NSCleanStep
- class jwst.nsclean.NSCleanStep(name=None, parent=None, config_file=None, _validate_kwds=True, **kws)[source]
Bases:
JwstStep
Perform 1/f noise correction.
NSCleanStep: This step performs 1/f noise correction (“cleaning”) of NIRSpec images, using the “NSClean” method.
NOTE: This step is a deprecated alias to the
clean_flicker_noise
step.- fit_method
The background fit algorithm to use. Options are ‘fft’ and ‘median’; ‘fft’ performs the original NSClean implementation.
- Type:
str, optional
- fit_by_channel
If set, flicker noise is fit independently for each detector channel. Ignored for subarray data and for
fit_method
= ‘fft’.- Type:
bool, optional
- background_method
If ‘median’, the preliminary background to remove and restore is a simple median of the background data. If ‘model’, the background data is fit with a low-resolution model via
Background2D
. If None, the background value is 0.0.- Type:
{‘median’, ‘model’, None}
- background_box_size
Box size for the data grid used by
Background2D
whenbackground_method
= ‘model’. For best results, use a box size that evenly divides the input image shape.
- mask_spectral_regions
Mask regions of the image defined by WCS bounding boxes for slits/slices.
- Type:
bool, optional
- n_sigma
Sigma clipping threshold to be used in detecting outliers in the image.
- Type:
float, optional
- fit_histogram
If set, the ‘sigma’ used with
n_sigma
for clipping outliers is derived from a Gaussian fit to a histogram of values. Otherwise, a simple iterative sigma clipping is performed.- Type:
bool, optional
- single_mask
If set, a single mask will be created, regardless of the number of input integrations. Otherwise, the mask will be a 3D cube, with one plane for each integration.
- Type:
bool, optional
- user_mask
Optional user-supplied mask image; path to file or opened datamodel.
- Type:
None, str, or
ImageModel
Create a
Step
instance.- Parameters:
name (str, optional) – The name of the Step instance. Used in logging messages and in cache filenames. If not provided, one will be generated based on the class name.
parent (Step instance, optional) – The parent step of this step. Used to determine a fully-qualified name for this step, and to determine the mode in which to run this step.
config_file (str or pathlib.Path, optional) – The path to the config file that this step was initialized with. Use to determine relative path names of other config files.
**kws (dict) – Additional parameters to set. These will be set as member variables on the new Step instance.
Attributes Summary
Methods Summary
process
(input_data)Fit and subtract 1/f background noise from a NIRSpec image.
Attributes Documentation
- class_alias = 'nsclean'
- spec
fit_method = option('fft', 'median', default='fft') # Noise fitting algorithm fit_by_channel = boolean(default=False) # Fit noise separately by amplifier background_method = option('median', 'model', None, default=None) # Background fit background_box_size = int_list(min=2, max=2, default=None) # Background box size mask_spectral_regions = boolean(default=True) # Mask WCS-defined spectral regions n_sigma = float(default=5.0) # Clipping level for outliers fit_histogram = boolean(default=False) # Fit a value histogram to derive sigma single_mask = boolean(default=False) # Make a single mask for all integrations user_mask = string(default=None) # Path to user-supplied mask save_mask = boolean(default=False) # Save the created mask save_background = boolean(default=False) # Save the fit background save_noise = boolean(default=False) # Save the fit noise skip = boolean(default=True) # By default, skip the step
Methods Documentation
- process(input_data)[source]
Fit and subtract 1/f background noise from a NIRSpec image.
- Parameters:
input_data (
ImageModel
,IFUImageModel
) – Input datamodel to be corrected.- Returns:
output_model – The 1/f corrected datamodel.
- Return type: