’, ‘FgsImgPhotomModel’, ‘MirImgPhotomModel’, ‘MirLrsPhotomModel’, ‘MirMrsPhotomModel’, ‘NrcImgPhotomModel’, ‘NrcWfssPhotomModel’, ‘NisImgPhotomModel’, ‘NisSossPhotomModel’, ‘NisWfssPhotomModel’, ‘NrsFsPhotomModel’, ‘NrsMosPhotomModel’, ‘PsfMaskModel’, ‘QuadModel’, ‘RampModel’, ‘MIRIRampModel’, ‘RampFitOutputModel’, ‘ReadnoiseModel’, ‘ReferenceFileModel’, ‘ReferenceCubeModel’, ‘ReferenceImageModel’, ‘ReferenceQuadModel’, ‘RegionsModel’, ‘ResetModel’, ‘ResolutionModel’, ‘MiriResolutionModel’, ‘RSCDModel’, ‘SaturationModel’, ‘SlitDataModel’, ‘SlitModel’, ‘SpecModel’, ‘SegmentationMapModel’, ‘SourceModelContainer’, ‘SpecKernelModel’, ‘SpecProfileModel’, ‘SpecProfileSingleModel’, ‘SpecTraceModel’, ‘SpecTraceSingleModel’, ‘SpecwcsModel’, ‘StrayLightModel’, ‘SuperBiasModel’, ‘ThroughputModel’, ‘TrapDensityModel’, ‘TrapParsModel’, ‘TrapsFilledModel’, ‘TsoPhotModel’, ‘WavelengthrangeModel’, ‘WaveCorrModel’, ‘WaveMapModel’, ‘WaveMapSingleModel’, ‘WfssBkgModel’
Commonly used attributes¶
Here are a few model attributes that are used by some of the pipeline steps.
For uncalibrated data _uncal.fits
. Getting the number of integrations
and the number of groups from the first and second axes assumes that the
input data array is 4-D data. Pixel coordinates in the data extensions are
1-indexed as in FORTRAN and FITS headers, not 0-indexed as in Python.
input_model.data.shape[0]
: number of integrations
input_model.data.shape[1]
: number of groups
input_model.meta.exposure.nframes
: number of frames per group
input_model.meta.exposure.groupgap
: number of frames droppedbetween groups
input_model.meta.subarray.xstart
: starting pixel in X (1-based)
input_model.meta.subarray.ystart
: starting pixel in Y (1-based)
input_model.meta.subarray.xsize
: number of columns
input_model.meta.subarray.ysize
: number of rows
The data
, err
, dq
, etc., attributes of most models are assumed to be
numpy.ndarray arrays, or at least objects that have some of the attributes
of these arrays. numpy is used explicitly to create these arrays in some
cases (e.g. when a default value is needed). The data
and err
arrays
are a floating point type, and the data quality arrays are an integer type.
Some of the step code makes assumptions about image array sizes. For example, full-frame MIRI data have 1032 columns and 1024 rows, and all other detectors have 2048 columns and rows; anything smaller must be a subarray. Also, full-frame MIRI data are assumed to have four columns of reference pixels on the left and right sides (the reference output array is stored in a separate image extension). Full-frame data for all other instruments have four columns or rows of reference pixels on each edge of the image.
DataModel Base Class¶
- class jwst.datamodels.DataModel(init=None, schema=None, memmap=False, pass_invalid_values=None, strict_validation=None, validate_on_assignment=None, cast_fits_arrays=True, validate_arrays=False, ignore_missing_extensions=True, **kwargs)[source]
- Parameters
init (str, tuple,
HDUList
, ndarray, dict, None) –None : Create a default data model with no shape.
tuple : Shape of the data array. Initialize with empty data array with shape specified by the.
file path: Initialize from the given file (FITS or ASDF)
readable file object: Initialize from the given file object
HDUList
: Initialize from the givenHDUList
.A numpy array: Used to initialize the data array
dict: The object model tree for the data model
schema (dict, str (optional)) – Tree of objects representing a JSON schema, or string naming a schema. The schema to use to understand the elements on the model. If not provided, the schema associated with this class will be used.
memmap (bool) – Turn memmap of FITS file on or off. (default: False). Ignored for ASDF files.
pass_invalid_values (bool or None) – If
True
, values that do not validate the schema will be added to the metadata. IfFalse
, they will be set toNone
. IfNone
, value will be taken from the environmental PASS_INVALID_VALUES. Otherwise the default value isFalse
.strict_validation (bool or None) – If
True
, schema validation errors will generate an exception. IfFalse
, they will generate a warning. IfNone
, value will be taken from the environmental STRICT_VALIDATION. Otherwise, the default value isFalse
.validate_on_assignment (bool or None) – Defaults to ‘None’. If
None
, value will be taken from the environmental VALIDATE_ON_ASSIGNMENT, defaulting to ‘True’ if no environment variable is set. If ‘True’, attribute assignments are validated at the time of assignment. Validation errors generate warnings and values will be set toNone
. If ‘False’, schema validation occurs only once at the time of write. Validation errors generate warnings.cast_fits_arrays (bool) – If
True
, arrays will be cast to the dtype described by the schema when read from a FITS file. IfFalse
, arrays will be read without casting.validate_arrays (bool) – If
True
, arrays will be validated against ndim, max_ndim, and datatype validators in the schemas.ignore_missing_extensions (bool) – When
False
, raise warnings when a file is read that contains metadata about extensions that are not available. Defaults toTrue
.kwargs (dict) –
Additional keyword arguments passed to lower level functions. These arguments are generally file format-specific. Arguments of note are: